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heat equation with superlinear absorption
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Université Francois Rabelais, Tours, FRANCE

Abstract

We study the limit, when k¥ — oo of solutions of u; — Au + f(u) = 0 in
RY x (0, 00) with initial data k&, when f is a positive increasing function. We
prove that there exist essentially three types of possible behaviour according
f~' and F~1/2 belong or not to L'(1,00), where F(t) = fotf(s)ds. We use
these results for giving a general result on the existence of the initial trace and
some non-uniqueness results for regular solutions with unbounded initial data.
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1 Introduction

In this article we investigate some local and global properties of solutions of a class
of semilinear heat equations

Ou — Au+ f(u) =0 (1.1)

in Qoo = RY x (0,00) (N > 2) where f : R, — R, is continuous, nondecreasing
and positive on (0,00), vanishes at 0 and tends to infinity at infinity. As a model
equation we shall consider the following, with a > 0,

Ou — Au~+ uln®(u+ 1) = 0. (1.2)

When f(u) = |ul’u with 8 > 0 much is known about the structure of the set of
solutions. The local and asymptotic behaviour of solutions is strongly linked to the
existence of a self-similar solutions under the form

u(z, t) =t~ Puw(xVh). (1.3)

The critical exponent 5. = 2/N plays a fundamental role in the description of
isolated singularities and the study of the initial trace, since if 0 < 8 < . there
exists a self-similar solution with an isolated singularity at (0,0), while no such
solution exists when 8 > . and no solution with isolated singularities.

In the case of (.J), no self-similar structure exists. There is no critical exponent
corresponding to isolated singularities since there always exist such singular solu-
tions. Actually, for any k& > 0 there exists a unique u = u; € C(Qu \ {(0,0)}) N
C?*1(Qs) solution of

ou—Au+uln®(u+1)=0 in Qo
{ ; (u+1) Q (1.4

u(.,0) = koo in D'(RY).

There are two critical values for a: @ = 1 and o« = 2, the explanation of which comes
from the study of the two singular problems

{ ¢ +oénp+1) =0  in (0,00) (15)
¢(0) =oo
and, for any € > 0,
~AYp+pIn*(p+1) =0 in RN\ B
\551 b@) = oo (1.6)



where B, := {x € RY : |2| < ¢}. When it exists, the solution ¢, of ([.J) is given

implicitely by . .
S

—— =1 1.7

/¢ nsn®(s+1) (17)

oo (
and such a formula is valid if an only if @ > 1. For problem ([.)) an explicit
expression of the solution is not valid, but it exists if and only if the Keller-Osserman
condition ([.13) holds a > 2.
Having in mind this model we study ([[.1)) assuming the weak singularity condi-
tion on f:

/13N/2f(s_N/2)ds < 0. (1.8)
0

Proposition 1.1 Assume ([[.§) holds. Then for any k > 0, there exists a unique
solution u := uy, to

Ou — Au + f(u) =0 in Qoo (1.9)
u(.,0) = kdo in D' (RY). '
Another condition on f is
> ds
— < 0. 1.10
1 f(s) ( )

Under assumption ([[.L10) there exists a solution ¢ := ¢oo to
{ o'+ /() =0 in(0,00)
6(0) = oo.

The next important condition on f we shall encounter is the Keller-Osserman con-
dition, i.e.

(1.11)

*  ds
TR < (1.12)
where
F(s) = /0 flo)do Vs € [1,00). (1.13)

If (L.19) is satisfied, by [fl, Theorem III] for any € > 0 there exists a maximal solution
P =), to
—~AY+f() =0 inRN\ B

|1i|m P(z) = oo.

(1.14)



The first question we consider is the study of the limit of ux when k — oo. This
question is natural since k +— w; is increasing. In order to treat it, we need some
additional conditions.

(C1)- The function s — /()

is increasing on (0, 00) and satisfies

limf(s) =0 and lim 1(s) = o0,

s—0 S s—00 8§

(C2)- The function f is convex on (0, c0),
(C3)- If liminf f(s)/(sln“s) = 0,Va > 2, then there exists § € (1, 2] such that
5—00

lim sup 1(s)
s—oo slnP s

< 0.
In the second section, we prove the following results.

Theorem 1.2 Assume the conditions (C1) and (C3) hold. If f satisfies

* ds

1 f(s)

then the solutions wy, of ([.9) satisfy klim ug(z,t) = oo for every (x,t) € Qoo-
— 00

= 0 (1.15)

Theorem 1.3 Assume the conditions (C1) — (C3) hold. If f satisfies ([.IJ) and

*  ds
/1 - Ol (1.16)

where F is defined in ([L13), then the solutions uy of (.9) satisfy klim ug(z,t) =
—00
boo(t) for every (z,t) € Quo, where ¢uo is the solution of ([.17)).

We denote by Uy the set of possitive solutions u of ([[.1) in Qu, which is continuous
in Qo \ {(0,0)}, vanishes on the set {(x,0) :  # 0} and satisfies

lim [ wu(x,t)de = o0 (1.17)
t—0 Be

for any € > 0.

Theorem 1.4 Assume f satisfies (I.§), ([L.10) and (L1F). Then U := klim uy, 18 the
—00

manimal element of Uy.



In the third section we study the set of positive and locally bounded solutions
of ([L.1) in Qo. This set differs considerably according the assumption on f. This is
due to the properties of the radial solutions of the associated stationnary equation

—Aw+ f(w)=0  inRY. (1.18)

The next result bases upon the Picard-Lipschitz fixed point theorem and a result of
Vazquez and Véron [[L1].

Proposition 1.5 Assume ([[.L16) holds. For any a > 0, there exists a unique positive
function w = w, € C?([0,00)) to the problem

—w” — ?u/ + f(w) =0 in Ry
w'(0) =0 (1.19)
w(0) =a

A striking consequence of the existence of such solutions is the following non-
uniqueness result.

Theorem 1.6 Assume f satisfies ([L10) and ([1@). Then for any uy € C(RY)
satisfying wq(z) < ug(z) < wy(z) for any x € RY and for some b > a > 0 there ewist
two solutions u,u € C(Quo) of (1)) with initial value ug. They satisfy respectively

0 < u(z,t) < min{wy(z), doo(t)} V(z,t) € Qoos (1.20)

thus tlim w(x,t) = 0, uniformly with respect to x € RY, and
— 00

we () < u(z,t) < wp(x) V(z,t) € Qoo, (1.21)

thus lim u(x,t) = oo, uniformly with respect to t > 0.
|z|—o00

The next theorem shows that if two solutions of ([L.1]) have the same initial data
and the same asymptotic behaviour as |z| — oo then they concide.

Theorem 1.7 Assume f satisfies (.L16) and (C1). Let u,4 € C(Q) N C?*1(Qu)
be two positive solutions of ([.1]) with initial data ug. If for any € > 0,

u(z,t) — a(z,t) = o(we(|z])) as x — o0 (1.22)

locally uniformly with respect to t > 0, then u = 4.



On the contrary, if the Keller-Osserman condition holds, a continuous solution
is uniquely determined by a positive initial value ug € C(RY).

Theorem 1.8 Assume f satisfies (|L.12) and (C2). Then for any nonnegative func-
tion ug € C(RY) there ezists a unique solution u € C(Qx) of () in Qo with
nitial value ug.

In the last section we study the initial trace of locally bounded positive solutions
of (L)) in QF := Q x (0,T) where Q is a domain in RY with C? boundary and
T >0.

Proposition 1.9 Assume f is a continuous nonnegative function defined on R,.
Let u € C*Y(Q$) be a positive solution of ([[0)) in Q. The set R(u) of the points
z € ) such that there exists an open ball By (z) such that u, f(u) € LI(Q?(Z)) is an
open subset of Q). Furthermore there exists a positive Radon measure pu := p(u) on

R(u) such that

%ir% u(z, t)((z)dx = C(x)dp(z) V¢ € Co(R(w)). (1.23)

Due to Proposition [L.9, we introduce the definition of the initial trace.

Definition 1.10 The couple (S(u), u) where S(u) = Q\ R(u) is called the initial
trace of u in Q and will be denoted by trq(u). The set R(u) is called the regular set
of the initial trace of u and the measure p the reqular part of the initial trace. The
set S(u) is relatively closed in Q and is called the singular part of the initial trace of
u.

The initial trace can also be represented by a positive, outer regular Borel measure,
not necessary locally bounded. The space of these measures on €2 will be denoted by
B8(Q). If for every open subset A C 2 we denote by 9, (A) the space of positive
Radon measures on A, there is a (1 — 1) correspondence between B ®(€2) and the
set of couples:

CM4(2) ={(S,p) : S C Q relatively closed , u € M (R) with R = Q\S}. (1.24)

reg

The measure v € B *(€) corresponding to a couples (S, 1) € CM,(Q) is given by

| o ifANS #0
v(A) = { 1(A) ifACS, VA C Q, A Borel. (1.25)

If u is a solution of ([[.])), we shall use the notation trq(u) (resp. Tro(u)) for the
trace considered as an element of C M (Q) (resp. B 5(Q)).

We consider the case when the Keller-Osserman holds.



Theorem 1.11 Assume f is nondecreasing and satisfies ([L19). If u € C*1(QS) is

a positive solution of (L), it possesses an initial trace v € B[(S).

On the contrary, the following theorem concerns with the existence of the max-
imal solution and the minimal solution of ([.}) with a given initial trace (S, u) €
CM4(Q).

Theorem 1.12 Assume f is nondecreasing and satisfies ([1.19), ([LY) and (C2).
Then for any (S, 1) € CM4(Q) there exist a maximal solution Tq s, and a minimal
solution uq s, of (L) in QS with the initial trace (S, ), in the following sense:

UQ sy SV SUQS, (1.26)

for every positive solution v € C*1(Q$) of (1)) in Q} such that tro(v) = (S, ).

If the Keller-Osserman does not holds, we obtain the following results.

Theorem 1.13 Assume ([.10), ([LI), (C1) and (C3) are verified. If u € C*Y(Quo)
is a positive solution of (1)) in Quo, it possesses an initial trace which is either the
Borel measure infinity Ve, which satisfies veo(Q) = 0o for any open subset O C RY,
or is a positive Radon measure i on RV,

A consequence of Theorem which is worth mentioning is the following.

Proposition 1.14 Under the assumptions of Theorem [[.13, for any b > 0 there
exists a positive solution u € C(Qoo) of (L)) in (1) satisfying

maxc{doo (£ wp([2)} < ule,t) < 6oolt) +wyllz) V(o8 € Qo (127)

Consequently there exist infinitely many positive solutions of (1)) with initial trace
Voo. Furthermore ¢ is the smallest of all these solutions.

Theorem 1.15 Assume f is satisfies ([L.19),([L.16), (C1) and (C3). If u is a posi-
tive solution of (1)) in Quo, it possesses an initial trace which is a positive Radon
measure 1 on RV,

The proofs are combination of methods developed in [E] for elliptic equations,
stability results and Theorem [L.4 and Theorem [L.J.



2 Isolated singularities

In order to study ([.T]), we start proving Proposition [L.1].

Proof of Proposition [L.1]

We denote by E(z,t) = (47Tt)*N/26*|m|2/4t the fundamental solution of the heat
equation in Q. By [, Remark 2.1], if for k& > 0,

I:= /1 f(kE(z,t))dxdt < oo (2.1)
0 JBpg

for any R > 0, then there exists a unique solution u := uy, to ([.]) satisfying initial
condition

uk(., 0) = k50

in D'(RY). Furthermore the mapping k > uy is increasing. This existence result
and the next proposition lead to the conclusion of Proposition [L.1. (]

Proposition 2.1 If f satisfies ([.§) and (C1) then (R.1) is fulfilled.

Proof. We set

I is rewritten as

1
I= kC*/ / $= N2 lal* 4ty (o= N2~ |2 /4ty gy gy
0 JBg
where C* = (47)~N/2. Put r = |z| then dz = r¥='dr, and
1 R )
I= kC*/ tN/Q/ ek N e Ay N g dit.
0 0
We next put p = %, then VN —1dr = pN=14N/2dp, and
1 R/\/E 2 2
I= kC*/ / e P AnkCH N e N N Lap dt.
0o Jo

We set _
I == kC* / / e P (kCH N 2e= 1N N1 ap dt.,
0 0

1 pR/VE ) )
I := kC* / / e P An(kC N 2e P /) pN " Lap dt.
0 J1



Since ¢=**/ 4pN=1 is bounded in [0,00), then there exists a constant c¢; depending
only on k such that

1 1 1
I < cl/ / h(kC N2 dp dt = cl/ h(kC*tN?)dt < oo.
0 0 0

We next show that under the condition (L.§), I < oo. In order to do that we

2
change to a new variable 7 such that t=N/2¢=p*/4 = +=N/2_ Then t = e~ 37 and
2
dt = e~ s~ dr. Therefore
2
(o] 2 eP /2N
I, < kC* / e pN1< / h(kC’*TN/2)dT>dp. (2.3)
1 0

Since f satisfies ([L.§), there exists € > 0 (depending only on k) such that
/ h(kC*r~N?)dr
0

take a finite value, denoted by co. Hence

J

Inserting (R.4) into the right hand side of (R.3), we obtain

o] 2 &) 2
(N+2)p
I < 03/ e” av  pNldp+ 04/ eiprNfldp < 0
1 1

ep2/2N

2
h(kC* N2Ydr < ¢y + h(kC* e N/?)(e37 — ¢). (2.4)

where ¢3 = kC*cy and ¢y = kC’*h(kC’*e_N/Q). Thus I = I; + I < oo. O
The functions which satisfy the following ODE are particular solutions of ([L.1)
G+ F(6) =0 in (0,00). (2.5)

For a > 0, we denote by ¢, the solution of (R.5) with initial data ¢(0) = a. If ([L.15)
holds then li_>m ba(t) = oo for any t € (0,00). While, if ([.I]) holds there exists a

maximal solution ¢, given explicitely by

t—/oo s
poo(t) (5) '



Lemma 2.2 If ([.15) holds then

liminf2 — 0, va>1.
r—oo 1 In%r
If (L10) holds then
lim sup f(z) =00, VO<a<l.
rooo  TIn%r
Proof. Case 1. Assume ([[.15) holds then
> ds
J = — < 00. 2.6
. @ (20

We change the variable s = e’ and derive

1
J:/ LA
o r2h(er )

where h is defined in (£:9). Suppose that there exists a > 1 such that
f(s)

lim inf =
s—oo sln%s

>0,

equivalently,

lim inf ro‘h(eril) > 0,
r—0

then there exists { > 0 and ¢ € (0,1) such that
he ) > Yre(0,r).

Hence we derive the following contradiction

1 [7o 1 dr
J <= a=2q / ———— < 00.
i /0 r T+ . rzh(erfl) o0

Case 2. Assume ([.10) holds then J = co. Suppose that there exists a € (0, 1] such

that
lim sup 1(s)

soo SIn%s

< 00,

equivalently, )
limsup r®h(e” ) < oo,
r—0

then there exists { > 0 and ¢ € (0,1) such that

he ) <lr™®  Vre (0,r).

10



Hence

1 ["o 1 dr
J> = o2 / = 00,
i /0 r T+ . rzh(erfl) o0

which is a contradiction. (]
Proof of Theorem [L.2.
Since ([[.1§) holds, by Lemma and the definition (B-2) of h,

h(r)

liminf—+= =0 Va > 1.
r—oo In“7r

Thus 3
liminf 20— 0 va 2

r—oo In“r
By (C3), there exists 8 € (1,2] such that limsup h(r)/In® r < co. Hence there exist
r—00
M > 0 and 7o > 0 such that

h(r) < M1n®r Vr € (rg, 00). (2.7)
Step 1. Let k > 0, we claim that
B-1 g, MNZ [ i
0(t) <277 Mt(lnk)” + — (In(r=%))Pdr  Vte (0,1) (2.8)
0

t
where 0 (t) = / h(kC*r~N/2)dr with C* = (47)~N/2. Set r = kC*r~N/2 then (R.7)
0

becomes
*,_—N/2 * N —1\18
h(kC*T ) < M[ln(kC*) + 5} In(77")] V7 € (0,79)

N

82/N. We put a1 = Ink, ay = 7ln(7_1), and apply the

where 79 = (kC*)?/Ny.
following inequality
(a1 + az)” < 2°7Y(a] + af)

in order to obtain (notice that C* = (47)~V/2 < 1)

h(kC*r~N/2) < M[In(k) + & In(7—1))#
< 25_1M[(ln kz)ﬁ + (%)5 lnﬁ(T_l)] V1 € (0,79).

Integrating over [0,#] yields (R.§).

11



Step 2. 1t follows from (R.9) that ([[.§) is fulfilled, hence by Proposition [[.] there
exists the unique solution uy of (1)) in Qs with initial data kdy. By the maxi-
mum principle, ug(z,t) < kE(z,t) for every (z,t) € Qs, which implies uy(x,t) <
kC*t—N/? for every (z,t) € Qoo. Therefore, since h is increasing,

Ayuy — Aug + uph(kC*tN/2) > 0.
If we set vy (z,t) = eP*Ouy(z,t), we obtain
dyvp — Avy, = e*D[B,uy, — Auy, + uph(kC*tN?)] >0

and vg(.,0) = ug(.,0) = kdp. By the maximum principle, there holds

vg(z,t) > kOt~ N 2ozl 4t ug(z,t) > kC = N/2e=0k(O) |zl /4t (2.10)
By step 1,
e 0k (0) > ¢ o~ Mpt(nk)? vt e (0,1) (2.11)
where -
M(N
c1 = exp < — 7( ) / (IH(T_l))ﬁdT)
2 0

and Mg = M2°~!. Inserting (R.11)) into the right hand side of (P-10), we get
ug(x,t) > c10* ¢~ N/2In b= Mpgt(in k)P —|al* /4t V(z,t) € Q1 :=RY x (0,1).

If lim ug(z,t) < oo for all (z,t) € Qoo, we put U := lim wuy, then
k—o00 k—o00

Uz, t) > 01C* ¢~ N/2In k=Mgt(nk)®—|al* /4t V(z,t) € @1, Yk >D0.

Let {t,} C (0,1] be a sequence converging to 0. We choose k;,, = exp ((2M5tn)ﬁ)
then In k,, — Mpgt,(In kn)? = %ln k,,. Next we restrict = in order to have

2

Ink, — Mgt,(Ink,)? — @ = llnk - @ >0« |z| < 22(%:21)M2(117ﬂ)t2(%:1)
m T AT A At, 2T 4, < = 8 oo
Therefore, since 1 < 5 < 2,
lim U(z,t,) = o0
n—o0

uniformly on RY if 1 < 8 < 2, or uniformly on the ball B,, where 7 = (2M)~1/2 if
B = 2. Since the sequence {t,} is arbitrary,

lim U(x,t) = 0o

t—0"

12



uniformly on RV if 1 < 8 < 2, or uniformly on the ball B,, if 8 = 2.

We pick some point zo in RY (resp. B,,) if 1 < 3 < 2 (resp. 3 = 2). Since for
any k > 0, the solution uys, —of ([.T) with initial data kd,, can be approximated by
solutions with bounded initial data and support in B, () where 0 < o < ro — |z|,
by comparison principle, it follows that

U(z,t) > uks,, (2,t) = ug(r — x0, ).

Letting k — oo yields to U(x,t) > U(x —xo,t). Reversing the role of 0 and zg yields
to U(x,t) = U(x — xg,t). If we iterate this process we derive

Ulz,t) = Uz —y,t) VyeRY.

This implies that U(x,t) is independent of x and therefore it is a solution of ([[.11)).
By ([L.19), U(z,t) = oo for any (z,t) € Quo, which is a contradiction and the
conclusion follows. O

Proposition 2.3 Assume (L) and ([L.10) are satisfied. For any k > 0, there holds

up(x,t) < Poo(t) V(z,t) € Qoo

Proof. For any small € > 0, we set ¢ooe(t) = ¢oo(t — €),t € [6,00) then ¢ooe is a
solution of ([[-) in (e,00), which dominates ux on RY x {e} for any k > 0. By
comparison principle, ug(,1) < ¢ooe(t) for every (z,t) € RY x [¢,00). Letting e — 0
yields the claim. O

A necessary and sufficient condition for the existence of a maximal solution to
the stationary equation

—Aw+ f(w) =0
in a bounded domain € is the Keller-Osserman condition ([.13) ([], [{]). If f is

convex and ([.12) holds, then ([.10) is fulfilled. The Keller-Osserman condition can
be replaced by another condition, which owes to the following result.

Lemma 2.4 Assume f is convex on (0,00). Set

L= j]f(s)-

Then ([L13) holds if and only if L < .

Proof. In order to obtain the assertion, it is sufficient to show that

sf(g) <F(s)<sf(s) Vs>1. (2.12)

13



The right-hand side estimate in (2.12) follows from the monotone property of f.
The assumption of convexity of f in (0, 00) implies
s. s,
> f(2)+=f(= .
2 f+30C) Va0
Define (s) = | f(a)do — s7(3), then ¢/(s) = f(5) = £(3) — 4/(3) = 0. Hence
0
©(s) > p(0) = 0, which leads to the left-hand side estimate in (R.19). O

By using the same argument as in the proof of the Lemma P.9 and thank to the
Lemma P.4, we obtain the following lemma.

Lemma 2.5 If (.L16) holds then

lim inf f((:) =0 Va>2.
r—oo rln (7“)

If (L.12) holds then
lim sup&
r—0 T 1In%(r)

Proof of Theorem [1.3.
Since ([[.16) holds, by Lemma P.5 and the definition (2.9) of h,

=0 Vi<a<?2

lim inf h(;“) =0 Va>2.
r—oo In“r

By (C3), there exists 3 € (1,2] such that limsup h(r)/In” 7 < co. Hence there exists
r—00
M > 0 and 7o > 0 such that

h(r) < MIn®r Vr € (rg,0). (2.13)

Step 1. For any k > 0 we set
t
O(t) = / h(kC =N/ g
0

where C* = (47)~N/2. We claim that

0(t) < 28~ Mt(Ink)’ + MTNﬁ /1(111(7—1))/%17 vt € (0,1). (2.14)
0

If we define 7 by r = kC*r~N/2_ (B13) becomes
N
2

h(kC*t2) < M[In(kC*) + gln(fl)]ﬁ V1 € (0,70)

14



where 79 = (k:C*)Q/NT(;Q/N. We set a1 = Ink, ap = Z1In(r71), and apply the
following inequality
(a1 + az)’ < 2571(af + ag)

in order to obtain (notice that C* < 1)

h(kC*T=N/2) < M[In(k) + ¥ In(r71)}#

< 26" 1M[(Ink)? + ()8 P (1)) (2.15)

w2,

Integrating over [0, t], we obtain (R.14).

Step 2. Tt follows from (R.15) that ([.§) is fulfilled, hence by Proposition [[.1] there
exists the unique solution of (L.I]) in Qo with initial trace kdp. By maximum
principle, ug(z,t) < kE(z,t) for every (z,t) € Qoo, which implies that ug(z,t) <
kC*t—N/? for every (z,t) € Qoo. Therefore, since h is increasing,

Ayuy, — Aug + uph(kC*tN/2) > 0.
We set vy, (x,t) = e®* By (x,t) and obtain
vy — Awy, = et )[atuk — Auyg + uph(kC*t N/Q)] >0,
with vg(.,0) = ug(.,0) = kdp. By maximum principle, it follows
vg(x,t) > kC* N2~ 24t oy ug(x,t) > kCHtN/2e=0c(0—lal* /4t (2.16)

By step 1,
e k() > ¢ e~ Mstmb)’ € (0, 1) (2.17)

where ¢; = exp <— M(év) f (In(r *1))5d7-> and Mg = M2°~!. Inserting (2.17) into
the right-hand side of (.14), we get

up(z,t) > 01C* ¢~ N/2¢ln k—Mgt(in k)P —[af*/4¢ V(z,t) € Qr =RY x (0,1).

Since k + uy is increasing and by Proposition R.3, there exists U := hm uy, and

k—oo
U > uy. Hence

Uz, t) > 010t~ N/2gln k=Mgt(in k)’ —|af* /4t V(z,t) € Q1,Yk > 0.
1
Let {t,} C (0,1] be a sequence converging to 0. We choose k,, = exp((2Mpgt,,)T-7),
equivalently Ink,, — Mgt (Ink,)® = $Ink,. Next we restrict |z| in order

-2

2
2" _ —1 ko, _ el >0<:>|x|<r5tn" v

Ink, — Mgt,(Ink,)? — T i
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B—2 _1
where 75 = 22<5—1>M52(1_6). Because 1 < 8 < 2, it follows

lim U(x,t,) = oo,
n—oo

uniformly on RY if 1 < 8 < 2, or uniformly on the ball B,, where ry = (2M )’% if
B = 2. Since the sequence {t,} is arbitrary,

lim U(z,t) = oo
t—0
uniformly on RY if 1 < 3 < 2, or uniformly on the ball B,, if 3 = 2.

We pick some point xg in RY (resp. B,,) if 1 < 8 < 2 (resp. 3 = 2). Since for
any k > 0, the solution uys, of (1) with initial data kd,, can be approximated by
solutions with bounded initial data and support in By (xg) where 0 < o < ry — |zg|,
it follows, by comparison principle, that

U(z,t) > ugs, (2,t) = ug(x — xo,1).

Letting k — oo yields to U(x,t) > U(x —xg,t). Reversing the role of 0 and zg yields
to U(x,t) = U(x — xg,t). If we iterate this process we derive

U(z,t) =U(x —y,t) VYyecRY.

This implies that U(x,t) is independent of x and therefore it is a solution of ([L.11])
Since ([[.1() holds, U(z,t) = ¢o(t) for every (z,t) € Quo. O

Proposition 2.6 Assume ([L19) and (L.Y) are satisfied. Then for any k > 0 there
holds
uk(xat) < ‘1)(|x|) V(m,t) € Qoo

where ® is a solution to the problem

{—cI)”+f(<I>) =0 in (0, 00)

Im®(s) = oo.
s—0

Proof. Step 1: Upper estimate. Since f satisfies ([.12), by [[] for any R > 0, there
exists a solution wpg to the problem

{ —Awg + f(wg) =0 in Bg,

lim wr(z) = oc. (2.18)

lz| >R

Let zg # 0 arbitrary in RY. Set E = {¢: |¢] = 1} and take & € E. Put zz = |zo| €
and for n > |zg| put a, = né. Denote by Hgz the open half-space generated by &
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and its orthogonal hyperplane at the origin, then xg a, € Hg Take R such that
n—lrg] < R < n. We set Wg, r(x) = wr(x — ay), then Wg,, r is a solution of
(L) in Bgr(a,) and blows-up on the boundary lim Wz, g(z) = co. By the

|t—an|—R
maximum principle,

up(z,t) < Wep r(x) VY(z,t) € Br(an) x (0,00). (2.19)

The sequence {W¢,, r} is decreasing with respect to R and is bounded from below
by ug, then there exists Wz, := éim We n, R satisfying
—n

ug(z,t) < Wep(z) V(z,t) € By(an) x (0,00). (2.20)

The sequence {We,, } is also decreasing with respect to n and is bounded from below
by u, then there exists Wz o, := lim Wz,,. Letting n — oo in (R.20) yields to

n—o0
ug(z,t) < Weoo(x) V(z,t) € He x (0,00). (2.21)
In particular,
uk(mg, t) < Waoo(.%'g). (2.22)

Since wuy, is radial, it follows that
uk(20,t) = uk (e, 1) < Weoo(ze)-
Forany r >0, n>r,n—r < R<n and €, e_;eE, since wg is radial,
wr(ré — né) = wr(re’ — né).
Letting successively R — n, n — oo yields to
Weoo(ré) = Wy _(ré).
Define ®(r) := Wi oo (r€), Vr € (0,00) then it satisfies

- N _—-1- .
— =¥+ f(B) =0 in(0,00)

g (2.23)
m®(r) =oo
r—0
and )
ug(x,t) < O(|z|) V(z,t) € Qoo- (2.24)
Step 2: End of the proof. We claim that
d(r) < ®(r)  Vre(0,00). (2.25)
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For any € > 0, we set ®.(r) = ®(r — €), r > € then ®, is a solution of
— 7 + f(P) =0 in (e,00) (2.26)

verifying lim®,.(r) = co. Since ®. < 0, ®, is a supersolution of the equation in
y g T—€ € p

(23) in (e, 00), which dominates ® at r = e. By the maximum principle, ® < ®,
in (¢,00). Letting ¢ — 0 yields (B:2§). Combining (R.24) and (2:25) leads to the

conclusion. O

Remark. Combining Proposition .3 and Proposition P.g yields

up(z,t) < min{oeo(®), ®(|z))}  V(z,%) € Quo, Yk > 0. (2.27)

Proof of Theorem [1.4.

The sequence {uy} increase with respect to k and is bounded from above by
(2.27) then there exists U := klim uy, satisfying
— 00

U(z,t) < min{poo(t), ®(|z|)} V(z,t) € Qoo, Yk > 0. (2.28)

Moreover, the function U € U because it has the following properties:
(i) It is positive in Qs0, belongs to C(Qs\{(0,0)}) and vanishes on R x {0}\{(0,0)}.
(ii) Ts satisfies ([.1) and

lim U(z,t)dx = o0 Vo > 0. (2.29)
t—0 B

o

In the sense of initial trace in Definition [.3, U has initial trace trg~ (U) = ({0},0)
(here {0} is the singular part and the Radon measure on R\ {0} is the zero measure)
and the conclusion follows due to Lemma [LJ. U

By a simple adaptation of the proof of Proposition P.J and Proposition P.§ it is
possible to extend (2.2§) to any positive solution vanishing on RY x {0} \ {(0,0)}.

Proposition 2.7 Assume (L.§), (.L12) and (C2) are satisfied. Then any positive
solution u of ([.1)) which C(Qs\{(0,0)}) and vanishes on RN x{0}\{(0,0)} satisfies

u(z,t) < minf{o(t), (|2))}  V(2,1) € Qoo (2.30)

Proof. Estimate (2.19) is valid with wuy replaced by u. The remaining of the proof
of Proposition .4 is similar and yields to the first estimate

u(z,t) < O(|x]) V(x,t) € Qoo-
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For the second estimate, since f(0) = 0 and due to the convexity of f, the following
inequality holds
fla+b) > f(a)+ f(b) VYa,b>0, (2.31)

which implies that for any R, 7 > 0, (z,t) — ¢oo(t — ) +wr(z) is a supersolution of

(L)) in Bg x (7,00). This function dominates u on the parabolic boundary, thus in

the domain itself by the comparison principle. Since f(r) > 0if r > 0, Rlim wr =0
—00

in RY. Therefore

u(z,t) < Poo(t) = lim lim (doo(t — 7) + wr(x)) V(z,t) € Qoo-

T7—0 R—00

This implies (.30). O
It is also possible to construct a maximal element of Uy (U is defined in Theo-
rem [L.4). For £ > 0 and € > 0, let u:= Ue ¢ be the solution of

Ou—Au+ f(u) =0 in Qs
u(z,0) =flxp, inRY.

Lemma 2.8 Assume ([.§), (L.1J) and (C2) are satisfied. For any T > 0 and € > 0,
there exist £ > 0 and m(7,€) > 0 such that any positive solution u of ([[.1) which
verifies (i) in the proof of Theorem satisfies

w(z,t) < Uecy(z,t —7) +m(7,€) V(z,t) € Qoo, t > T. (2.32)
Furthermore
lim m(7,€) =0 Ve > 0. (2.33)
70
Finally
U(z,t) = lim lim lim (U (2, t —7) +m(7,¢€)) (2.34)

7—0€e—0/l—00

is the maximal element of Uy.

Proof. We set £ = ¢oo(7), then u(z,7) < £ for any x € RV, Let W := W2 be the
solution of the following Cauchy-Dirichlet problem

oW — AW+ f(W) =0 in Bf )y x (0, 00)
W(z,0) =0 in BY), (2.35)
W(z,t) = ¢oolt) in 635/2 x (0, 00)

and put m(7,€) := mar{W5(r,0) : [x] > €,0 < < 7}. It is clear to see that

lim m(7,€) = We/a(z,0) = 0. (2.36)

7—0
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From the fact that u(x,0) = 0 in By, u(z,t) < Poo(t) in OB ), X (0,00) and the
maximum principle, it follows that u(x,t) < W s(z,t) in Bec/2 x (0, 00).

We next compare Ue(.,. — 7) + m(7,€) with u in RY x (7,00). The func-
tion U (.,. — 7) + m(7,¢€) is a supersolution of ([.1) in RY x (r,00). If x € B,
Ue(2,0) = £ > u(x,7), which implies Ue¢(x,0) + m(1,€) > u(z,7). If z € B,
m(r,€) > Wep(z,7) > u(x,7), hence Ue¢(x,0) + m(7,¢€) > u(x,7). So we always
have U ¢(z,0) + m(7,€) > u(x,7) for any * € RY. Applying maximum principle
yields Uey(.,. — 7) + m(7,€) > u in RY x (7,00). Finally, the function U defined
by (R.34) is the maximal solution because U, ¢(z,t — 7) — U y(z,t) as 7 — 0 and
Uet T Ue oo when £ — 00 and Ue o | U when € — 0. O

3 About uniqueness

We first prove the existence of the global radial solutions of ([[.1§) under the Keller-
Osserman condition.
Proof of Proposition [[.5.

A solution of ([l.19) is locally given by the formula

=a rsl_N TN w S .
w(r) = +/0 /Ot Fw)dtd (3.1)

Existence follows from Picard-Lipschitz fixed point theorem. The function is increas-
ing and defined on a maximal interval [0,7,). By a result of Vazquez and Veron [[L]]
rq = 00, thus the solution is global. Uniqueness on [0, 00) follows always from local
uniqueness. The function r — w(r) is increasing and

ah(a)
N
ah

w'(r) > T,

(a) -

r

>
w(r) > a+ o

for all » > 0. O

Proposition 3.1 Assume ([L.16) holds. For any ug € C(RYN) which satisfies
walel) < uo(x) < wlal) Vo RV (3.2)

for some 0 < a < b, there exists a positive function T € C(Q,,) NC*(Qs) solution
of (L)) in Qoo and satisfying u(.,0) = ug in RY. Furthermore

we(|z]) < ulx,t) < wy(|z|) V(z,t) € Qoo (3.3)
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Proof. Clearly w, and w, are ordered solutions of ([[.1). We denote by u, the
solution of the initial-boundary problem

O, — Aup + f(un) =0 in @, = B, X (Oa OO)
up(z,t) = (we(|z|) + wp(|x]))/2  in IB, x (0,00) (3.4)
Un(2,0) = up(z) in B,.

By the maximum principle, u,, satisfies (B.3) in Q. Using locally parabolic equations
regularity theory, we derive that the set of functions {u,} is eventually equicontin-
uous on any compact subset of Q.. Using a diagonal sequence, we conclude that
there exists a subsequence {u,, } which converges locally uniformly in Q. to some
weak solution 7 € C(Q,,) which satisfies %(.,0) = ug in RY. By standard method,
U is a strong solution (at least C*!(Qs)). O

Proposition 3.2 Assume ([L10) and ([.1) hold. Then for any up € C(R™) which
satisfies
walle]) < wo(x) < wy(fzl) Vo €RY (3.5)

for some 0 < a < b, there exists a positive function u € C(Quo) solution of (1) in
Qoo satisfying u(.,0) = ug in RN and

u(z,t) < min{oo(t), wy(|z|)} V(z,t) € Qoo- (3.6)
Proof. For any R > 0, let ur be the solution of

dur — Aup + f(ug) =0 n Qoo (3.7)
ur(z,0) = uo(z)xB, () in RV, '

The solution which is constructed is domainated by the solution of the heat equation
with the same initial data. Thus

wnlt) < (4mt)~N2 / iy () dy  Y(et) € Q. (38)
Br

and lim ug(z,t) = 0 uniformly with respect to ¢t. The functions ¢, and wy, are

|x|—00

solutions of ([L.1]) in Qs, which dominate up at t = 0. By the maximum principle,

min{ oo (t), wp(|z|)} > ur(x,t) V(z,t) € Quo. (3.9)

The fact that the mapping R + up is increasing and (B.9) imply that there exists
u:= lim up which satisfies u(.,0) = ug in RY. Letting R — oo in (B.9) yields (B.6).

R—o0

Proof of Theorem [L.§.
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Combining Proposition B.] and Proposition B.J we see that there exists two
solutions u and @ with the same initial data ug which are ordered and different since
lim w(z,t) = oo and lim wu(z,t) < ¢oo(t) < oo for all ¢ > 0. O

Proof of Theorem [1.17.
Step 1: There always holds

(ah(a) — bh(b))sign(a —b) > |a — b| h(|a — b)) Va,b >0 (3.10)

where h is defined in (2.9) and

1 if z>0,
sign(z) =< —1 if z <0,
0 it z =0.

In fact, since h is increasing and assuming a > b, we get

ah(a) — bh(b) = (a — b)h(a) + b(h(a) — h(b))

> (a - b)h(a)
> (a —b)h(a — D).
Step 2: End of the proof.. By Kato’s inequality,
Oulu— il — Alu—1 < [9h(u—a) — Alu— @)]sign(u — a),
therefore by step 1,
O lu—1a| —Alu—al + |u—a|lh(Ju—1a|) <O0. (3.11)

Let € > 0. There exists R, > 0 such that for any R > R,

0 <l|u—a|(z,t) <wz|]) V(z,t)e Bfx]|0,1]. (3.12)

Since w, is a positive solution of ([.1]) which dominates |u — %| on dBr x [0, 1] and

at t = 0, it follows that |u — 4| < we in Bg x [0,1]. Letting R — oo yields to

lu — @] < wein RY x [0,1]. Letting ¢ — 0 and since lin%we(]x\) =0 for any z € RV,
€E—

we derive |u — @ = 0, thus u = @ in RV x [0, 1]. Iterating yields that equality holds
in Q. O

Remark. If we replace the condition (C'1) by the condition (C2), the conclusion of
Theorem [L.7 remains valid. Indeed, it follows by the convexity of f that

(f(a) — f(b))sign(a —b) > f(la—b|) Va,b>0.
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Then we proceed as in step 2 to get the desired conclusion.

Proof of Theorem [L.§.

Step 1: Construction of the minimal solution. The solution w which is constructed
in the Proposition B.3 is a minimal solution of ([L.1)) in Qs with the initial value u.
Indeed, if u € C?1(Qx) is a solution of (1)) in Qn which satisfies u(.,0) = ug in
R then by maximum principle ug < u in Qo where ug is the solution of (B.7).
Letting R — oo yields u < u in Q.

Step 2: Construction of the mazximal solution. For any R > 0 and k > 0, let vg} be
the solution of the initial-boundary problem

8tUR,k + AURJg + f(UR,k) =0 in Bp x (O, OO)
vpr =k on OBg x (0,00) (3.13)
URJg(., O) = Up in BR.

Since f is convex, the solution (z,t) — ¢oo(t) + wr(x) (wg is the solution of (2.1§))
is a supersolution of ([.T) in Bg x (0, 00), which dominates vgy on dBg X (0,00)
and at ¢t = 0. By comparison principle, vg i (2,t) < ¢oo(t) + wr(z) for every (z,t) €
Bpr % (0,00). The sequence {vp} is increasing with respect to k and converges to a
function vg 0, which is a solution of ([L.1)) in B x (0,00) with initial data ug. The
sequence {vg o} is decreasing and converges to a solution v of ([.1) in Qoo, which
satisfies voo(.,0) = up in RY. If u € C*1(Q.) is a positive solution of ([L.1]) with
initial data ug then for R > 0 and k£ > 0, by comparison principle, u < vg i + wr
in B x (0,00). Since I%i_r)noo wgr = 0 in RY, letting successively k — oo and R — oo
yields © < Voo In Qoo-

Step 3: Uniqueness. Put ¥ = vy — u then ¥ > 0 in Q. By convexity of f, v is
a subsolution of ([.]) in Q, which satisfies ©(.,0) = 0 in RY. Tt follows from the
maximum principle that © < 0 in Qo and hence ¥ = 0 in s, Which leads to the
uniquness. L.

4 Initial trace

Let Q is an arbitrary open domain in RY with C? boundary, we denote by 9t(Q)
(resp. MP(2)) the set of Radon measures in € (resp. bounded Radon measures), and
by M4 (Q) (resp. M (Q)) its positive cone. For 0 < T < oo, we set Q5 = Q2 x (0, 7).
4.1 The regular part of the initial trace

In this section we only assume that f is a continuous nonnegative function defined
on Ry and that u is a C*! positive solution of ([[1]) in Q%
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Lemma 4.1 Assume G is a bounded C?* domain in RV, Q? =G x (0,T) and let

u € 02’1(62?) be a positive solution of (L) in Qg such that u, f(u) € LY(Q%).
Then u € L>=(0,T; LY(G")) for any domain G' C G’ C G and there exists a positive
Radon measure pg on G such that

lim [ u(z,t)((z)dx = /(}C(x)du(;(x) V¢ € Co(G). (4.1)

t—0 a

Proof. Let ¢ := ¢¢ be the first eigenfunction of —A in I/VO1 ’Z(G) with corresponding
eigenvalue Ag. We assume ¢ > 0 in G. Then

d
7 Gugbdx + Ag/Gw;de + /Gf(u)gbdx + /E)GugbndS =0

where ¢, denote the outward normal derivative of ¢. Since ¢, < 0, the function

T
t— eAGt/ u(z, t)p(x)dx —/ /eAGSf(u)qbd:c ds
G t JG

is increasing and

/Gu(x,t)¢(x)dx < eAG(Tt)/

G

u(z, T)o(x)dx + eAGt/T/ S f(u)pdx ds
t JG

for 0 < t < T. Thus u € L*(0,T; L' (G")) for any strict domain G’ of G. If
¢ € C.(Q), there holds

% (/Gu(x,t)C(x)dx - /tT/G (f(u)¢ — uAQ) dx ds) =0. (4.2)

Consequently

T
lim u(m,t)((x)dm:/Gu(x,T)C(x)dx—l—/o /G(f(u)g—uAC) dx ds. (4.3)

t—0 a

This implies that u(.,t) admits a limit in D’(G) and this limit is a positive distri-
bution. Therefore there exists a positive Radon measure pug on G satisfies ([L.1]).
O

Proof of Proposition [..9.

It is clear that R(u) is an open subset of Q. If G is a strict bounded subdomain
of R(u), i.e. G C R(u), there exists a finite number of points z; (j = 1,...,k) and

Br’.(z') _
7% > 1; > 0 such that u, f(u) € LYQp " ’ )and G C U;“‘:lBrj(zj). Let pj = 1B, (=)
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the measure defined in Lemma [L1. If ¢ € C.(G) there exists a partition of unity
{n; };?:1 relative to the cover { B, (Zj)}?zl such that n; € C§°(G), supp(n;) C B, (z;)

k
and ( = ang. Since

J=1

fy [ ad@O@d = [ GO@dE) =1k
Y Br; (%) By, (z)

there exists a positive Radon measure 1 on R(u) satisfying ([.23). Notice also that
u € L*>(0,T; LY(G)) for any G C G C R(u). O

The main problem is to analyse what does happen on the singular set S(u).

4.2 The Keller-Osserman condition holds

If the Keller-Osserman condition holds, the existence of an initial trace of arbitrary
positive solutions of ([L1]) is based upon a dichotomy in the behaviour of those
solutions near ¢ = 0.

Lemma 4.2 Assume u is a positive solution of ([L.1]) in QS and z € S(u). Suppose
that at least one of the following sets of conditions holds

(i) There exists an open neighborhood G of z such that u € LY(QS).

(ii) f is nondecreasing and ([[.19) holds.
Then for every open relative neighborhood G’ of z

}gr(l] Glu(m,t)dw = 00. (4.4)

Proof. First, we assume (i) holds and let ¢ € C%(G), ¢ > 0. Since z € S(u), then
for every open relative neighborhood G’ of z, there holds

T
/ flu)dz dt = oc. (4.5)
0 J&

Since there exists

T
lim/ /uACdxdt:LER,
t !

t—0

it follows from ([.3) that

T
/lu(x, t)((z)dz = /t Glf(u)(dxds +0(1), (4.6)
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which implies ([£4).
Next we assume that ([.13) holds and u ¢ L'(Q%) for every relative neighborhood

G of z. If there exists an open neighborhood G C Q of z such that (f.4) does not
hold, there exists a sequence {t,} decreasing to 0 and 0 < M < oo such that

sup /Gu(:v,tn)dx =M. (4.7

tn

Furthermore, we can always replace G by an open ball Br(z) C G. Thus (.7) holds
with G replaced by Br(z). Let w := wpr be the maximal solution of

—Aw+ f(w) =0  in Br(z)

lim w(z) = oc. (4.8)
|le—z|—R
Let v := v,, be the solution of
ve—Av =0 in Br(z) X (tn,o0)
v =0 in OBR(z) x (tp,0) (4.9)
v(ty) =ul(.,ty) in Br(z).

Since v, > 0, f(wg + vn) > f(wg), and wg + v, is a supersolution of ([L.1)) in
Bpgr(2) X (tn,T). It dominates u on OBg(2) X (t,,T) and at t = t,,, thus u < wgr + vy,
in Br(2) X (tn,T). We can assume that u(.,t,) — v for some positive and bounded

measure v on Br(z). Therefore

u(z,t) < v(z,t) + wr(x) in Q?R(Z) (4.10)
where v is the solution of
v—Av =0 in QOB;R(Z)
v =0 in dBpr(z) x (0,00) (4.11)
v(.,,0) =v in D'(Bg(z)).

Since v € LI(Q?R(Z)) and wg is uniformly bounded in any ball Bg/(z) for 0 < R’ < R
we conclude that u € LI(Q]'T%R' (Z)), which is a contradiction. O

Definition 4.3 Assume f is nondecreasing and satisfies (T13). Let u € C>1(Q%)
be a positive solution of ([L1]) in Q% We say that u possesses an initial trace with
regular part p € M4 (R(u)) and singular part S(u) = Q\ R(u) if

(i) For any ¢ € C.(R(u)),

lim u(z, t)¢(z)dr = C(x)du(x). (4.12)
=0 JR(w) R(u)
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(ii) For any open set G C 2 such that G N S(u) # 0

lim [ u(x,t)de = oco. (4.13)
t—0 G

Proof of Theorem [1.11

The set R(u) and the measure p € M, (R(u)) are defined by Definition
thanks to Proposition [.d. Because ([.L1J) holds, S(u) = Q \ R(u) inherits the
property (ii) in Definition [.J because of Lemma [£2 (ii). O

If Q is a bounded domain with a C? boundary and u € SIRE’F(Q), we denote by
u,, the solution of

up— Au+ f(u) =0 in Q¥
=0 in 09 x (0,00) (4.14)
u(.,0) = p in D'(Q2).

We recall the following stability result proved in [, Th 1.1].

Lemma 4.4 Let Q be a bounded domain with a C? boundary. Assume f is non-
decreasing and satisfies (L.§). Then for any p € MP(Q) problem (E14) admits a
unique solution u,. Moreover, if {u,} C MP(Q) converges weakly to p € M*(Q)
then wy,, — wy, locally uniformly in Q x (0,00) and in LY(Q%), and f(u,,) — f(u,)
in LY(QS), for every T > 0.

Remark. The result remains true if Q = R and pu, have their support in a fixed
compact set.

If 2 is bounded, by Lemma [£.4, for every y € Q and k > 0, there exists a unique
solution vq , 1, := v to (f.14) with u = kdy. By comparison principle [, Proposition

1.2] vy is positive and increases as k increases. By Proposition R4, {va,x} is
bounded on compact subsets of Q% and consequently

Vy.00 1= 1L V0 gk

is a solution of ([.1]) in Q! which vanishes on Q x {0}\ {(y,0)} and on 99 x (0, c0).
Note that the value of vg y oo (,t) depends only on |z — y| and ¢.

Lemma 4.5 Let Q be a bounded domain with C? boundary. Assume f is nondereas-

ing and satisfies (L) and ([[1F). Let u € C>1(QSL) is a positive solution of ([L1])
in QL with initial trace (S(u), ). Then for every y € S(u),

V00 S U (4.15)
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Proof. By translation we may suppose that y = 0. Since 0 € S(u), for any n > 0
small enough
lim [ w(z,t)dx = oc.
t—0 By

For € > 0, denote M, , = / u(z,€)dz. For any m > m,, = in% M., there exists
B a>

n
e = €(m, n) such that m = M., and lin% e(m,n) = 0. For R > 0 let v, be the solution
n—
of the problem

Oy — Avy + f(vy) =0 in 2 x (0,00)
v, =0 on 09 x (0,00)
vp(x,0) = u(x,€)xa, in

where 7 < R and x g, is the characteristic function of B;,. By the maximum principle
vy < uin Q x (¢,00). By Lemma -4, when 7 goes to zero vy converges to v 0,m-
Letting m goes to infinity yields ({.15). (]

The following convergence lemma is obtained by using the arguments as in [f,
Lemma 3.2]

Lemma 4.6 Assume f is nondereasing and satisfies ([[.§). Let {u,} be a sequence
of positive solutions of ([[.1]) in Q& and let A C Q is an open subset. Suppose that
Tra(upn) = vy € MO(A) and u, — u locally uniformly in QSL. Thus u is a positive
solution of (1)) in Q%Y and we denote tro(u) = (S,p). Under this assumption, if
A C S and {v(A)} is bounded then vy, — 4 weakly where fu4 = X aft.

Proof. Let ¢ € C2(A), £ > 0 then

T T
lim / /unACdxdt :/ /uAdedt. (4.16)
e Jo Jo 0 Ja

/A Cun (., T)dar + /0 ! /A (—unAC + f(un)C)da dt = /A Cdvn(2), (4.17)

Since

we derive by Fatou’s lemma and ([.16) that

/ACu(.,T)dx—|—/OT/A(—uAC+f(u)C)dmdt < 1$gfl‘gdyn(m). (4.18)

Since {v,(A)} is bounded, we can extract a sunsequence (for simplification, we
also denote by {v,} this subsequence) which converges weakly in 9t(A) to a Borel
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measure v. We shall show that this limit does not depend on the subsequence and
that in fact v = 4. Now letting 7' — 0 in ({.1§) yields

/Acdu < /Acdu, (4.19)

Py S 1. (4.20)

which means

Now let A’ be an open bounded subdomain of A with smooth boundary. Let
{wn} (resp. w) be a solution of ([.T) in Q%/ with initial data v} = x v, (resp.
vt = X ) and boundary data zero. Cleary v — v* Weakly relative to functions in
C. (A) By Lemma 1.4, w,, — w locally uniformly in A x (0,00) and in Ll(QT ),
and f(wn) — f(w) in LY(Q4) for every T > 0. Since w, < u, in QL w < u
in Q , and hence v* < p,v. Since A’ is arbitrary, it follows that v < p 4 and we
conclude that the equality holds by (f.20). U

If A is an open subset of Q and v € M (A), we define an extension v of v to Q
by
v(E) = ElrglfOV(O NA) (4.21)

for every Borel set E C (), where the infimum is taken over the open subsets O; v
is an outer regular Borel measure on  and v = v)4.

The next comparison result is obtained by using the argument as in [, Lemma
2.7].

Lemma 4.7 Let Q be a bounded domain in C? boundary.Assume f is nondecreasing
nonnegative on R. Let (g;, ;) € LY(0Q x (0,T)) x MP(Q), i = 1,2 and denote by
u;, 1 = 1,2 the solution to the problem

Ou; — Au; + f(u;)) =0 in QF
U =g on 9 x (0,T)
ui(.,0) =, in Q.

If g1 < g2 in 0Q x (0,T) and py < pp then uy < ug in Q5.

We next mimic the proof of M. Marcus and L. Véron in [f, Lemma 3.3] to show
the existence of a minimal solution of ([L.1]) with a given initial trace in 9, (A) for
any open subset A in (.

Lemma 4.8 Assume Q) is bounded, f is nondereasing and satisfies (IL.g), (L12) and
(C2).
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(i) Let A be an open subset of Q and let v € M4 (A). Then there exists a positive
solution of (1) in QS denoted by u, such that

{Fror e W0 42
for every positive solution v of ([L.1) such that Tra(v) > v.
(ii) Let u, be the solution of problem
Oy, — Auy + fu,) =0 in Q%
Uy =T on 092 x (0,00) (4.23)

un(.,0) =ndz  in .

Denote Uso  := lim uy,. Then Uxq is the mazimal solution of (L) in Q& in the

n—oo

sense that the following relation holds in Q% for every positive solution v of ([L.1])
Uso2 > v. (4.24)

Proof. Let D be an open subdomain of A such that D C A is compact and 9D is
smooth. Set u” the solution of ([[.T]) in QX with boundary data zero and initial data
Xpv € MH(D). If v is any positive solution of (1) in Q% with Tr,(v) > v, then
Tra(v)p = Trp(v) > xpv and Vjspx(0.0e) > 0. Therefore by Lemma L7, v > u” in
QY. Now let {D;} be an increasing sequence of open and smooth subdomains of
A such that Dy C A and U2, Dy = A. Then {u”*} is monotone increasing and by
Lemma 1.6 it admits a limit, which we denote by u,,, which satisfies ({.23).

To verify the statement (ii) we proceed as above with {Dy} an increasing se-
quence of open smooth subdomains of € such that Dy C Q2 and U7, Dy = Q. For
every k we construct Us, p, in Q% as above and we have

Uso.D, (z,t —7) > v(z,t) Y(x,t) € Dy x (1,00)

for any 7 > 0, if v is any positive solution of equation ([L.1)) in Q& Letting 7 — 0
and k — oo yields Uy (z,t) > v(z,t) for all (z,t) € Q2 where Uy, is the limit of the
decreasing sequence {Ux p, }. In particular Uy > U o in Q¥ In order to prove
the reserve inequality, let ws, o be the unique solution of the stationary problem
—Awoo 0+ f(Weo0) =0 in (4.25)
Woo, = OO on 9N
Then w0 is the limit of the increasing sequence wy, o of the same elliptic equation
with boundary value n. Therefore

max(Weo 0(Z), oo (t)) < Uso (1) < Us(z,t) < woo () + ¢oo(t) (4.26)
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for every (z,t) € Q since (z,t) — weo 0(T) + doo(t) is a supersolution of () in
Q& due to the convexity of f. Consequently, for any ¢ > 0 and 7 > 0, the function
(z,t) = (14€)Uso o(z, t—7), which is a supersolution of ([.T]) in 2x (7, co) dominates
Uso on Q x {7} U X (7,00); hence it majorizes Uy in €2 X (7,00). Letting € and
7 go to 0 implies Uy g > Us and hence Uy g = U in QL. Consequently, (f24)
holds. O

As a counterpart of Theorem we have the following existence theorem.

Proof of Theorem
The proof is essentially similar to the one of [f, Th 3.4]. We denote, for § > 0,

S® = {x € Q:dist(z,S) <6}, RO :=Q\S°,

Sffg ={y € d: n(ONR) = o0, for every neighborhood O of y},
Su = EUSgﬂ,

(8,)° =8 = {z € Q: dist(x,S,) <5}, R :=Q\S,

and let 15 be the measure given by
fis(E) .= w(Rs N E) VE C Q, E Borel.

Step 1: Construction of the maximal solution in the case that € is bounded.
Let z; be the solution of ([.1]) in @ with initial trace ji; and boundary data
zero. For 0 < 7 < T/2 let g5, be defined by

zs(x, T ifxef%‘s,
go,r() = { U‘f( Q(; 9 ifred vz e Q (4.27)

and for n € N, let us,, be the solution of () in Q% with initial data g5, and
boundary data h, where

n if (z,t) € 00 x (0,T — 1),

hr(@,t) i= { 0 if(x,0) €09 x (T — 7. 7). (4.28)

Since the sequence {u;,,} is increasing with respect to n and is bounded from
above by U q, there exists us, := lm us,,. By Lemma [L.§ (ii), the fam-
n—oo
ily {us, : 7 € (0,7/2]} is locally uniformly bounded and therefore (by standard
parabolic equations estimates) it is compact in szl(Q,%). Consequently, there exists
a sequence {7,,,} such that {us, } converges locally uniformly in Q$ to a solution
iis of (L) in Q% as m — oo, which blows-up on 9Q x (0,7). By Lemma [.§,

tro(is) = (S(Suu‘fza)-
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Let v be a solution of (1)) in QS and suppose that tro(v) = (S', /) satisfies
S’ ¢ (8% and i/ = p in R°. Then
lim (v(,7) — g3+ ())1 =0 (4.29)

T—0

in the sense of weak convergence of measures. In fact, by Lemma [I.g, v(.,7) < 95,7
in &% while v(.,T) > g5 in RO If vs,r is the solution of ([LI) in © x (r,T") with
boundary data zero and initial data (v(.,7) —gs+(.))+, then by Lemma Bdvsr —0
locally uniformly in € x (0,7") as 7 — 0. By the maximum principle, v < us r + vs 7
in Q@ x (7,T). Therefore

v < Usg. (4.30)
In particular, it follows that {@s} is monotone increasing with respect to 6. Thus
Ugs, = %irr(l) Uy is a solution of ([[.T]), with initial data (S, u), which blows-up on

—

00 x (0,T). If trq(v) = (S, ) then (E30) holds for every 6 > 0 and consequently

v <Ugs, in QF.

Step 2: Construction of a minimal solution in the case that € is bounded.

First we construct a minimal solution under the additional assumption that S is
compact. Let 0 < § < dist(S,00) and 0 < 7 < T'/2. Denote by ws , the solution of
(L3) with boundary data 0 and initial data hs, defined by

z5(x, T) if 2 € R,
hsr(T) =1 vasoo(r,7) ifz €S, Vo e Q (4.31)
0 otherwise,

where & € S is a point such that dist(z,S) = |z — &|. If v is a positive solution of
(D) in QF with
tTQ(U) = (87 M/)a M/ > © (432)

then by Lemma [.§ and maximum principle,
ws - (z,t) <v(z,t+7) (4.33)

in ngr for small positive 7. Let {7,,} be a sequence converging to 0 such that
{ws 7, } converges in Q¥ Then by Lemma [[.4 and Lemma [L.§ the limit function
Vs, 18 a solution of (1) in QF with initial trace (S, ji5) which minorizes v in Q.
Therefore vg , := %ii% s 4, 18 a solution of ([L1)) in Q$} with initial trace (S,p) and
Vs, Svin Q%

Next we claim that if &’ is a compact subset of €,

SCS pur <y and p(S'\S) =0 = vs, < vs . (4.34)
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Suppose that, in addition to the conditions of (f34), u((S"\ S)*NR) = 0 for some
€ > 0. Then &' C S and hence &’ = S. From the previous contruction we find that,
for 0 <d <€ vgy, < Vs - Letting 6 — 0 yields ([£34). Next, assuming only the
condition in ([.34), let u€ be defined by p¢(E) := u(E\ [(S"\ 8§)¢ N R]), for every
Borel subset 2 C R. Then from the previous special case, we obtain vg .« < vgs e
Letting 6 — 0 leads to ({..34).

Using this fact we can construct the minimal solution for arbitrary couples (S, 1)
where § is a relatively closed subset of Q and p € M (R). For € > 0 put

Qo) = {x € Q: dist(z,00) > e},
S(e) = {.%' €S: dist(m, 89) > 6}, R(E) = \ 8(5)7

and define the measure pi(¢) by pi(e)(E) := p(E N€) for every Borel set £ C R).
By (£.34), the sequence {vg s (6)} increases as € decreases. Moreover this sequence

is bounded from above by v. Thus uqg g , := lim v is a solution of ([]) in Q%

€0 H(e)
with initial trace (S, p) satisfying

<w (4.35)

U s,
for every positve solution v of ([L.I]) in QS with trq(v) = (S, ).
If (S,p), (S, 1) € CML(R2) and S C &' and prr < i where R = Q\ S then

from the previous construction, we get
< . 4.
Qs(e)vﬂ/(e) - Q‘Sée)vﬂ/(e) ( 36)

Letting € — 0 yields
QQ,S,,U, S QQ,S/,[LI' (437)

Step 3: Construction of the maximal solution when §2 is unbouded.

Let {Dy} be an increasing sequence of open and bounded smooth subdomains of
Q) such that Dy C Q and U2 ; Dy, = Q. First we consider the case when R = Q\ S
is bounded and assume that R C Dj for every k. Proceeding as in step 1, we can
construct a maximal solution T, s, of ([L1) in Q?’“ with initial trace (Sg,u) where
Sy = 8N Dy, which blows-up everywhere on 9D, x (0,T). The sequence {%p, s,,.}
decreases with respect to k£ and is bounded from below. Therefore the limit function
Uqgs, = khﬁrgo Up, s, 15 a maximal solution of (1)) in @} in the sense of ([:26) with

initial trace (S, u). Indeed, if v is a solution of ([[I]) in QS with initial trace (S, )
then by step 1, for any k& > 0, Vip,x(o,r) < Up, s, Letting k — oo yields v < g s,
: Q
in Q7.
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If R is unbounded, for k > 0, we put Ry := RN Dy, Sk := Q\ Ri and p(E) =
u(E N Ry) for every Borel subset E C R. The sequence of maximal solutions
{tq.s, .., } decreases with respect to k and its limit as k& — oo is the maximal solution

of (IL.1) in Q% in the sense of ([L.26) with initial trace (S, u).

Step 4: Construction of the minimal solution when 2 is unbounded.

First assume that S is bounded and that p(E) = 0 for every Borel subset E C
R\ G for some compact subset G C Q. Let {Dy} be a sequence as in step 3 and
assume that S, G C Dy, for every k > 0. We construct the minimal solution v, s .
of (1) in Q?’“ with initial data (S, ug) where ug(E) = u(E) for every Borel subset
E C Ry = Dy \ S and boundary data 0. We observe that Up, s, NCreases with
respect to k and its limit as k — oo is the minimal solution u, 5 , of (1) in Q¥ in
the sense of ([.26) with initial data (S, x). Indeed, (£35) remains valid with u, g,
replaced by u, s, ; then letting k& — oo yields u, 5, < v in Q%.

In the general case, we put S® := SN Dy, and u® (E) := u(E N Dy) for every
Borel set £ C Q\ S®). We denote by Ug s(k) (v the minimal solution of (L) in

Q% with initial trace (S, u*)) and boundary data 0. By (f37), the sequence of
minimal solutions {QQ’S(IC)’H(}C)} increases with respect to k and its limit as k — oo

is the minimal solution ug, s , of (II]) in Qf in the sense of ([L26) with initial data
(S ). 0

Remark. When f(r) = |r|9~r with 1 < ¢ < 1+2/N, precise expansion of u.s(z,1),
when t — 0 allows to prove uniqueness. Even when f(r) = rIn%(r 4+ 1) with a > 2,
uniqueness is not known.

4.3 The Keller-Osserman condition does not hold

In this section we assume that ([[.L1) holds and ([[.§) is always satisfied.
Lemma 4.9 Assume ([L.I0), (L.16), (C1) and (C3) are satisfied. If u is a positive
solution of (1)) in Qoo which satisfies

limsup/u(m,t)dx = 00, (4.38)
G

t—0
for some bounded open subset G C RN, then u(x,t) > ¢oo(t).

Proof. By assumpion, there exists a sequence {t,,} decreasing to 0 such that

lim [ u(x,t,)dz = oco. (4.39)

n—o0 G
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If (£:38), we can construct a decreasing sequence of open subsets Gy, C G such that
Gy C Gg_1, diam(Gy) = ¢ — 0 when k — oo, and

lim u(z, t,)dr = oo Vk € N. (4.40)

n—oo Gk

Furthermore there exists a unique a € N Gj. We set

Z; u(z, tn)de = My .

Since hm M, = 0o, we claim that for any m > 0 and any k, there exists n =
n(k) € N such that

/ u(z, tyr))de > m. (4.41)
Gy

By induction, we define n(1) as the smallest integer n such that M, ; > m. This is
always possible. Then we define n(2) as the smallest integer larger than n(1) such

that M, 2 > m. By induction, n(k) is the smallest integer n larger than n(k — 1)
such that M, ; > m. Next, for any k, there exists £ = {(k) such that

/ inf{u(x,t,u)); (ydx =m (4.42)
G

and we set
Vk(x) = lnf{u(x’ tn(k)); E}Xck (x)

Let v, = v be the unique bounded solution of

vy —Av+ f(v) =0 in Qs
{ v(.,0) =V in RV, (4.43)
Since v(x,0) < u(w,t,y)), it follows
u(z,t + ty)) > vi(w,t) V(z,t) € Qoo- (4.44)

When k£ — oo, Vi — md,, thus vy — up,s5, by Lemma E4. Therefore u > U, -
Since m is arbitrary and s, — ¢oo When m — oo by Theorem [[.3} it follows that
U > Poo. U

Lemma 4.10 Assume ([.15), ([.16), (C1) and (C3) are satisfied. There exists no

positive solution u of (L)) in Qoo which satisfies ([.38) for some bounded open subset
G C RV,
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Proof. 1f we assume that such a u exists, we proceed as in the proof of the pre-
vious lemma. Since Lemma [.4 holds, we derive that u > Ums, for any m. Since

lHm s, (z,t) = oo for all (z,t) € Quo, we derive a contradiction. O
m—0o0

Thanks to these results, we can characterize the initial trace of positive solutions
of (L.T) when the Keller-Osserman condition does not hold.

Proof of Theorem

If there exists some open subset G of RV with the property (E33), then u > ¢uo
and the initial trace of u is the Borel measure v,,. Next we assume that for any
bounded open subset G of RY there holds

limsup/u(x,t)dx < 0. (4.45)
t—0 G

If S(u) # 0, there exists z € RV and an bounded open neighborhood G of z such

that
//f Ydxdxt =

By ([E49), u € L>®(0,T; LY(G)) € LY(Q%). Then, by Lemma 1.2, (4) holds, which
contradict ([£45). Thus S(u) = 0 and R(u) = RN . It follows from Proposition [L.9
that there exists a positive Radon measure p such that

lim [ w(z,t)¢(x)de = RNC(x)d,u(x) V¢ € C.(RM). (4.46)

t—=0 JrN
O

Because of the lack of uniqueness from Theorem [L.§ it is difficult to give a
complete characterization of admissible initial data for solutions of ([.1) under the
asssumptions of Theorem [[.I§. However, we have the result as in Proposition [[.14.

Proof of Proposition

We first notice that max{¢u(t); wy(|z|)} is a subsolution of ([[.I]) which is dom-
inated by the supersolution ¢ (t) + wy(|z|). The process is standard: for 7 > 0 we
set

P(x,7) = % (max{ oo (t); wp(|2])} + Poo(t) + wp(|2])) -

There exists a function u = u, € C(Q) solution of ([[]) in Qu satisfying u,(.,0) =
(., 7). Furthermore

max{¢oo(t + 7);wp(|z])} < ur(z,t) < doo(t + 1) + wp(|x]) V(z,t) € Qoo. (4.47)
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By parabolic equation regularity theory, the set {u,} is locally equicontinuous in
Qoo- Thus there exists a subsequence {7,,} and u € C(Q«) such that u,, — u on
any compact subset of Q. Clearly u is a weak, thus a strong solutions of ([.1])
and it satisfies ([.27). Since any solution u with initial trace vy, dominates ¢ by
Lemma [£.9, it follows that ¢, is the minimal one. O

Proof of Theorem

As in the proof of Theorem and because of Lemma [£.10, S(u) = 0. Therefore
R(u) = RY and the proof follows from Proposition [[.9. O

Remark. Under the assumptions of Theorem [[.13, it is clear, from the proof of
Proposition B.I], that for any 0 < a < b and any initial data ug € C(RY) satisfying

we () < up(x) < wp(x) Vo € RY
there exists a solution u € C'(Quo) of (1)) in Qoo satisfying u(.,0) = up and
wa(t) < u(e,t) < wplz) V(1) € Quo

We conjecture that for any positive measure 1 on RY which satisfies, for some b > 0,

/ du(x) S/ wy(x)dx VR >0 (4.48)
Br Br

there exists a positive solution u of ([[]) in Q. with initial trace pu. Another
interesting open problem is to see if there exists local solutions in Q7 with an initial

trace p satisfying
| duto)
lim —2Br

—00  Vb>0. (4.49)
R_)OO/ wy(x)dx
Br
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