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We study the limit, when k → ∞ of the solutions of ∂ t u -∆u + f (u) = 0 in R N × (0, ∞) with initial data kδ, when f is a positive superlinear increasing function. We prove that there exist essentially three types of possible behaviour according f -1 and F -1/2 belong or not to L 1 (1, ∞), where F (t) = t 0 f (s)ds. We use these results for providing a new and more general construction of the initial trace and some uniqueness and non-uniqueness results for solutions with unbounded initial data.

Introduction

In this article we investigate some local and global properties of solutions of a class of semilinear heat equations

∂ t u -∆u + f (u) = 0 (1.1) in Q ∞ := R N × (0, ∞) (N ≥ 2)
where f : R + → R + is continuous, nondecreasing and positive on (0, ∞), vanishes at 0 and tends to infinity at infinity. As a model equation we shall consider the following nonlinear term, with α > 0,

∂ t u -∆u + u ln α (u + 1) = 0, (1.2) 
which points out all the delicate features of weakly superlinear absorption. By opposition, for power-like absorption f (u) = |u| β u with β > 0 much is known about the structure of the set of solutions. The local and asymptotic behaviour of solutions is strongly linked to the existence of a self-similar solutions under the form u(x, t) = t -1/β w(x √ t).

(1.3)

In this case the critical exponent β c = 2/N plays a fundamental role in the description of isolated singularities and the study of the initial trace. This is due to the fact that, for 0 < β < β c , there exists a positive self-similar solution with an isolated singularity at (0, 0) and vanishing on R N \ {0} × {0}, while no such solution exists when β ≥ β c and more generally, no solution with isolated singularities.

In the case of (1.2), no self-similar structure exists. There is no critical exponent corresponding to isolated singularities since there always exist such singular solutions. Actually, for any k > 0 there exists a unique

u = u k ∈ C(Q ∞ \ {(0, 0)}) ∩ C 2,1 (Q ∞ ) solution of ∂ t u -∆u + u ln α (u + 1) = 0 in Q ∞ u(., x) = kδ 0 in D ′ (R N ). (1.4) 
There are two critical values for α: α = 1 and α = 2, the explanation of which comes from the study of the two singular problems φ ′ + φ ln α (φ + 1) = 0 in (0, ∞)

φ(0) = ∞, (1.5) 
and, for any ǫ > 0,

   -∆ψ + ψ ln α (ψ + 1) = 0 in R N \ B ǫ lim |x|→ǫ ψ(x) = ∞, (1.6) 
where B ǫ := {x ∈ R N : |x| < ǫ}. When it exists, the solution φ ∞ of (1.5) is given implicitely by ∞ φ∞(t) ds s ln α (s + 1) = t ∀t > 0, (1.7) and such a formula is valid if and only if α > 1. For problem (1.6) an explicit expression of the solution is not valid, but this solution exists if and only if α > 2; in this case of the Keller-Osserman condition (see (1.12) below) holds.

Having in mind this model we study (1.1) assuming the weak singularity condition on f :

∞ 1 s -2-2 N f (s)ds < ∞.
(1.8)

Proposition 1.1 Assume (1.8) holds. Then for any k > 0, there exists a unique solution u := u k to

∂ t u -∆u + f (u) = 0 in Q ∞ u(., 0) = kδ 0 in D ′ (R N ).
(1.9)

Furthermore, if ψ n is a sequence of positive integrable functions converging to kδ in the weak-star topology, then the sequence u ψn of solutions of (1.1) in Q ∞ with initial data ψ n converges to u kδ , locally uniformly.

Another important condition on f is

∞ 1 ds f (s) < ∞.
(1.10)

Under assumption (1.10) there exists a solution φ := φ ∞ to

φ ′ + f (φ) = 0 in (0, ∞) φ(0) = ∞. (1.11)
The function φ ∞ is the maximal solution of (1.11 ) and it it explicited by a formula similar to (1.7 ) in which s ln α (s + 1) is replaced by f (s).

The next important condition on f we shall encounter is the Keller-Osserman condition, i.e. If (1.12) is satisfied, by [4, Theorem III] for any ǫ > 0 there exists a maximal solution

ψ := ψ ǫ to    -∆ψ + f (ψ) = 0 in R N \ B ǫ lim |x|→ǫ ψ(x) = ∞. (1.14) 
Assumptions (1.10 ) and (1.13 ) which are simultaneously satisfied in the case of a power like absorption, but not in our model case, are the Ariane shred which illuminates the structure of the set of solutions of (1.1 ), in particular in view of the initial trace problem.

The first question we consider is the study of the limit of u k when k → ∞. This question is natural since k → u k is increasing. In order to treat it, we need some additional conditions. In the second section, we prove the following results. 

F (s) = ∞ (1.16)
where F is defined in (1.13), then the solutions u k of (1.9) satisfy lim

k→∞ u k (x, t) = φ ∞ (t) for every (x, t) ∈ Q ∞ , where φ ∞ is the solution of (1.11).
We denote by U 0 the set of positive solutions u of (1.1) in Q ∞ , which are continuous in Q ∞ \ {(0, 0)}, vanish on the set {(x, 0) : x = 0} and satisfies

lim t→0 Bǫ u(x, t)dx = ∞ (1.17)
for any ǫ > 0.

Theorem 1.4 Assume f satisfies (1.8), (1.12) and (C2). Then U := lim

k→∞ u k is the minimal element of U 0 .
In the third section we study the set of positive and locally bounded solutions of (1.1) in Q ∞ . This set differs considerably according the assumption on f . This is due to the properties of the radial solutions of the associated stationnary equation

-∆w + f (w) = 0 in R N . (1.18)
The next result is based upon the Picard-Lipschitz fixed point theorem and a result of Vazquez and Véron [START_REF] Vazquez | Isolated singularities of some semilinear elliptic equations[END_REF].

Proposition 1.5 Assume (1.16) holds. For any a > 0, there exists a unique positive function w

:= w a ∈ C 2 ([0, ∞)) to the problem            -w ′′ - N -1 r w ′ + f (w) = 0 in R + w ′ (0) = 0 w(0) = a.
(1.19)

A striking consequence of the existence of such solutions is the following nonuniqueness result.

Theorem 1.6 Assume f satisfies (1.10) and (1.16). Then for any

u 0 ∈ C(R N ) satisfying, for some b > a > 0, w a (x) ≤ u 0 (x) ≤ w b (x) ∀x ∈ R N , there exist two solutions u, u ∈ C(Q ∞ ) of (1.1)
with initial value u 0 . They satisfy respectively

0 ≤ u(x, t) ≤ min{w b (x), φ ∞ (t)} ∀(x, t) ∈ Q ∞ , (1.20) 
thus lim t→∞ u(x, t) = 0, uniformly with respect to x ∈ R N , and

w a (x) ≤ u(x, t) ≤ w b (x) ∀(x, t) ∈ Q ∞ , (1.21) thus lim |x|→∞ u(x, t) = ∞, uniformly with respect to t ≥ 0.
The next theorem shows that if two solutions of (1.1) have the same initial data and the same asymptotic behaviour as |x| → ∞ then they coincide.

Theorem 1.7 Assume f satisfies (C1) and (1.16)

. Let u, ũ ∈ C(Q ∞ ) ∩ C 2,1 (Q ∞ )
be two positive solutions of (1.1) with initial data u 0 . If for any ǫ > 0,

u(x, t) -ũ(x, t) = o(w ǫ (|x|)) as x → ∞ (1.22)
locally uniformly with respect to t ≥ 0, then u = ũ.

On the contrary, if the Keller-Osserman condition holds, a continuous solution is uniquely determined by the positive initial value u 0 ∈ C(R N ), and uniqueness still

holds if C(R N ) is replaced by M + (R N ).
Theorem 1.8 Assume f satisfies (1.12) and (C2). Then (i) For any nonnegative function

u 0 ∈ C(R N ) there exists a unique nonnegative solution u ∈ C(Q ∞ ) of (1.1) in Q ∞ with initial value u 0 .
(ii) For any for any nonnegative measure µ ∈ M(R N ), there exists at most one nonnegative solution

u ∈ C(Q ∞ ) of (1.1) in Q ∞ such that f (u) ∈ L 1 loc (Q ∞ ) satisfying lim t→0 R N u(x, t)ζ(x)dx = R N ζ(x)dµ(x) ∀ζ ∈ C c (R N ). (1.23)
In the last section we use the tools studied in the previous sections to develop a new construction of the initial trace of locally bounded positive solutions of (1.1) in Q ∞ . By opposition to the power-like case [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF], where the initial trace was constructed by duality arguments based upon Hölder inequality and delicate choice of test functions, our new method has the advantage of being based only on maximum principle, using either the Keller-Osserman condition, if (1.16 ) holds, or the asymptotics of the u k if (1.16 ) does not hold. We first prove

Proposition 1.9 Let u ∈ C 2,1 (Q ∞ ) be a positive solution of (1.1) in Q ∞ . The set R(u) of the points z ∈ R N such that there exists an open ball B r (z) such that u, f (u) ∈ L 1 (Q Br(z) T
) is an open subset. Furthermore there exists a positive Radon measure µ := µ(u) on R(u) such that The initial trace can also be represented by a positive, outer regular Borel measure, not necessary locally bounded. The space of these measures on R N will be denoted by

lim t→0 R(u) u(x, t)ζ(x)dx = R(u) ζ(x)dµ(x) ∀ζ ∈ C c (R(u)). ( 1 
B reg + (R N ).
If for every open subset A ⊂ R N we denote by M + (A) the space of positive Radon measures on A, there is a one-to-one correspondence between B reg + (R N ) and the set of couples:

CM + (R N ) = (S, µ) : S ⊂ R N closed, µ ∈ M + (R) with R = R N \ S .
(1.25)

The Borel measure ν ∈ B reg + (R N ) corresponding to a couples (S, µ) ∈ CM + (R N ) is given by

ν(A) = ∞ if A ∩ S = ∅ µ(A) if A ⊆ S, ∀A ⊂ R N , A Borel. (1.26)
If u is a solution of (1.1), we shall use the notation tr R N (u) (resp. T r R N (u)) for the trace considered as an element of CM + (R N ) (resp. B reg + (R N )). We consider the case when the Keller-Osserman holds.

Theorem 1.11 Assume f is nondecreasing and satisfies (1.12).

If u ∈ C 2,1 (Q ∞ ) is a positive solution of (1.1), it possesses an initial trace ν ∈ B reg + (R N ).
Furthermore, the following theorem deals with the existence of the maximal solution and the minimal solution of (1.1) with a given initial trace (S, µ) ∈ CM + (R N ). Theorem 1.12 Assume f is nondecreasing and satisfies (1.12), (1.8) and (C2). Then for any (S, µ) ∈ CM + (R N ) there exist a maximal solution u S,µ and a minimal solution u S,µ of (1.1) in Q ∞ , with initial trace (S, µ), in the following sense:

u S,µ ≤ v ≤ u S,µ
(1.27)

for every positive solution v ∈ C 2,1 (Q ∞ ) of (1.1) in Q ∞ such that tr R N (v) = (S, µ).
If the Keller-Osserman does not holds, we obtain the following results which depend upon lim k→∞ u k is equal to φ ∞ or is infinite (we recall that u k is the solution of (1.9)). A consequence of Theorem 1.13 which is worth mentioning is the following. Proposition 1.14 Under the assumptions of Theorem 1.13, for any b > 0 there exists a positive solution

u ∈ C(Q ∞ ) of (1.1) in (1.1) satisfying max{φ ∞ (t); w b (|x|)} ≤ u(x, t) ≤ φ ∞ (t) + w b (|x|) ∀(x, t) ∈ Q ∞ .
(1.28)

Consequently there exist infinitely many positive solutions of (1. The proofs are combination of methods developed in [START_REF] Marcus | The boundary trace and generalized boundary value problem for seminilear elliptic equations with coercive absorption[END_REF] for elliptic equations, stability results and Theorem 1.2 and Theorem 1.3.

Isolated singularities

In order to study (1.1), we start proving Proposition 1.1.

Proof of Proposition 1.1

We denote by E(x, t) = (4πt) -N/2 e -|x| 2 /4t the fundamental solution of the heat equation in Q ∞ . Since kE (k > 0) is a supersolution for (1.1), it is classical to prove that if

I := 1 0 B R f (kE(x, t))dx dt < ∞ (2.1)
for any R > 0, then there exists a unique solution u = u k to (1.1) satisfying initial condition u k (., 0) = kδ 0 in D ′ (R N ). Furthermore the mapping k → u k is increasing. Actually, it is proved in [6, Th 1.1] that if f satisfies the weak singularity assumption (1.8), then for any positive bounded Borel measure there exists a unique solution u := u µ to 1.1 satisfying u µ (., 0) = µ. Furthermore if {µ n } is a sequence of positive bounded measures which converge to a measure µ in the weak-star topology of measures, then the sequence of corresponding solutions {u µn } converges locally uniformly to u µ , and {f (u µn )} converges to

f (u µ ) in L 1 loc (R N × [0, ∞))
. This existence result and the next proposition lead to the conclusion of Proposition 1.1. Proof. We set

h(r) = f (r) r r ∈ (0, ∞). (2.2) 
I is rewritten as

I = kC * 1 0 B R t -N/2 e -|x| 2 /4t h(kC * t -N/2 e -|x| 2 /4t )dx dt
where C * = (4π) -N/2 . Put r = |x| then dx = r N -1 dr, and

I = kC * 1 0 t -N/2
R 0 e -r 2 /4t h(kC * t -N/2 e -r 2 /4t )r N -1 dr dt.

Wet put ρ = r √ t , then r N -1 dr = ρ N -1 t N/2 dρ, and

I = kC * 1 0 R/ √ t 0 e -ρ 2 /4 h(kC * t -N/2 e -ρ 2 /4 )ρ N -1 dρ dt.
We set

I 1 := kC * 1 0 1 0 e -ρ 2 /4 h(kC * t -N/2 e -ρ 2 /4 )ρ N -1 dρ dt, I 2 := kC * 1 0 R/ √ t 1 e -ρ 2 /4 h(kC * t -N/2 e -ρ 2 /4 )ρ N -1 dρ dt.
Since e -ρ 2 /4 ρ N -1 is bounded in [0, ∞), then there exists a constant c 1 depending only on k such that

I 1 < c 1 1 0 1 0 h(kC * t -N/2 )dρ dt = c 1 1 0 h(kC * t -N/2 )dt < ∞.
Next we show that under the condition (1.8), I 2 < ∞. In order to do that we introduce the variable τ such that t -N/2 e -ρ 2 /4 = τ -N/2 . Then t = τ e -ρ 2 2N and dt = e -ρ 2 2N dτ . Therefore

I 2 ≤ kC * ∞ 1 e -(N+2)ρ 2 4N ρ N -1 e ρ 2 /2N 0 h(kC * τ -N/2 )dτ dρ. (2.3) 
Since h satisfies (1.8), there exists ǫ > 0 (depending only on k) such that

ǫ 0 h(kC * τ -N/2
)dτ take a finite value, denoted by c 2 . Hence

e ρ 2 /2N 0 h(kC * τ -N/2 )dτ ≤ c 2 + h(kC * ǫ -N/2 )(e ρ 2 2N -ǫ). (2.4) 
Inserting (2.4) into the right-hand side of (2.3), we obtain

I 2 ≤ c 3 ∞ 1 e -(N+2)ρ 2 4N ρ N -1 dρ + c 4 ∞ 1 e -ρ 2 4 ρ N -1 dρ < ∞ where c 3 = kC * c 2 and c 4 = kC * h(kC * ǫ -N/2 ). Thus I = I 1 + I 2 < ∞.
The functions which satisfy the following ODE are particular solutions of (1.1)

∂ t φ + f (φ) = 0 in (0, ∞). (2.5)
For a > 0, we denote by φ a the solution of (2.5) with initial data φ(0) = a. If (1.15) holds then lim a→∞ φ a (t) = ∞ for any t ∈ (0, ∞). While, if (1.10) holds there exists a maximal solution φ ∞ given explicitely by

t = ∞ φ∞(t) ds f (s) < ∞. Lemma 2.2 If (1.15) holds then lim inf r→∞ f (r) r ln α r = 0, ∀α > 1.
If (1.10) holds then

lim sup r→∞ f (r) r ln α r = ∞, ∀0 < α ≤ 1.
Proof. Case 1. Assume (1.15) holds then

J := ∞ e ds f (s) < ∞. (2.6) 
We put s = e r -1 and derive

J = 1 0 dr r 2 h(e r -1 )
where h is defined in (2.2). Suppose that there exists α > 1 such that

lim inf s→∞ f (s) s ln α s > 0, equivalently, lim inf r→0 r α h(e r -1 ) > 0,
then there exists l > 0 and r 0 ∈ (0, 1) such that h(e r -1 ) > lr -α ∀r ∈ (0, r 0 ).

Hence we derive the following contradiction

J < 1 l r 0 0 r α-2 dr + 1 r 0 dr r 2 h(e r -1 ) < ∞.
Case 2. Assume (1.10) holds then J = ∞. Suppose that there exists α ∈ (0, 1] such that lim sup

s→∞ f (s) s ln α s < ∞, equivalently, lim sup r→0 r α h(e r -1 ) < ∞,
then there exists l > 0 and r 0 ∈ (0, 1) such that h(e r -1 ) < lr -α ∀r ∈ (0, r 0 ).

Hence

J > 1 l r 0 0 r α-2 dr + 1 r 0 dr r 2 h(e r -1 ) = ∞,
which is a contradiction.

Proof of Theorem 1.2.

Since (1.15) holds, by Lemma 2.2 and the definition (2.2) of h,

lim inf r→∞ h(r) ln α r = 0 ∀α > 1. Thus lim inf r→∞ h(r) ln α r = 0 ∀α > 2.
By (C3), there exists β ∈ (1, 2] such that lim sup r→∞ h(r)/ ln β r < ∞. Hence there exist M > 0 and r 0 > 0 such that h(r) < M ln β r ∀r ∈ (r 0 , ∞).

(2.7)

Step 1. Let k > 0, we claim that

θ k (t) < 2 β-1 M t(ln k) β + M N β 2 1 0 (ln(τ -1 )) β dτ ∀t ∈ (0, 1) (2.8)
where

θ k (t) = t 0 h(kC * τ -N/2 )dτ with C * = (4π) -N/2 . Set r = kC * τ -N/2 then (2.7) becomes h(kC * τ -N/2 ) < M [ln(kC * ) + N 2 ln(τ -1 )] β ∀τ ∈ (0, τ 0 )
where

τ 0 = (kC * ) 2/N r -2/N 0 . We put a 1 = ln k, a 2 = N 2 ln(τ -1
), and apply the following inequality (a

1 + a 2 ) β ≤ 2 β-1 (a β 1 + a β 2 ) in order to obtain h(kC * τ -N/2 ) < M [ln(k) + N 2 ln(τ -1 )] β ≤ 2 β-1 M [(ln k) β + ( N 2 ) β ln β (τ -1 )] ∀τ ∈ (0, τ 0 ), (2.9) 
(notice that C * = (4π) -N/2 < 1). Integrating over [0, t] yields to (2.8).

Step 2. It follows from (2.9) that (1.8) is fulfilled; hence by Proposition 1.1 there exists a unique solution u k of (1.1) in Q ∞ with initial data kδ 0 . By the maximum principle, u k (x, t) ≤ kE(x, t) for every (x, t) ∈ Q ∞ , which implies u k (x, t) ≤ kC * t -N/2 for every (x, t) ∈ Q ∞ . Therefore, since h is increasing,

∂ t u k -∆u k + u k h(kC * t -N/2 ) ≥ 0.
If we set v k (x, t) = e θ k (t) u k (x, t), we obtain

∂ t v k -∆v k = e θ k (t) [∂ t u k -∆u k + u k h(kC * t -N/2 )] ≥ 0
and v k (., 0) = u k (., 0) = kδ 0 . By the maximum principle, there holds

v k (x, t) ≥ kC * t -N/2 e -|x| 2 /4t ⇐⇒ u k (x, t) ≥ kC * t -N/2 e -θ k (t)-|x| 2 /4t . (2.10) By step 1, e -θ k (t) ≥ c 1 e -M β t(ln k) β ∀t ∈ (0, 1) (2.11) 
where

c 1 = exp - M (N ) β 2 1 0 (ln(τ -1 )) β dτ and M β = M 2 β-1 . Inserting (2.
11) into the right-hand side of (2.10), we get

u k (x, t) ≥ c 1 C * t -N/2 e ln k-M β t(ln k) β -|x| 2 /4t ∀(x, t) ∈ Q 1 := R N × (0, 1). If lim k→∞ u k (x, t) < ∞ for all (x, t) ∈ Q ∞ , we put U := lim k→∞ u k , then U (x, t) ≥ c 1 C * t -N/2 e ln k-M β t(ln k) β -|x| 2 /4t ∀(x, t) ∈ Q 1 , ∀k > 0.
Let {t n } ⊂ (0, 1] be a sequence converging to 0. We choose

k n = exp (2M β t n ) 1 1-β then ln k n -M β t n (ln k n ) β = 1 2 ln k n . Next we restrict x in order to have ln k n -M β t n (ln k n ) β - |x| 2 4t n = 1 2 ln k n - |x| 2 4t n ≥ 0 ⇐⇒ |x| ≤ 2 β-2 2(β-1) M 1 2(1-β) β t β-2 2(β-1) n . Therefore, since 1 < β ≤ 2, lim n→∞ U (x, t n ) = ∞ uniformly on R N if 1 ≤ β < 2, or uniformly on the ball B r 2 where r 2 = (2M ) -1/2 if β = 2. Since the sequence {t n } is arbitrary, lim t→0 U (x, t) = ∞ uniformly on R N if 1 ≤ β < 2, or uniformly on the ball B r 2 if β = 2.
We pick some point x 0 in R N (resp. B r 2 ) if 1 < β < 2 (resp. β = 2). Since for any k > 0, the solution u kδx 0 of (1.1) with initial data kδ x 0 can be approximated by solutions with bounded initial data and support in B σ (x 0 ) where 0

< σ < r 2 -|x 0 |, it follows U (x, t) ≥ u kδx 0 (x, t) = u k (x -x 0 , t), by comparison principle. Letting k → ∞ yields to U (x, t) ≥ U (x-x 0 , t).
Interverting the role of 0 and x 0 yields to U (x, t) = U (xx 0 , t). If we iterate this process we derive

U (x, t) = U (x -y, t) ∀y ∈ R N .
This implies that U (x, t) is independent of x and therefore it is a solution of (1.11). By (1.15), U (x, t) = ∞ for any (x, t) ∈ Q ∞ , which is a contradiction and the conclusion follows.

Proposition 2.3 Assume (1.10) is satisfied. For any k > 0, there holds

u k (x, t) ≤ φ ∞ (t) ∀(x, t) ∈ Q ∞ .
Proof. For any small ǫ > 0, we set

φ ∞ǫ (t) = φ ∞ (t -ǫ), t ∈ [ǫ, ∞) then φ ∞ǫ is a solution of (1.1) in (ǫ, ∞), which dominates u k on R N × {ǫ} for any k > 0. By comparison principle, u k (x, t) ≤ φ ∞ǫ (t) for every (x, t) ∈ R N × [ǫ, ∞). Letting ǫ → 0 yields the claim.
A necessary and sufficient condition for the existence of a maximal solution to the stationary equation -∆w + f (w) = 0 in a bounded domain Ω is the Keller-Osserman condition (1.12) ([4], [START_REF] Osserman | On the inequality ∆u ≥ f (u)[END_REF]). If f is convex and (1.12) holds, then (1.10) is fulfilled. The Keller-Osserman condition can be replaced by another condition, which owes to the following result.

Lemma 2.4 Assume f is convex on (0, ∞). Set L := ∞ 1 ds sf (s) .
Then (1.12) holds if and only if L < ∞.

Proof. In order to obtain the assertion, it is sufficient to show that

s f ( s 2 ) ≤ F (s) ≤ s f (s) ∀s ≥ 1.
(2.12)

The right-hand side estimate in (2.12) follows from the monotone property of f .

The assumption of convexity of f in (0, ∞) implies

f (s) ≥ f ( s 2 ) + s 2 f ′ ( s 2 ) ∀s > 0. Define ϕ(s) = s 0 f (σ)dσ -sf ( s 2 ), then ϕ ′ (s) = f (s) -f ( s 2 ) -s 2 f ′ ( s 2 )
≥ 0. Hence ϕ(s) > ϕ(0) = 0, which leads to the left-hand side estimate in (2.12). By using the same argument as in the proof of the Lemma 2.2 and thank to the Lemma 2.4, we obtain the following lemma.

Lemma 2.5 If (1.16) holds then lim inf r→∞ f (r) r ln α (r) = 0 ∀α > 2.
If (1.12) holds then

lim sup r→0 f (r) r ln α (r) = ∞ ∀0 < α ≤ 2.
Proof of Theorem 1.3.

Since (1.16) holds, by Lemma 2.5 and the definition (2.2) of h,

lim inf r→∞ h(r)ln α r = 0 ∀α > 2.
By (C3), there exists β ∈ (1, 2] such that lim sup r→∞ h(r)/ ln β r < ∞. Hence there exists M > 0 and r 0 > 0 such that h(r) < M ln β r ∀r ∈ (r 0 , ∞).

(2.13)

Step 1. For any k > 0 we set

θ k (t) = t 0 h(kC * τ -N/2 )dτ
where C * = (4π) -N/2 . We claim that

θ k (t) < 2 β-1 M t(ln k) β + M N β 2 1 0 (ln(τ -1 )) β dτ ∀t ∈ (0, 1). (2.14)
If we define τ by r = kC * τ -N/2 , (2.13) becomes

h(kC * τ -N 2 ) < M [ln(kC * ) + N 2 ln(τ -1 )] β ∀τ ∈ (0, τ 0 )
where τ 0 = (kC * ) 2/N r -2/N 0

. We set a 1 = ln k, a 2 = N 2 ln(τ -1 ), and apply the following inequality (a 1 + a 2 ) β ≤ 2 β-1 (a β 1 + a β 2 ) in order to obtain (notice that C * < 1)

h(kC * τ -N/2 ) < M [ln(k) + N 2 ln(τ -1 )] β ≤ 2 β-1 M [(ln k) β + ( N 2 ) β ln β (τ -1 )].
(2.15)

Integrating over [0, t], we obtain (2.14).

Step 2. It follows from (2.15) that (1.8) is fulfilled; hence by Proposition 1.1 there exists a unique solution of (1.1) in Q ∞ with initial trace kδ 0 . By maximum principle,

u k (x, t) ≤ kE(x, t) for every (x, t) ∈ Q ∞ , which implies that u k (x, t) ≤ kC * t -N/2 for every (x, t) ∈ Q ∞ . Therefore, since h is increasing, ∂ t u k -∆u k + u k h(kC * t -N/2 ) ≥ 0.
We set v k (x, t) = e θ k (t) u k (x, t) and obtain

∂ t v k -∆v k = e θ k (t) [∂ t u k -∆u k + u k h(kC * t -N/2 )] ≥ 0, with v k (., 0) = u k (., 0) = kδ 0 . By maximum principle, it follows v k (x, t) ≥ kC * t -N/2 e -|x| 2 /4t ⇐⇒ u k (x, t) ≥ kC * t -N/2 e -θ k (t)-|x| 2 /4t . (2.16) By step 1, e -θ k (t) ≥ c 1 e -M β t(ln k) β ∀t ∈ (0, 1) (2.17)
where

c 1 = exp -M (N ) β 2 1
0 (ln(τ -1 )) β dτ and M β = M 2 β-1 . Inserting (2.17) into the right-hand side of (2.16), we get

u k (x, t) ≥ c 1 C * t -N/2 e ln k-M β t(ln k) β -|x| 2 /4t ∀(x, t) ∈ Q 1 = R N × (0, 1). Since k → u k is increasing, by Proposition 2.3 there exists U := lim k→∞ u k and U ≥ u k . Hence U (x, t) ≥ c 1 C * t -N/2 e ln k-M β t(ln k) β -|x| 2 /4t ∀(x, t) ∈ Q 1 , ∀k > 0.
Let {t n } ⊂ (0, 1] be a sequence converging to 0. We choose

k n = exp((2M β t n ) 1 1-β ), equivalently ln k n -M β t n (ln k n ) β = 1 2 ln k n . Next we restrict |x| in order ln k n -M β t n (ln k n ) β - |x| 2 4t n = 1 2 ln k n - |x| 2 4t n ≥ 0 ⇐⇒ |x| ≤ r β t β-2 2(β-1) n , where r β = 2 β-2 2(β-1) M 1 2(1-β) β . Because 1 < β ≤ 2, it follows lim n→∞ U (x, t n ) = ∞, uniformly on R N if 1 ≤ β < 2, or uniformly on the ball B r 2 where r 2 = (2M ) -1 2 if β = 2. Since the sequence {t n } is arbitrary, lim t→0 U (x, t) = ∞ uniformly on R N if 1 ≤ β < 2, or uniformly on the ball B r 2 if β = 2.
We pick some point x 0 in R N (resp. B r 2 ) if 1 < β < 2 (resp. β = 2). Since for any k > 0, the solution u kδx 0 of (1.1) with initial data kδ x 0 can be approximated by solutions with bounded initial data and support in B σ (x 0 ) where 0

< σ < r 2 -|x 0 |, it follows U (x, t) ≥ u kδx 0 (x, t) = u k (x -x 0 , t), by comparison principle. Letting k → ∞ yields to U (x, t) ≥ U (x -x 0 , t).
Reversing the role of 0 and x 0 yields to U (x, t) = U (xx 0 , t). If we iterate this process we derive

U (x, t) = U (x -y, t) ∀y ∈ R N .
This implies that U (x, t) is independent of x and therefore it is a solution of (1.11) Since (1.10) holds, U (x, t) = φ ∞ (t) for every (x, t) ∈ Q ∞ .

Proposition 2.6 Assume (1.12) and (1.8) are satisfied. Then for any k > 0 there holds

u k (x, t) ≤ Φ(|x|) ∀(x, t) ∈ Q ∞
where Φ is a solution to the problem

-Φ ′′ + f (Φ) = 0 in (0, ∞) lim s→0 Φ(s) = ∞. Proof.
Step 1: Upper estimate. Since f satisfies (1.12), by [START_REF] Keller | On solutions of ∆u = f (u)[END_REF] for any R > 0, there exists a solution w R to the problem By the maximum principle,

-∆w R + f (w R ) = 0 in B R , lim |x|→R w R (x) = ∞, ( 2 
u k (x, t) ≤ W e,n,R (x) ∀(x, t) ∈ B R (a n ) × (0, ∞). ( 2 

.19)

The sequence {W e,n,R } is decreasing with respect to R and is bounded from below by u k , then there exists W e,n := lim

R→n W e,n,R satisfying

u k (x, t) ≤ W e,n (x) ∀(x, t) ∈ B n (a n ) × (0, ∞).
(2.20)

The sequence {W e,n } is also decreasing with respect to n and is bounded from below by u k , then there exists W e,∞ := lim n→∞ W e,n . Letting n → ∞ in (2.20) yields to

u k (x, t) ≤ W e,∞ (x) ∀(x, t) ∈ H e × (0, ∞). (2.21)
In particular,

u k (x e , t) ≤ W e,∞ (x e ). ( 2 

.22)

Since u k is radial, it follows that

u k (x 0 , t) = u k (x e , t) ≤ W e,∞ (x e ).
For any r > 0, n > r, nr < R < n and e, e ′ ∈ E, since w R is radial, w R (r en e) = w R (r e ′n e ′ ).

Letting successively R → n, n → ∞ yields to W e,∞ (r e) = W e ′ ,∞ (r e ′ ).

Define Φ(r) := W e,∞ (r e), ∀r ∈ (0, ∞) then it satisfies

   -Φ′′ - N -1 r Φ′ + f ( Φ) = 0 in (0, ∞) lim r→0 Φ(r) = ∞, (2.23) 
and

u k (x, t) ≤ Φ(|x|) ∀(x, t) ∈ Q ∞ . (2.24)
Step 2: End of the proof. We claim that

Φ(r) ≤ Φ(r) ∀r ∈ (0, ∞). (2.25) 
For any ǫ > 0, we set Φ ǫ (r) = Φ(rǫ), r > ǫ then Φ ǫ is a solution of Remark. Combining Proposition 2.3 and Proposition 2.6 yields to

-Φ ′′ ǫ + f (Φ ǫ ) = 0 in (ǫ, ∞) (2 
u k (x, t) ≤ min{φ ∞ (t), Φ(|x|)} ∀(x, t) ∈ Q ∞ , ∀k > 0. (2.27) Proof of Theorem 1.4.
Since f is convex, (1.12 ) implies (1.10 ). Actually, only lim inf s→∞ f (s) s > 0 is needed for this implication. The sequence {u k } is increasing with respect to k and is bounded from above by (2.27) then there exists U := lim By a simple adaptation of the proof of Proposition 2.3 and Proposition 2.6 it is possible to extend (2.28) to any positive solution vanishing on R N × {0} \ {(0, 0)}. Proposition 2.7 Assume (1.12) and (C2) are satisfied. Then any positive solution

k→∞ u k satisfying U(x, t) ≤ min{φ ∞ (t), Φ(|x|)} ∀(x, t) ∈ Q ∞ , ∀k > 0. ( 2 
u ∈ C 2,1 (Q ∞ ) of (1.1) satisfies u(x, t) ≤ φ ∞ (t) ∀(x, t) ∈ Q ∞ .
(2.30)

If we assume moreover that u ∈ C(Q \ {(0, 0)}) vanishes on R N × {0} \ {0}, there holds u(x, t) ≤ min{φ ∞ (t), Φ(|x|)} ∀(x, t) ∈ Q ∞ . (2.31) 
Proof. Since f (0) = 0 and due to the convexity of f , the following inequality holds

f (a + b) ≥ f (a) + f (b) ∀a, b > 0, (2.32) 
which implies that for any R, τ > 0, (x, t) → φ ∞ (tτ ) + w R (x) is a supersolution of (1.1) in B R × (τ, ∞). This function dominates u on the parabolic boundary, thus in the domain itself by the comparison principle. Since f (r) > 0 if r > 0, lim

R→∞ w R = 0 in R N . Therefore u(x, t) ≤ φ ∞ (t) = lim τ →0 lim R→∞ (φ ∞ (t -τ ) + w R (x)) ∀(x, t) ∈ Q ∞ .
For the second estimate we notice that (2.19) is valid with u k replaced by u (and without assumption (1.8) since existence is assumed). The remaining of the proof of Proposition 2.6 is similar and yields to

u(x, t) ≤ Φ(|x|) ∀(x, t) ∈ Q ∞ .
This implies (2.31).

It is also possible to construct a maximal element of U 0 (U 0 is defined in Theorem 1.4). For ℓ > 0 and ǫ > 0, let u := U ǫ,ℓ be the solution of

∂ t u -∆u + f (u) = 0 in Q ∞ u(x, 0) = ℓχ Bǫ in R N .
Lemma 2.8 For any τ > 0 and ǫ > 0, there exist ℓ > 0 and m(τ, ǫ) > 0 such that any positive solution u of (1.1) which verifies (i) in the proof of Theorem 1.4 satisfies

u(x, t) ≤ U ǫ,ℓ (x, t -τ ) + m(τ, ǫ) ∀(x, t) ∈ Q ∞ , t ≥ τ. (2.33) Furthermore lim τ →0 m(τ, ǫ) = 0 ∀ǫ > 0.
(2.34)

Finally U (x, t) = lim τ →0 lim ǫ→0 lim ℓ→∞ (U ǫ,ℓ (x, t -τ ) + m(τ, ǫ)) (2.35)
is the maximal element of U 0 .

Proof. We set ℓ = φ ∞ (τ ), then u(x, τ ) ≤ ℓ for any x ∈ R N . Let W := W ǫ/2 be the solution of the following Cauchy-Dirichlet problem

     ∂ t W -∆W + f (W ) = 0 in B c ǫ/2 × (0, ∞) W (x, 0) = 0 in B c ǫ/2 W (x, t) = φ ∞ (t) in ∂B c ǫ/2 × (0, ∞) (2.36) and put m(τ, ǫ) := max{W ǫ/2 (x, δ) : |x| > ǫ, 0 < δ ≤ τ }. It is clear to see that lim τ →0 m(τ, ǫ) = W ǫ/2 (x, 0) = 0. (2.37)
From the fact that u(x, 0) = 0 in B c ǫ/2 , u(x, t) ≤ φ ∞ (t) in ∂B c ǫ/2 × (0, ∞) and the maximum principle, it follows that u(x, t)

≤ W ǫ/2 (x, t) in B c ǫ/2 × (0, ∞). Next, we compare U ǫ,ℓ (., . -τ ) + m(τ, ǫ) with u in R N × (τ, ∞). The func- tion U ǫ,ℓ (., . -τ ) + m(τ, ǫ) is a supersolution of (1.1) in R N × (τ, ∞). If x ∈ B ǫ , U ǫ,ℓ (x, 0) = ℓ ≥ u(x, τ ), which implies U ǫ,ℓ (x, 0) + m(τ, ǫ) ≥ u(x, τ ). If x ∈ B c ǫ , m(τ, ǫ) ≥ W ǫ/2 (x, τ ) ≥ u(x, τ ), hence U ǫ,ℓ (x, 0) + m(τ, ǫ) ≥ u(x, τ
). So we always have U ǫ,ℓ (x, 0) + m(τ, ǫ) ≥ u(x, τ ) for any x ∈ R N . Applying maximum principle yields to U ǫ,ℓ (., .τ ) + m(τ, ǫ) ≥ u in R N × (τ, ∞). Finally, the function U defined by (2.35) is the maximal solution because U ǫ,ℓ (x, tτ ) → U ǫ,ℓ (x, t) as τ → 0 and U ǫ,ℓ ↑ U ǫ,∞ when ℓ → ∞ and U ǫ,∞ ↓ U when ǫ → 0.

About uniqueness

We prove first the existence of global radial solutions of (1.18) under the Keller-Osserman condition.

Proof of Proposition 1.5.

A solution of (1.19) is locally given by the formula

w(r) = a + r 0 s 1-N s 0 t N -1 f (w)dtds (3.1)
Existence follows from the Picard-Lipschitz fixed point theorem. The function is increasing and defined on a maximal interval [0, r a ). By a result of Vazquez and Veron [START_REF] Vazquez | Isolated singularities of some semilinear elliptic equations[END_REF] r a = ∞, thus the solution is global. Uniqueness on [0, ∞) follows always from local uniqueness. The function r → w(r) is increasing and

w ′ (r) ≥ ah(a) N r, w(r) ≥ a + ah(a) 2N r 2
for all r > 0.

Proposition 3.1 Assume (1.16) holds. For any u 0 ∈ C(R N ) which satisfies

w a (|x|) ≤ u 0 (x) ≤ w b (|x|) ∀x ∈ R N (3.2)
for some 0 < a < b, there exists a positive function

u ∈ C(Q ∞ ) ∩ C 2,1 (Q ∞ ) solution of (1.1) in Q ∞ and satisfying u(., 0) = u 0 in R N . Furthermore w a (|x|) ≤ u(x, t) ≤ w b (|x|) ∀(x, t) ∈ Q ∞ . (3.3) 
Proof. Clearly w a and w b are ordered solutions of (1.1). We denote by u n the solution of the initial-boundary problem

   ∂ t u n -∆u n + f (u n ) = 0 in Q n = B n × (0, ∞) u n (x, t) = (w a (|x|) + w b (|x|))/2 in ∂B n × (0, ∞) u n (x, 0) = u 0 (x) in B n .
(3.4)

By the maximum principle, u n satisfies (3.3) in Q n . Using locally parabolic equations regularity theory, we derive that the set of functions {u n } is eventually equicontinuous on any compact subset of Q ∞ . Using a diagonal sequence, we conclude that there exists a subsequence {u n k } which converges locally uniformly in Q ∞ to some weak solution u ∈ C(Q ∞ ) which satisfies u(., 0) = u 0 in R N . By standard method, u is a strong solution (at least C 2,1 (Q ∞ )).

Proposition 3.2 Assume (1.16) and (1.10) hold. Then for any

u 0 ∈ C(R N ) which satisfies w a (|x|) ≤ u 0 (x) ≤ w b (|x|) ∀x ∈ R N (3.5)
for some 0 < a < b, there exists a positive function

u ∈ C(Q ∞ ) solution of (1.1) in Q ∞ satisfying u(., 0) = u 0 in R N and u(x, t) ≤ min{φ ∞ (t), w b (|x|)} ∀(x, t) ∈ Q ∞ . (3.6)
Proof. For any R > 0, let u R be the solution of

∂ t u R -∆u R + f (u R ) = 0 in Q ∞ u R (x, 0) = u 0 (x)χ B R (x) in R N . (3.7)
The solution which is constructed is dominated by the solution of the heat equation with the same initial data. Thus

u R (x, t) ≤ (4πt) -N/2 B R e -|x-y| 2 /4t u 0 (x)dy ∀(x, t) ∈ Q ∞ . (3.8)
and lim |x|→∞ u R (x, t) = 0 uniformly with respect to t. The functions φ ∞ and w b are solutions of (1.1) in Q ∞ , which dominate u R at t = 0. By the maximum principle,

min{φ ∞ (t), w b (|x|)} ≥ u R (x, t) ∀(x, t) ∈ Q ∞ . (3.9)
The fact that the mapping R → u R is increasing and (3.9) imply that there exists

u := lim R→∞ u R which satisfies u(., 0) = u 0 in R N . Letting R → ∞ in (3.9) yields (3.6).
Proof of Theorem 1.6. Combining Proposition 3.1 and Proposition 3.2 we see that there exists two solutions u and u with the same initial data u 0 which are ordered and different since lim

|x|→∞ u(x, t) = ∞ and lim |x|→∞ u(x, t) ≤ φ ∞ (t) < ∞ for all t > 0.
Proof of Theorem 1.7.

Step 1: There always holds

(ah(a) -bh(b))sign(a -b) ≥ |a -b| h(|a -b|) ∀a, b > 0 (3. 10 
)
where h is defined in (2.2) and

sign(z) =    1 if z > 0, -1 if z < 0, 0 if z = 0.
In fact, since h is increasing and assuming a > b, we get

ah(a) -bh(b) = (a -b)h(a) + b(h(a) -h(b)) ≥ (a -b)h(a) ≥ (a -b)h(a -b).
Step 2: End of the proof. By Kato's inequality,

∂ t |u -ũ| -∆ |u -ũ| ≤ [∂ t (u -ũ) -∆(u -ũ)]sign(u -ũ),
therefore by step 1,

∂ t |u -ũ| -∆ |u -ũ| + |u -ũ| h(|u -ũ|) ≤ 0. (3.11)
Let ǫ > 0. There exists R ǫ > 0 such that for any

R ≥ R ǫ , 0 ≤ |u -ũ| (x, t) ≤ w ǫ (|x|) ∀(x, t) ∈ B c R × [0, 1]. (3.12)
Since w ǫ is a positive solution of (1.1) which dominates |u -ũ| on ∂B R × [0, 1] and

at t = 0, it follows that |u -ũ| ≤ w ǫ in B R × [0, 1]. Letting R → ∞ yields to |u -ũ| ≤ w ǫ in R N × [0, 1]. Letting ǫ → 0 and since lim ǫ→0 w ǫ (|x|) = 0 for any x ∈ R N , we derive |u -ũ| = 0, thus u = ũ in R N × [0, 1]. Iterating yields that equality holds in Q ∞ .
Remark. If we replace the condition (C1) by the condition (C2), the conclusion of Theorem 1.7 remains valid. Indeed, it follows by the convexity of f that

(f (a) -f (b))sign(a -b) ≥ f (|a -b|) ∀a, b > 0.
Then we proceed as in step 2 to get the desired conclusion.

Proof of Theorem 1.8.

Proof of statement (i).

The solution u which is constructed in Proposition 3.2 is a minimal solution of (1.1) in Q ∞ with the initial value

u 0 . Indeed, if u ∈ C 2,1 (Q ∞ ) is a nonnegative solution of (1.1) in Q ∞ which satisfies u(., 0) = u 0 in R N then, by maximum principle, u R ≤ u in Q ∞ where u R is the solution of (3.7). Letting R → ∞ yields u ≤ u in Q ∞ .
Next we construct the maximal solution. We recall that w R is the solution of (2.18). Since f is convex, f ′ is nondecreasing and w R there holds

f ′ (u R ) ≤ f ′ (w R + u R ), thus there holds f (w R ) + f (u R ) ≤ f (w R + u R ). Consequently w R + u R is a supersolution in B R × (0, ∞). If u ∈ C(Q ∞ ) is a solution (1.1) in Q ∞ with initial data u 0 , it is dominated by w R + u R on ∂B R × (0, ∞). Thus u ≤ w R + u R . which dominates any solution u ∈ C(Q ∞ ) at of (1.1) in B R × (0, ∞). Since u R ≤ u ≤ w R + u R , w R → 0 when R → ∞, by Proposition 2.6-Step 1, and u R → u, we derive that u = u.
Step 2: Construction of a minimal solution. Assume there exists at least one positive solution u of (1.1) satisfying (1.23) and f (u

) ∈ L 1 loc Q ∞ ). equivalently [7] ∞ 0 R N (-u(∂ t η + ∆η) + f (u)η) dxdt = R N η(x, 0)dµ(x) (3.13) for all η ∈ C 2,1 c (Q ∞ ).
We construct first a minimal solution in the following way: let n ∈ N and R > 0 and let v = v R,n be the solution of

       ∂v -∆v + f (v) = 0 in B R × (0, ∞) v = 0 in ∂B R × (0, ∞) v(., 0) = u(., 2 -n ) in B R . (3.14) 
By the maximum principle, v R,n (., t) ≤ u(., t

+ 2 -n ). Furthermore, v R,n (x, 2 -n ) ≤ u(., 2 -n+1 ) = v R,n (x, 0), therefore, v R,n (x, t + 2 -n ) ≤ v R,n-1 (x, t) in B R × (0, ∞). (3.15) 
Using the formulation (3.13) with v R,ǫ , we obtain

∞ 0 R N (-v R,n (∂ t η + ∆η) + f (v R,n )η) dxdt = R N η(x, 0)u(x, 2 -n )dx, (3.16 
)

for any η ∈ C 2,1 c (Q B R ∞ ). The right-hand side of (3.16) converges to R N η(x, 0)dµ(x). Concerning the left-hand side, there holds f (v R,n (x, t)) ≤ f (u(x, t + 2 -n )). Since f (u) ∈ L 1 loc Q ∞ ), f (v R,n ) is bounded in L 1 loc Q B R ∞ )
. By the L 1 regularity theory for parabolic equations (see [START_REF] Marcus | Initial trace of positive solutions to semilinear parabolic inequalities[END_REF] and the references therein), the set of functions {v R,n } is locally compact in L 1 loc Q ∞ ) and there exists a subsequence {n k } and a function

u R such that v R,n k → u R , almost everywhere in Q B R
∞ , and u R ≤ u. Noticing that the sets of functions {f (u(., . + 2 -n ))} and {u(., . + 2 -n )} are uniformly integrable, we obtain that the two sets {f (v R,n )} and {v R,n } are also uniformly integrable in B R × (0, T ). It follows from Vitali's convergence theorem that, up to a subsequence still denoted by

{n k }, v R,n k → u R and f (v R,n k ) → f (u R ) in L 1 (B R × (0, T )). Letting n = n k → ∞ in (3.16) we derive ∞ 0 R N (-u R (∂ t η + ∆η) + f (u R )η) dxdt = R N η(x, 0)dµ(x). (3.17) 
This means that u R satisfies u R ≤ u and

       ∂u R -∆u R + f (u R ) = 0 in B R × (0, ∞) u R = 0 in ∂B R × (0, ∞) u R (., 0) = χ B R µ in B R . (3.18) 
If ũ is any other nonnegative solution of (1.1) in Q ∞ with initial data µ, the same construction of ṽR,n solution of (3.14) with initial data ũ(., 2 -n ) instead of u(., 2 -n ) converges, up to a subsequence to some ũR which satisfies ũR ≤ ũ and is solution of problem (3.18). We know from [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF], [START_REF] Marcus | Initial trace of positive solutions to semilinear parabolic inequalities[END_REF] that this problem admits at most one solution. Therefore ũR = u R , which implies that u R ≤ ũ in Q B R ∞ . Furthermore, in the above construction, we have only used the fact that ũ is defined in a domain larger than Q B R ∞ and is nonnegative. Consequently, the same comparison applies if we compare u R and u R ′ for R ′ > R and we obtain

u R ≤ u R ′ in Q B R ∞ .
Put u = lim R→∞ u R . Using the monotone convergence theorem and a test function

η ∈ C 2,1 c (Q ∞ ) with compact support in Q B R ∞ , we obtain ∞ 0 R N (-u(∂ t η + ∆η) + f (u)η) dxdt = R N η(x, 0)dµ(x). (3.19) from (3.19). Thus u satisfies (1.23) and f (u) ∈ L 1 loc Q ∞ )
. By construction u is smaller than any other nonnegative solution.

Step 3: Proof of statement (ii). As in the proof of statement (i), we see that, for any n ∈ N * , there holds

u ≤ W R + v R,n in Q B R ∞ . Consequently u ≤ W R + u R and letting R → ∞, u ≤ u. Thus u = u.

Initial trace

If Ω is an open domain in R N , we denote by M(Ω) (resp. M b (Ω)) the set of Radon measures in Ω (resp. bounded Radon measures), and by M + (Ω) (resp. M b + (Ω)) its positive cone. For T > 0, we set Q Ω T = Ω × (0, T ).

The regular part of the initial trace

In this section we only assume that f is a continuous nonnegative function defined on R + and that u is a C 2,1 positive solution of (1.1) in Q T .

Lemma 4.1 Assume G is a bounded C 2 domain in R N , Q G T := G × (0, T ] and let u ∈ C 2,1 (Q G T ) be a positive solution of (1.1) in Q G T such that u, f (u) ∈ L 1 (Q G T ). Then u ∈ L ∞ (0, T ; L 1 (G ′ )) for any domain G ′ ⊂ G ′ ⊂ G and there exists a positive Radon measure µ G on G such that lim t→0 G u(x, t)ζ(x)dx = G ζ(x)dµ G (x) ∀ζ ∈ C c (G). (4.1) 
Proof. Let φ := φ G be the first eigenfunction of -∆ in W 1,2 0 (G) with corresponding eigenvalue λ G . We assume φ > 0 in G. Then

d dt G uφdx + λ G G uφdx + G f (u)φ dx + ∂G uφ n dS = 0
where φ n denote the outward normal derivative of φ. Since φ n < 0, the function

t → e λ G t G u(x, t)φ(x)dx - T t G e λ G s f (u)φdx ds is increasing and G u(x, t)φ(x)dx ≤ e λ G (T -t) G u(x, T )φ(x)dx + e -λ G t T t G e λ G s f (u)φdx ds for 0 < t ≤ T . Thus u ∈ L ∞ (0, T ; L 1 (G ′ )) for any strict domain G ′ of G. If ζ ∈ C c (G), there holds d dt G u(x, t)ζ(x)dx - T t G (f (u)ζ -u∆ζ) dx ds = 0. (4.2) Consequently lim t→0 G u(x, t)ζ(x)dx = G u(x, T )ζ(x)dx + T 0 G (f (u)ζ -u∆ζ) dx ds. (4.3) 
This implies that u(., t) admits a limit in D ′ (G), and this limit is a positive distribution. Therefore there exists a positive Radon measure µ G on G satisfies (4.1).

Proof of Proposition 1.9.

It is clear that R(u) is an open subset. If G is a strict bounded subdomain of R(u), i.e. G ⊂ R(u), there exists a finite number of points z j (j = 1, ..., k)

and r ′ j > r j > 0 such that u, f (u) ∈ L 1 (Q B r ′ j (z j ) T
) and G ⊂ ∪ k j=1 B r j (z j ). Let µ j = µ Br j (z j ) the measure defined in Lemma 4.1. If ζ ∈ C c (G) there exists a partition of unity {η j } k j=1 relative to the cover {B r j (z j )} k j=1 such that

η j ∈ C ∞ 0 (G), supp(η j ) ⊂ B r j (z j )) and ζ = k j=1 η j ζ. Since lim t→0 Br j (z j ) u(x, t)(η j ζ)(x)dx = Br j (z j ) (η j ζ)(x)dµ j (x) ∀j = 1, ..., k,
there exists a positive Radon measure µ on R(u) satisfying (1.24). Notice also that u ∈ L ∞ (0, T ; L 1 (G)) for any G ⊂ G ⊂ R(u).

The main problem is to analyse the behaviour of u on the singular set S(u).

The Keller-Osserman condition holds

If the Keller-Osserman condition holds, the existence of an initial trace of arbitrary positive solutions of (1.1) is based upon a dichotomy in the behaviour of those solutions near t = 0. Let v := v n be the solution of

   ∂ t v -∆v = 0 in B R (z) × (t n , ∞) v = 0 in ∂B R (z) × (t n , ∞) v(., t n ) = u(., t n ) in B R (z). (4.9) Since v n ≥ 0, f (w R + v n ) ≥ f (w R )
, and w R + v n is a supersolution of (1.1) in B R (z) × (t n , T ). It dominates u on ∂B R (z) × (t n , T ) and at t = t n , thus u ≤ w R + v n in B R (z) × (t n , T ). We can assume that u(., t n ) → ν for some positive and bounded measure ν on B R (z). Therefore

u(x, t) ≤ v(x, t) + w R (x) in Q B R (z) T (4.10)
where v is the solution of

     ∂ t v -∆v = 0 in Q B R (z) ∞ v = 0 in ∂B R (z) × (0, ∞) v(., 0) = ν in D ′ (B R (z)). (4.11) Since v ∈ L 1 (Q B R (z) T
) and w R is uniformly bounded in any ball

B R ′ (z) for 0 < R ′ < R, we conclude that u ∈ L 1 (Q B R ′ (z) T
), which is a contradiction. The set R(u) and the measure µ ∈ M + (R(u)) are defined by Definition 1.10 thanks to Proposition 1.9. Because (1.12) holds, S(u) = Ω \ R(u) inherits the property (ii) in Definition 4.3 because of Lemma 4.2 (ii).

If Ω is a bounded domain with a C 2 boundary and µ ∈ M b + (Ω), we denote by u µ the solution of 

   ∂ t u -∆u + f (u) = 0 in Q Ω ∞ u = 0 in ∂Ω × (0, ∞) u(., 0) = µ in D ′ (Ω). ( 4 
} ⊂ M b (Ω) converges weakly to µ ∈ M b (Ω) then u µn → u µ locally uniformly in Ω × (0, ∞) and in L 1 (Q Ω T ), and f (u µn ) → f (u µ ) in L 1 (Q Ω T ), for every T > 0.
Remark. The result remains true if Ω is unbounded, with a C 2 compact (possibly empty) boundary and the µ n have their support in a fixed compact set. In such a case u µn (x, t) → 0 when |x| → ∞, uniformly with respect to n and t since 

|u µn (x, t)| ≤ 1 (4πt) N/2 R N e -|x-y| 2 /4t d |µ n | (y) ∀(x, t) ∈ Q ∞ . ( 4 
that if Ω = R N , v y,k,R N (x, t) := v y,k (x, t) = u k (|x -y| , t)); furthermore, if f satisfies (1.
12), we recall that U = lim k→∞ u k is the minimal solution of (1.1) in Q ∞ with initial trace ({0}, 0). Proposition 4.5 Assume f is nondecreasing and satisfies (1.8) and (1.12). Let u ∈ C 2,1 (Q ∞ ) is a positive solution of (1.1) in Q ∞ with initial trace (S, µ). Then for every y ∈ S, U y (x, t) := U (xy, t) ≤ u(x, t)

(4.16) in Q ∞ .
Proof. By translation we may suppose that y = 0. Since 0 ∈ S(u), for any η > 0 small enough lim t→0 Bη u(x, t)dx = ∞.

For ǫ > 0, denote M ǫ,η = Bη u(x, ǫ)dx. For any m > m η = inf σ>0 M σ,η there exists ǫ = ǫ(m, η) such that m = M ǫ,η and lim η→0 ǫ(m, η) = 0. Let v η be the solution of the problem ∂ t v η -∆v η + f (v η ) = 0 in Q ∞ v η (x, 0) = u(x, ǫ)χ Bη in R N we derive from Vitali's convergence theorem B R (z) ζ(x)dμ(x) = B R (z) u(x, t)ζ(x)dx + t 0 B R (z) (-u∆ζ + f (u)ζ) dxds.
(4.24) This implies that χ B R (z) μ = χ B R (z) µ and, by a partition of unity, that μ = χ A µ.

Assume now that K ⊂ R is compact. If µ n (K) is unbounded and up to a subsequence still denoted by {n}, there exists a point y ∈ K such that for any neighborhood O of y, O ⊂ A, µ n (O) → ∞ as n → ∞. We can take O = B r (y) and put M n,r = µ n (B r (y)). If m ∈ N * , there exists an integer n = n(m, r) such that m ≤ M n,r , and lim r→0 n(m, r) = ∞. Let r 0 > r such that B r 0 (y) ⊂ A, and w r be the solution of The following result which shows the existence of a minimal solution of (1.1) with a given initial trace in M + (A) for any open subset A in R N is a straightforward adaptation of [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF]Lemma 3.3]. Proposition 4.9 Assume f is nondecreasing and satisfies (1.8), (1.12) and (C2).

     ∂ t w -∆w + f (w) = 0 in Q Br 0 (y) ∞ w = 0 in ∂B Br 0 (y) ∞ w(., 0) = χ Br (y) µ n in B r 0 (y).

(i) Let

A be an open subset of R N and let ν ∈ M + (A) with associated extension ν. Then there exists a positive solution of Then there exists a positive solution u µ of (1.1) such that T r R N (u µ ) = µ and u µ ≤ v for every positive solution v of (1.1) in Q ∞ such that tr R N (v) = (S, µ).

(1.1) in Q ∞ denoted by u ν satisfying T r R N (u ν ) = ν and such that u ν ≤ v for every positive solution v of (1.1) in Q ∞ such that tr R N (v) = (S, µ) and χ A µ ≥ ν. (ii) Let Ω ⊂ R N be a bounded domain with a C 2 boundary and u n be the solution of problem    ∂ t u n -∆u n + f (u n ) = 0 in Q Ω T u n = n on ∂Ω × (0, ∞) u n (., 0) = n in Ω.
As a counterpart of Theorem 1.11 we have the following existence theorem.

Proof of Theorem 1.12

Step 1: Construction of a minimal solution. Let u S and u µ the minimal solution constructed in Corollary 4.6 and Corollary 4.10. Then ǔS,µ := sup{u S , u µ } is a subsolution of (1.1) in Q ∞ while ûS,µ := u S + u µ is a supersolution. Furthermore ǔS,µ ≤ ûS,µ . Therefore the set of solutions u in Q ∞ such that ũS,µ ≤ u ≤ ûS,µ is not empty and we denote by u S,µ the smallest solution larger than ǔS,µ ; it is a solution with initial trace (S, µ). If u is any other positive solution with the same initial trace, it is larger than u S and u µ by Corollary 4.6 and Corollary 4.10. Therefore it is larger than ǔS,µ and consequently larger than u S,µ .

Step 2: Construction of the maximal solution. The proof is somewhat similar to the one on [START_REF] Marcus | Initial trace of positive solutions of some nonlinear parabolic equations[END_REF], but we give it for the sake of completeness. We denote, for δ > 0, S δ := {x ∈ R N : dist(x, S) ≤ δ} and R δ := R N \ S δ . and let µ δ be the measure given by

µ δ (E) = µ(R δ ∩ E) ∀E ⊂ R N , E Borel.
We denote by u S δ a solution of (1.1 ) in Q ∞ with initial trace (S δ , 0): a solution is easily constructed as the limit when R, k → ∞ of the solution v = v k,R of

∂ t v -∆v + f (v) = 0 in Q ∞ v(., 0) = kχ (B R ∩S δ )∪(B R ∩B c R-δ ) (4.29)
By Proposition 4.7, there holds, for any 0 < δ ′ < δ and ǫ > 0, lim t→0 u S δ (x, t) φ ∞ (t) = 1 uniformly on S δ ′ (4.30)

The Keller-Osserman condition does not hold

In this section we assume that (1.12) does not hold but (1.8) is satisfied. Let v k = v be the unique bounded solution of Proof. If we assume that such a u exists, we proceed as in the proof of the previous lemma. Since Lemma 4.4 holds, we derive that u ≥ u mδa for any m. Since lim m→∞ u mδa (x, t) = ∞ for all (x, t) ∈ Q ∞ , we are led to a contradiction.

∂ t v -∆v + f (v) = 0 in Q ∞ v(., 0) = V k in R N . ( 4 
Thanks to these results, we can characterize the initial trace of positive solutions of (1.1) when the Keller-Osserman condition does not hold. 

(

  C1)-The function s → f (s) s is increasing on (0, ∞) and satisfies lim s→0 f (s) s = 0 and lim s→∞ f (s) s = ∞. (C2)-The function f is convex on (0, ∞). (C3)-If lim inf s→∞ f (s)/(s ln α s) = 0, ∀α > 2, then there exists β ∈ (1, 2] such that lim sup s→∞ f (s) s ln β s < ∞.

Theorem 1 . 2 Theorem 1 . 3 1 ds

 12131 Assume the conditions (C1) and (C3) hold. If f satisfies then the solutions u k of (1.9) satisfy lim k→∞ u k (x, t) = ∞ for every (x, t) ∈ Q ∞ . Assume the conditions (C1) -(C3) hold. If f satisfies (1.10) and ∞

  .24) Due to Proposition 1.9, we introduce the definition of the initial trace. Definition 1.10 The couple (S(u), µ) where S(u) = R N \ R(u) is called the initial trace of u in Ω and will be denoted by tr R N (u). The set R(u) is called the regular set of the initial trace of u and the measure µ the regular part of the initial trace. The set S(u) is closed and is called the singular part of the initial trace of u.

Theorem 1 .

 1 13 Assume (1.8), (1.10) and (1.16) are verified and lim k→∞u k = φ ∞ . If u is a positive solution of (1.1) in Q ∞ , it possesses an initial trace which is either the Borel measure ν ∞ which satisfies ν ∞ (O) = ∞ for any non-empty open subset O ⊂ R N ,or is a positive Radon measure µ on R N . This result holds in particular if (C1) and (C3) hold.

Proposition 2 . 1

 21 If f satisfies (1.8) and (C1) then (2.1) is fulfilled.

  .18) and w R is nonnegative since f (0) = 0. Notice also that R → w R is decreasing, since f is nondecreasing; moreover lim R→∞ w R = 0, since f (0) = 0 and f is positive on (0, ∞). Let x 0 = 0 arbitrary in R N . Set E = { e : | e| = 1} and take e ∈ E. Put x e = |x 0 | e and for n > |x 0 | put a n = n e. Denote by H e the open half-space generated by e and its orthogonal hyperplane at the origin, then x e , a n ∈ H e . Take R such that n -|x 0 | < R < n. We set W e,n,R (x) = w R (xa n ), then W e,n,R is a solution of (1.1) in B R (a n ) and blows-up on the boundary lim |x-an|→R W e,n,R (x) = ∞.

  .26) verifying lim r→ǫ Φ ǫ (r) = ∞. Since Φ ′ ǫ ≤ 0, Φ ǫ is a supersolution of the equation in (2.23) in (ǫ, ∞), which dominates Φ at r = ǫ. By the maximum principle, Φ ≤ Φ ǫ in (ǫ, ∞). Letting ǫ → 0 yields (2.25). Combining (2.24) and (2.25) leads to the conclusion.

  .28) Moreover, U ∈ U 0 because U has the following properties: (i) It is positive in Q ∞ , belongs to C(Q\{(0, 0)}) and vanishes on R N ×{(0, 0)}\{0}. (ii) It satisfies (1.1) and lim t→0 Bσ U (x, t)dx = ∞, ∀σ > 0.(2.29)In the sense of initial trace in Definition 4.3, U has initial trace tr R N (U ) = ({0}, 0) (here {0} is the singular part and the Radon measure on R N \{0} is the zero measure) and the conclusion follows from Proposition 4.5.

Lemma 4 . 2

 42 Assume u is a positive solution of (1.1) in Q T and z ∈ S(u). Suppose that at least one of the following sets of conditions holds.(i) There exists an open neighborhoodG of z such that u ∈ L 1 (Q G T ).(ii) f is nondecreasing and (1.12) holds.Then, for every open relative neighborhoodG ′ of z, lim t→0 G ′ u(x, t)dx = ∞.(4.4) Proof. First, we assume that (i) holds and let ζ ∈ C 2 c (G), ζ ≥ 0. Since z ∈ S(u), then for every open relative neighborhood G ′ of z, there holds that (1.12) holds and u / ∈ L 1 (Q G T ) for every relative neighborhood G of z. If there exists an open neighborhood G ⊂ Ω of z such that (4.4) does not hold, there exists a sequence {t n } decreasing to 0 and 0 ≤ M < ∞ such that sup tn G u(x, t n )dx = M. (4.7) Furthermore, we can always replace G by an open ball B R (z) ⊂ G. Thus (4.7) holds with G replaced by B R (z). Let w := w R be the maximal solution of

Definition 4 . 3

 43 Assume f is nondecreasing and satisfies (1.12). Let u ∈ C 2,1 (Q T ) be a positive solution of (1.1) in Q T . We say that u possesses an initial trace with regular part µ ∈ M + (R(u)) and singular partS(u) = R N \ R(u) if (i) For any ζ ∈ C c (R(u)), lim t→0 R(u) u(x, t)ζ(x)dx = R(u)ζ(x)dµ(x).

(4. 12 )

 12 (ii) For any open setG ⊂ R N such that G ∩ S(u) = ∅ lim t→0 G u(x, t)dx = ∞.(4.13)Proof of Theorem 1.11

  .15) By Lemma 4.4 and the remark hereafter, for every y ∈ Ω and k > 0, there exists a unique solution v y,k,Ω := v to (4.14) with µ = kδ 0 . By comparison principle (see [6, Prop 1.2]) v y,k,Ω is positive, increases as k increases and depends continuously on y. Note

( 4 .

 4 25) By the comparison principle, w r ≤ u n in Q Br 0 (y) ∞ . Since χ Br (y) µ n → mδ y as r → 0 and n → ∞, we derive u y,m,Br 0 (y) ≤ u from Lemma 4.4 and the remark hereafter. Since m is arbitrary, u y,∞,Br 0 (y) ≤ u. This implies that y ∈ S, a contradiction. If A is an open subset of Ω and ν ∈ M + (A), we define an extension ν of ν to Ω by ν(E) = inf E⊆O ν(O ∩ A) (4.26) for every Borel set E ⊂ Ω where the infimum is taken over the open subsets O; ν is an outer regular Borel measure on Ω and ν = ν |A .

(4. 27 )

 27 Denote U ∞,Ω := lim n→∞ u n . Then U ∞,Ω is the maximal solution of (1.1) in Q Ω ∞ in the sense that the following relation holds in Q Ω T for every positive solution v of (1.1)U ∞,Ω ≥ v. (4.28)Taking A = R := R N \ S, we obtain the existence of a minimal positive solution of (1.1) with a given positive Radon measure µ ∈ M + (R) as the regular part of the initial trace. Corollary 4.10 Let S be a closed subset of R N , R = R N \ S and µ ∈ M + (R).

Lemma 4 .

 4 11 Assume (1.10),(1.16) are satisfied and lim u k→∞ u k = φ ∞ . If u is a positive solution of(1.1) in Q ∞ which satisfies lim sup t→0 G u(x, t)dx = ∞,(4.32)for some bounded open subset G ⊂ R N , then u(x, t) ≥ φ ∞ (t). This holds in particular if (C1) and (C3) are satisfied.Proof. By assumpion, there exists a sequence {t n } decreasing to 0 such thatlim n→∞ G u(x, t n )dx = ∞. (4.33) If (4.32), we can construct a decreasing sequence of open subsets G k ⊂ G such that G k ⊂ G k-1 , diam(G k ) = ǫ k → 0 when k → ∞,andlim n→∞ G k u(x, t n )dx = ∞ ∀k ∈ N.(4.34)Furthermore there exists a unique a ∈ ∩ k G k . We setG k u(x, t n )dx = M n,k .Since lim n→∞ M n,k = ∞, we claim that for any m > 0 and any k, there exists n =n(k) ∈ N such that G k u(x, t n(k) )dx ≥ m. (4.35) By induction, we define n(1) as the smallest integer n such that M n,1 ≥ m. This is always possible. Then we define n(2) as the smallest integer larger than n(1) such that M n,2 ≥ m. By induction, n(k) is the smallest integer n larger than n(k -1) such that M n,k ≥ m. Next, for any k, there exists ℓ = ℓ(k) such that G k inf{u(x, t n(k) ); ℓ}dx = m (4.36) and we set V k (x) = inf{u(x, t n(k) ); ℓ}χ G k (x).

Proof of Theorem 1. 13

 13 If there exists some open subset G of R N with the property (4.32), then u ≥ φ ∞ and the initial trace of u is the Borel measure ν ∞ . Next we assume that for any bounded open subset G of R N there holds lim sup t→0 G u(x, t)dx < ∞. (4.39) If S(u) = ∅, there exist z ∈ R N and an bounded open neighborhood G of z such thatT 0 G f (u)dxdxt = ∞. By (4.39), u ∈ L ∞ (0, T ; L 1 (G)) ⊂ L 1 (Q G T ). Then,by Lemma 4.2, (4.4) holds, which contradict (4.39). Thus S(u) = ∅ and R(u) = R N . It follows from Proposition 1.9 that there exists a positive Radon measure µ such that lim t→0 R N u(x, t)ζ(x)dx = R N ζ(x)dµ(x) ∀ζ ∈ C c (R N ). (4.40)

  [START_REF] Evans | Measure Theory and Fine Properties of Functions[END_REF] with initial trace ν ∞ . Furthermore φ ∞ is the smallest of all these solutions.

	Theorem 1.15 Assume f satisfies (1.8), (1.15), (1.16) and lim k→∞ a positive solution of (1.1) in Q ∞ , it possesses an initial trace which is a positive u k = ∞. If u is Radon measure µ on R N . This result holds in particular if (C1) and (C3) hold.

  Let Ω be a bounded domain with a C 2 boundary. Assume f is nondecreasing and satisfies(1.8). Then for any µ ∈ M b (Ω) problem (4.14) admits a unique solution u µ . Moreover, if {µ n

	We recall the following stability result proved in [6, Th 1.1].
	Lemma 4.4
	.14)

  .37) Since v(x, 0) ≤ u(x, t n(k) ), we deriveu(x, t + t n(k) ) ≥ v k (x, t) ∀(x, t) ∈ Q ∞ . (4.38) When k → ∞, V k → mδ a , thus v k → umδa by Lemma 4.4. Therefore u ≥ u mδa . Since m is arbitrary and u mδa → φ ∞ when m → ∞ by Theorem 1.3, it follows that u ≥ φ ∞ . Lemma 4.12 Assume (1.15) and lim u k→∞ u k = ∞ hold. There exists no positive solution u of (1.1) in Q ∞ which satisfies (4.32) for some bounded open subset G ⊂ R N . This holds in particular if (C1) and (C3) are satisfied

where χ Bη is the characteristic function of B η . By the maximum principle v η ≤ u in R N × (ǫ, ∞). By Lemma 4.4 and the remark after v η converges to v 0,m when η goes to zero. Letting m go to infinity yields (4.16).

Corollary 4.6 Under the assumption of Proposition 4.5, there exists a minimal positive solution U S of (1.1) in Q ∞ with initial trace (S, 0) in the sense that

for all positive solution u ∈ C 2,1 (Q ∞ ) of (1.1) with initial trace (S(u), µ).

Proof. If we set Ũ S = sup{U y : y ∈ S}, then Ũ S is a subsolution of (1.1). If u is a positive solution of (1.1) with initial trace (S, µ), then u ≥ Ũ S by Proposition 4.5. Therefore u is larger than the smallest solution of (1.1) in Q ∞ which is above Ũ S .

We denote this minimal solution by U S .

If S contains some ball B R we have a more precise result.

Proposition 4.7 Let u be a positive solution of (1.1) in Q ∞ with initial trace (S, µ).

We assume that S has a non-empty interior, and for R > 0, we denote by int R (S) the set of y ∈ S such that B R (y) ⊂ int R (S). Then for any R ′ ∈ (0, R) there holds

uniformly for x ∈ B R ′ (y) and y ∈ int R (S).

Proof. Let y ∈ int R (S) and w(x, t) = u(x, t)+ W R (x-y). Then w is a supersolution of (1.1) in

and lim t→0 w(x, t) = ∞, uniformly with respect to x ∈ B R (y), by (4.16). Then, for any ǫ > 0, there exists

Letting ǫ → 0 and using the fact that W R (xy) remains uniformly bounded when |x -y| ≤ R ′ , we derive

where 

remains bounded independently of n, for every compact set K ⊂ A.

Proof. The fact that u is a positive solution of (1.1) in Q ∞ is standard by the weak formulation of the equation. Assume now that

and W R is the maximal solution of (4.8). We can assume that, up to a subsequence,

, and if we take k = max{W R (x) :

), and therefore z ∈ R, which is a contradiction; thus A ⊂ R. Next, there exist a subsequence {n k } and a bounded positive measure μ, with support in A such that χ A µ n k → μ weakly and suppose B R (z

Let u µ δ be the solution of of (1.1 ) in Q ∞ with initial trace (∅, µ δ ). This solution is constructed by approximation, as the limit, when R → ∞, of the solution u = u χ B R µ δ of

For τ > 0, let u δ,τ be the solution of (1.1) in Q ∞ with initial data m δ,τ defined by

Then u(., τ ) ≤ m δ,τ in S δ and u(., τ ) ≥ m δ,τ in R δ by Proposition 4.9. Therefore lim τ →0

(u(., τ )m δ,τ (.)) + = 0 in the weak sense of measures. Furthermore, this solution does not depend on u, by only on S δ and µ δ . The set of functions {u δ,τ } τ >0 is locally uniformly bounded in Q ∞ . By the regularity theory for parabolic equations, there exists a subsequence {τ k } and a positive solution u * δ of (1.1) in Q ∞ such that u δ,τ k → u * δ locally uniformly in Q ∞ . By Proposition 4.7 and Proposition 4.9, tr R N (u * δ ) = (S δ , µ δ ). Let ω δ,τ be the solution of (1.1) in Q ∞ with initial data (u(., τ )m δ,τ (.)) + (it is constructed in the same way as u µ in Proposition 4.9 -(i)). By Theorem 1.8-(ii), lim τ →0 ω δ,τ = 0, locally uniformly. Since u ≤ u δ,τ + ω δ,τ in (τ, ∞) × R N , we obtain u ≤ u * δ . If 0 < δ ′ < δ, we can compare similarly u δ,τ with the solution u δ ′ ,τ of (1.1) with initial data

If u * δ ′ is the limit of any sequence {u δ ′ ,τ k ′ }, it satisfies 0 < u * δ ′ ≤ u * δ and has initial trace (S δ ′ , µ δ ′ ). If take in particular δ = δ n = 2 -n , we construct a decreasing sequence of positive solutions {u

Clearly the limit u S,µ of the sequence {u * 2 -n } is a positive solution of (1.1) in Q ∞ with initial trace (S, µ) and is independent of u. It is the maximal solution of the equation with this initial trace.

Remark. When f (r) = |r| q-1 r with 1 < q < 1 + 2/N , precise expansion of u ∞δ (x, t), when t → 0 allows to prove uniqueness. Even when f (r) = r ln α (r + 1) with α > 2, uniqueness is not known. The first step would be to prove that uniqueness holds if tr Ω (u) = ({a}, 0) for some a ∈ Ω. However, if S = ∅, uniqueness holds from Theorem 1.8-(ii).

Because of the lack of uniqueness from Theorem 1.6 it is difficult to give a complete characterization of admissible initial data for solutions of (1.1) under the assumptions of Theorem 1.13. However, we have the result as in Proposition 1.14.

Proof of Proposition 1. [START_REF] Véron | Singularities of Solutions of Second Order Quasilinear Equations[END_REF] We first notice that max{φ ∞ (t); w b (|x|)} is a subsolution of (1.1) which is dominated by the supersolution φ ∞ (t) + w b (|x|). The construction is standard: for τ > 0 we set

There exists a function u

By the parabolic equation regularity theory, the set {u τ } τ >0 is locally equicontinuous in Q ∞ . Thus there exist a subsequence {τ n } and u ∈ C(Q ∞ ) such that u τn → u on any compact subset of Q ∞ . Clearly u is a weak, thus a strong solutions of (1.1) and it satisfies (1.28). Since any solution u with initial trace ν ∞ dominates φ ∞ by Lemma 4.11, it follows that φ ∞ is the minimal one.

Proof of Theorem 1.15

As in the proof of Theorem 1.13 and because of Lemma 4.12, S(u) = ∅. Therefore R(u) = R N and the proof follows from Proposition 1.9.

Remark. Under the assumptions of Theorem 1.13, it is clear, from the proof of Proposition 3.1, that for any 0 < a < b and any initial data u 0 ∈ C(R N ) satisfying w a (x) ≤ u 0 (x) ≤ w b (x) ∀x ∈ R N there exists a solution u ∈ C(Q ∞ ) of (1.1) in Q ∞ satisfying u(., 0) = u 0 and w a (x) ≤ u(x, t) ≤ w b (x) ∀(x, t) ∈ Q ∞ .

We conjecture that for any positive measure µ on R N which satisfies, for some b > 0,