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heat equation with superlinear absorption

Tai Nguyen Phuoc Laurent Véron
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Abstract

We study the limit, when k → ∞ of solutions of ut − ∆u + f(u) = 0 in
R

N × (0,∞) with initial data kδ, when f is a positive increasing function. We
prove that there exist essentially three types of possible behaviour according
f−1 and F−1/2 belong or not to L1(1,∞), where F (t) =

∫ t

0
f(s)ds. We use

these results for giving a general result on the existence of the initial trace and
some non-uniqueness results for regular solutions with unbounded initial data.
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1 Introduction

In this article we investigate some local and global properties of solutions of a class
of semilinear heat equations

∂tu−∆u+ uh(u) = 0 (1.1)

in Q∞ := R
N × (0,∞) (N ≥ 2) where h : R+ 7→ R+ is continuous, nondecreasing

and positive on (0,∞), vanishes at 0 and tends to infinity at infinity. As a model
equation we shall consider the following, with α > 0,

∂tu−∆u+ u lnα(u+ 1) = 0 (1.2)

When h(u) = |u|β with β > 0 much is known about the structure of the set of
solutions. The local and asymptotic behaviour of solutions is strongly linked to the
existence of a self-similar solutions under the form

u(x, t) = t−1/βw(x
√
t) (1.3)

The critical exponent βc = 2/N plays a fundamental role in the description of
isolated singularities and the study of the initial trace, since if 0 < β < βc there
exists a self-similar solution with an isolated singularity at (0, 0), while no such
solution exists when β ≥ βc and no solution with isolated singularities.

In the case of (1.2), no self-similar structure exists. There is no critical exponent
corresponding to isolated singularities since there always exist such singular solu-
tions. Actually, for any k > 0 there exists a unique u = uk ∈ C(Q∞\{0})∩C2,1(Q∞)
solution of

{

ut −∆u+ u lnα(u+ 1) = 0 in Q∞

u(0, .) = kδ0 in D′(RN ).
(1.4)

There are two critical values for α: α = 1 and α = 2, the explanation of which comes
from the study of the two singular problems

{

φ′ + φ lnα(φ+ 1) = 0 in (0,∞)

φ(0) = ∞
(1.5)

and, for any ǫ > 0,
{

−∆ψ + ψ lnα(ψ + 1) = 0 in R
N \Bǫ

lim|x|→ǫψ(x) = ∞,
(1.6)

where Bǫ := {x ∈ R
N : |x| < ǫ}. When it exists, the solution φ∞ of (1.5) is given

implicitely by
∫ ∞

φ∞(t)

ds

s lnα(s+ 1)
= t. (1.7)
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and such a formula is valid if an only if α > 1. For problem (1.6) an explicit
expression of the solution is not valid, but it exists if and only if the Keller-Osserman
condition holds α > 2.

Having in mind this model we study (1.1) assuming the weak singularity condi-
tion on h:

∫ 1

0
h(t−N/2)dt <∞. (1.8)

If (1.8) holds, for any k > 0, there exists a unique solution uk of (1.1) satisfying
uk(., 0) = kδ0. Another condition on h is

∫ ∞

1

dt

th(t)
<∞. (1.9)

Under this assumption there exists a solution to
{

φ′ + φh(φ) = 0 in (0,∞)

φ(0) = ∞
(1.10)

The last important condition on h we shall encounter is
∫ ∞

1

dt
√

F (t)
<∞, (1.11)

where

F (t) = 2

∫ t

0
sh(s)ds.

If (1.11) is satisfied, for any ǫ > 0 there exists a maximal solution ψ := ψǫ to
{

−∆ψ + ψh(ψ) = 0 in R
N \Bǫ

lim|x|→ǫψ(x) = ∞,
(1.12)

The first question we consider is the study of the limit of uk when k → ∞. This
question is natural since k 7→ uk is increasing. We prove the following results.

Theorem A. Assume h satisfies (1.8) and
∫ ∞

1

dt

th(t)
= ∞. (1.13)

Then limk→∞ uk(x, t) = ∞.

Theorem B. Assume h satisfies (1.8), (1.9) and
∫ ∞

1

dt
√

F (t)
= ∞, (1.14)
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Then limk→∞ uk(x, t) = φ∞(t).

In the proof of the above two results we have to assume the following technical
assumption, called condition C

C- If lim infr→∞ h(r)/ lnα r = 0,∀α > 2, then there exists β ∈ (1, 2] such that

lim sup
r→∞

h(r)/ lnβ r <∞.

Theorem C. Assume h satisfies (1.8), (1.9) and (1.11). Then limk→∞ uk = u∞
where u∞ is the minimal solution of (1.1) in Q∞ which is continuous in Q∞ \{0, 0},
vanishes on the set {(x, 0) : x 6= 0} and satisfies

lim
t→0

∫

Bǫ

u(x, t)dx = ∞ (1.15)

for any ǫ > 0.

In the second section we study the set U of positive and locally bounded solutions
of (1.1 ) in Q∞. This set differs considerably according the assumption on h. This is
due to the properties of the radial solutions of the associated stationnary equation

−∆w + wh(w) = 0 in R
N . (1.16)

For any a > 0 the problem






















−w′′ − N − 1

r
w′ + wh(w) = 0 for r > 0

w′(0) = 0

w(0) = a

(1.17)

admits a maximal solution wa defined on [0, ra). The function wa is increasing and
ra <∞ if and only if h satisfies (1.11). If ra = ∞ the mapping a 7→ wa is increasing
and limr→∞wa(r) = ∞. A striking consequence of the existence of such solutions is
the following non-uniqueness result

Theorem D. Assume h satisfies (1.9) and (1.14). Then for any u0 ∈ C(RN )
satisfying wa(x) ≤ u0(x) ≤ wb(x) for some b > a > 0 there exist at least two
solutions u, u ∈ C(Q∞) of (1.1) with initial value u0. They satisfy respectively

0 ≤ u(x, t) ≤ min{wb(x), φ∞(t)} ∀(x, t) ∈ Q∞, (1.18)

thus limt→∞ u(x, t) = 0, uniformly with respect to x, and

wa(x) ≤ u(x, t) ≤ wb(x) ∀(x, t) ∈ Q∞, (1.19)
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thus lim|x|→∞ u(x, t) = ∞, uniformly with respect to t ≥ 0.

We prove that, under the conditions of Theorem D, two solutions ui (i=1,2) with
the same initial data u0 coincide if for any ǫ > 0 there holds

u1(x, t)− u2(x, t) = o(wǫ(|x|)) as |x| → ∞ (1.20)

locally uniformly with respect to t ≥ 0.

On the contrary, if h satisfies (1.11) and r 7→ rh(r) is convex, a continuous
solution is uniquely determined by the initial value u0.

In the last section we study the initial trace of locally bounded positive solutions
of (1.1). We prove:

Theorem E. If h satisfies condition C, (1.8) and (1.13) the initial trace is a Radon
measure.

Theorem F. If h satisfies condition C, (1.8), (1.9) and (1.14), either the initial
trace is a Radon measure, or u ≥ φ∞.

Theorem G. If h satisfies (1.8), (1.9) and (1.11) the initial trace is a positive outer
regular Borel measure.

The proofs are combination of methods developed in [8] for elliptic equations,
stability results and Theorems A and B above. Among the consequences of the
previous results we can mention.

Theorem H. If h verifies (1.9) and (1.14) there exist infinitely many solutions u of
(1.1). They all satisfy u ≥ φ∞ and φ∞ is the minimal one.

Theorem I. If h satisfies (1.8), (1.9) and (1.11), then for any outer regular Borel
measure ν on R

N , there exists a positive solution u of (1.1) with initial trace ν.

2 Isolated singularities

In order to study (1.1), we shall assume the following conditions on h

C1- h is a positive, increasing function and h(0) = 0.

C2- the mapping r 7→ f(r) = rh(r) is convex.

C3- If lim infr→∞ h(r)/ lnα r = 0,∀α > 2, then there exists β ∈ (1, 2] such that

lim sup
r→∞

h(r)/ lnβ r <∞.

It is well-known (e.g. [14]) that, if for k > 0,

I =

∫ 1

0

∫

BR

kE(x, t)h(kE(x, t))dxdt <∞ (2.1)
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for any R > 0, then there exists a unique solution u = uk to (1.1) satisfying initial
condition

uk(., 0) = kδ0

in the sense of distributions in R
N . Furthermore the mapping k 7→ uk is increasing.

The condition (2.1) can be reduced to a weaker form as follows
∫ 1

0
h(t−N/2)dt <∞. (2.2)

Proposition 2.1 If (2.2) is satisfied then (2.1) is fulfilled.

Proof. We have

I = kC∗
∫ 1

0

∫

BR

t−N/2e−|x|2/4th(kC∗t−N/2e−|x|2/4t)dxdt

where C∗ = (4π)−N/2. Put r = |x| then dx = rN−1dr, and

I = kC∗
∫ 1

0
t−N/2

∫ R

0
e−r2/4th(kC∗t−N/2e−r2/4t)rN−1drdt.

We next put ρ = r√
t
, then rN−1dr = ρN−1tN/2dρ, and

I = kC∗
∫ 1

0

∫ R/
√
t

0
e−ρ2/4h(kC∗t−N/2e−ρ2/4)ρN−1dρdt.

We set

I1 = kC∗
∫ 1

0

∫ 1

0
e−ρ2/4h(kC∗t−N/2e−ρ2/4)ρN−1dρdt,

I2 = kC∗
∫ 1

0

∫ R/
√
t

1
e−ρ2/4h(kC∗t−N/2e−ρ2/4)ρN−1dρdt.

Since e−ρ2/4ρN−1 is bounded in [0,∞), then there exists a constant c1 depending
only on k such that

I1 < c1

∫ 1

0

∫ 1

0
h(kC∗t−N/2)dρdt = c1

∫ 1

0
h(kC∗t−N/2)dt <∞

We next show that under the condition (2.2), I2 < ∞. In order to do that we

change to a new variable τ such that t−N/2e−ρ2/4 = τ−N/2. Then t = τe−
ρ2

2N and

dt = e−
ρ2

2N dτ . Therefore

I2 ≤ kC∗
∫ ∞

1
e−

(N+2)ρ2

4N ρN−1(

∫ eρ
2/2N

0
h(kC∗τ−N/2)dτ)dρ (2.3)
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Since h satisfies (2.2), there exists ǫ > 0 (depending only on k) such that

∫ ǫ

0
h(kC∗τ−N/2)dτ

take a finite value, denoted by c2. Hence

∫ eρ
2/2N

0
h(kC∗τ−N/2)dτ ≤ c2 + h(kC∗ǫ−N/2)(e

ρ2

2N − ǫ) (2.4)

Inserting (2.4) into the right hand side of (2.3), we obtain

I2 ≤ c3

∫ ∞

1
e−

(N+2)ρ2

4N ρN−1dρ+ c4

∫ ∞

1
e−

ρ2

4 ρN−1dρ <∞

where c3 = kC∗c2 and c4 = kC∗h(kC∗ǫ−N/2). Thus, I = I1 + I2 <∞. �

The functions which satisfy the following ODE are particular solutions of (1.1 )

φt + φh(φ) = 0 in (0,∞) (2.5)

For a > 0, we denote by φa the solution of (2.5) with initial data φ(0) = a. This
solution is given by the formula

t =

∫ a

φ(t)

ds

sh(s)
<∞. (2.6)

If

J =

∫ ∞

a

ds

sh(s)
= ∞. (2.7)

then lima→∞ φa(t) = ∞. While, if

J =

∫ ∞

a

ds

sh(s)
<∞. (2.8)

there exists a maximal solution φ∞ given explicitely by

t =

∫ ∞

φ∞(t)

ds

sh(s)
<∞.

Lemma 2.2 If J = ∞ then lim infr→∞ h(r)/ lnα r = 0, ∀α > 1.
If J <∞ then lim supr→∞ h(r)/ lnα r = ∞, ∀0 < α ≤ 1.
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Proof. Set s = er
−1

then

J =

∫ b

0

dr

rα+1h(er−1)

where b = (lna)−1.
Case 1: J = ∞. Suppose that there exist α > 1 such that

lim inf
s→∞

h(s)

lnαs
> 0,

equivalently,
lim inf
r→0

rαh(er
−1
) > 0

then there exists l > 0 and r0 > 0 such that

h(er
−1
) > lr−α, ∀r ∈ (0, r0).

Hence we derive the following contradiction

J <
α

l

∫ r0

0
rα−2dr +

∫ b

r0

dr

rα+1h(er−1)
<∞.

Case 2: J <∞. Suppose that there exist α ∈ (0, 1] such that

lim sup
s→∞

h(s)

lnαs
<∞,

equivalently,
lim sup

r→0
rαh(er

−1
) <∞

then there exists l > 0 and r0 > 0 such that

h(er
−1
) < lr−α, ∀r ∈ (0, r0).

Hence

J >
α

l

∫ r0

0
rα−2dr +

∫ b

r0

dr

rα+1h(er−1)
= ∞,

contradiction. �

Theorem 2.3 Assume (2.7) is satisfied. Then

lim
k→∞

uk(x, t) = ∞ ∀(x, t) ∈ Q∞.
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Proof. Since J = ∞, by Lemma 2.2, lim infr→∞ h(r)/lnαr = 0 for all α > 1. Thus

lim inf
r→∞

h(r)/lnαr = 0, ∀α > 2.

By (C3), there exists β ∈ (1, 2] such that lim supr→∞ h(r)/lnβr = 0 < ∞. Hence
there exist M > 0 and r0 > 0 such that

h(r) < Mlnβr, ∀r ∈ (r0,∞). (2.9)

Step 1. Let k > 0, we claim that

θk(t) < 2β−1Mt(ln k)β +
MNβ

2

∫ 1

0
(ln(τ−1))βdτ, t ∈ (0, 1) (2.10)

where θk(t) =

∫ t

0
h(kC∗τ−N/2)dτ and C∗ = (4π)−N/2. Set r = kC∗τ−N/2 then (2.9)

becomes

h(kC∗τ−N/2) < M [ln(kC∗) +
N

2
ln(τ−1)]β , ∀τ ∈ (0, τ0)

where τ0 = (kC∗)
2
N e−

2
N
r−1
0 . We put a1 = ln k, a2 = N

2 ln(τ−1), and apply the
following inequality

(a1 + a2)
β ≤ 2β−1(aβ1 + aβ2 )

in order to obtain

h(kC∗τ−N/2) < M [ln(k) + N
2 ln(τ−1)]β

≤ 2β−1M [(ln k)β + (N2 )
β lnβ(τ−1)], ∀τ ∈ (0, τ0)

(2.11)

Integrating over [0, t] yields to (2.10).

Step 2. It follows from (2.11) that (2.2) is fulfilled, hence there exists the unique
solution of (1.1) in Q∞ with initial data kδ0. By the maximum principle, uk(x, t) ≤
kE(x, t) for any (x, t) ∈ Q∞, which implies uk(x, t) ≤ kC∗t−N/2. Therefore, since h
is increasing,

∂tuk −∆uk + ukh(kC
∗t

−N
2 ) ≥ 0.

If we set vk(x, t) = eθk(t)uk(x, t), we obtain

∂tvk −∆vk = eθk(t)(∂tuk −∆uk + ukh(kC
∗t−N/2)) ≥ 0,

and vk(., 0) = uk(., 0) = kδ0. By the maximum principle, there holds

vk(x, t) ≥ kC∗t−N/2e−|x|2/4t ⇐⇒ uk(x, t) ≥ kC∗t−N/2e−θk(t)−|x|2/4t. (2.12)
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By step 1,

e−θk(t) ≥ c1e
−Mβt(ln k)β ∀t ∈ (0, 1) (2.13)

where c1 = exp(−M(N)β

2

∫ 1
0 (ln(τ

−1))βdτ) and Mβ = M2β−1. Inserting (2.13) into
the right hand side of (2.12), we get

uk(x, t) ≥ c1C
∗t−N/2elnk−Mβt(ln k)β−|x|2/4t, ∀(x, t) ∈ Q1.

Put U := limk→∞ uk, then

U(x, t) ≥ c1C
∗t−N/2eln k−Mβt(ln k)β−|x|2/4t, ∀(x, t) ∈ Q1,∀k > 0.

Let {tn} ⊂ (0, 1] be a sequence converging to 0. We choose k = kn = exp
(

(2Mβtn)
1

1−β

)

,

then ln kn −Mβtn ln
γ kn = 1

2 ln ln. Next we restrict x in order to have

ln kn −Mβtn ln
γ kn − |x|2

4tn
=

1

2
ln kn − |x|2

4tn
≥ 0 ⇐⇒ |x| ≤ 2

β−2
2(β−1)M

1
2(1−β)

β t
β−2

2(β−1)
n .

Therefore, since 1 < β ≤ 2,
lim
n→∞

U(x, tn) = ∞

uniformly on R
N if 1 ≤ β < 2, or uniformly on the ball Br2 where r2 = (2M)−1/2 if

β = 2. Since the sequence {tn} is arbitrary,

lim
t→0

U(x, t) = ∞

uniformly on R
N if 1 ≤ β < 2, or uniformly on the ball Br2 .

We pick some point x0 in R
N (resp. Br2) if 1 < β < 2 (resp. β = 2). Since for

any k > 0, the solution ukδx0 of (1.1) with initial data kδx0 can be approximated by
solutions with bounded initial data and support in Bσ(x0) where 0 < σ < r2 − |x0|,
by comparison principle, it follows that

U(x, t) ≥ ukδx0 (x, t) = uk(x− x0, t).

Letting k → ∞ yields to U(x, t) ≥ U(x−x0, t). Reversing the role of 0 and x0 yields
to U(x, t) = U(x− x0, t). If we iterate this process we derive

U(x, t) = U(x− y, t), ∀y ∈ R
N .

This implies that U(x, t) is independent of x and therefore it is a solution of
{

φ′ + φh(φ) = 0 on (0,∞)
limt→0 φ(t) = ∞.

By (2.7), U(x, t) = ∞ for all (x, t) ∈ Q∞, which ends the proof. �
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Proposition 2.4 Assume (2.8) is satisfied. For any k > 0, there holds

uk(x, t) ≤ φ∞(t), ∀(x, t) ∈ Q∞.

Proof. For any small ǫ > 0, put φ∞ǫ(t) = φ∞(t− ǫ), t ∈ [ǫ,∞) then φ∞ǫ is a solution
of (1.1) in (ǫ,∞), which dominates uk on R

N × ǫ for any k > 0. By comparison
principle, uk(x, t) ≤ φ∞ǫ(t) in R

N × [ǫ,∞). Letting ǫ → 0 yields to the claim.
�

A necessary and sufficient condition for the existence of a maximal solution to
the stationary equation

−∆w + wh(w) = 0

in a bounded domain Ω is the Keller-Osserman condition ([4], [9])

K =

∫ ∞

a

ds
√

F (s)
<∞, (2.14)

where F (s) =

∫ t

0
τh(τ)dτ . If (2.14) holds, then (2.8) is fulfilled. The Keller-

Osserman condition can be replaced by another condition, which owes to the follow-
ing result

Lemma 2.5 Set

L =

∫ ∞

a

ds

s
√

h(s)
.

Then K <∞ if and only if L <∞.

Proof. In order to obtain the assertion, it is sufficient to show that there exists two
positive constants c1 and c2 such that

c1s
2h(

s

2
) ≤ F (s) ≤ c2s

2h(s) ∀s ≥ a. (2.15)

The right-hand side estimate in (2.15) follows from the monotone property of h (with
c2 = 1/2). The assumption of convexity of s 7→ f(s) := sh(s) in (0,∞) implies

f(s) ≥ f(
s

2
) +

s

2
f ′(

s

2
) ∀s > 0.

Define ϕ(s) =

∫ s

0
f(τ)dτ − sf( s2), then ϕ′(s) = f(s) − f( s2) − s

2f
′( s2) > 0. Hence

ϕ(s) > ϕ(0) = 0, which is the left-hand side estimate in (2.15) (with c1 = 1/2).
�

By using the same argument as in the proof of the Lemma 2.2 and thank to the
Lemma 2.5, we obtain the following lemma
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Lemma 2.6 If
K = ∞ (2.16)

then lim infr→∞ h(r)/ lnα(r) = 0 for all α > 2.
If

K <∞ (2.17)

then lim supr→0 h(r)/ ln
α(r) = ∞ for all 0 < α ≤ 2.

For the case time-type absorption, we have the following result

Theorem 2.7 Assume (2.8) and (2.16) are satisfied. Then

U = lim
k→∞

uk(x, t) = φ∞(t) ∀(x, t) ∈ Q∞.

Proof. Since K = ∞, by Lemma 2.6, lim infr→∞ h(r)/lnαr = 0,∀α > 2. By (C3),
there exists β ∈ (1, 2] such that lim supr→∞ h(r)/lnβr < ∞. Hence there exists
M > 0 and r0 > 0 such that

h(r) < Mlnβr, ∀r ∈ (r0,∞). (2.18)

Step 1. For any k > 0 we set

θk(t) =

∫ t

0
h(kC∗τ−N/2)dτ

where C∗ = (4π)−
N
2 . We claim that

θk(t) < 2β−1Mt(ln k)β +
MNβ

2

∫ 1

0
(ln(τ−1))βdτ, t ∈ (0, 1). (2.19)

If we define τ by r = kC∗τ−N/2, (2.18) becomes

h(kC∗τ−
N
2 ) < M [ln(kC∗) +

N

2
ln(τ−1)]β , ∀τ ∈ (0, τ0)

where τ0 = (kC∗)
2
N e−

2
N
r−1
0 . We put a1 = ln k, a2 = N

2 ln(τ−1), and apply the
following inequality

(a1 + a2)
β ≤ 2β−1(aβ1 + aβ2 )

in order to obtain

h(kC∗τ−N/2) < M [ln(k) + N
2 ln(τ−1)]β

≤ 2β−1M [(ln k)β + (N2 )
β lnβ(τ−1)]

(2.20)

Integrating over [0, t], we obtain (2.19).
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Step 2. It follows from (2.20) that (2.2) is fulfilled, hence there exists the unique
solution of (1.1) in Q∞ with initial trace kδ0. By maximum principle, uk(x, t) ≤
kE(x, t) for any (x, t) ∈ Q∞, which implies that uk(x, t) ≤ kC∗t−N/2. Therefore,
since h is increasing,

∂tuk −∆uk + ukh(kC
∗t−N/2) ≥ 0.

We set vk(x, t) = eθk(t)uk(x, t) and obtain

∂tvk −∆vk = eΘ(t)(∂tuk −∆uk + ukh(kC
∗t−N/2)) ≥ 0,

with vk(., 0) = uk(., 0) = kδ0. By maximum principle, it follows

vk(x, t) ≥ kC∗t−N/2e−|x|2/4t ⇐⇒ uk(x, t) ≥ kC∗t−N/2e−θk(t)−|x|2/4t. (2.21)

By step 1,

e−θk(t) ≥ c1e
−Mβt(ln k)β ∀t ∈ (0, 1) (2.22)

where c1 = exp(−M(N)β

2

∫ 1
0 (ln(τ

−1))βdτ) and Mβ = M2β−1. Inserting (2.13) into
the right-hand side of (2.12), we get

uk(x, t) ≥ c1C
∗t−N/2eln k−Mβt(ln k)β−|x|2/4t, ∀(x, t) ∈ Q1.

Since U ≥ uk, then

U(x, t) ≥ c1C
∗t−N/2eln k−Mβt(ln k)β−|x|2/4t, ∀(x, t) ∈ Q1, ∀k > 0.

Let {tn} ⊂ (0, 1] be a sequence converging to 0. We choose k = kn = exp((2Mβtn)
1

1−β ),
equivalently ln kn −Mβtn ln

γ kn = 1
2 ln ln. Next we restrict |x| in order

ln kn −Mβtn ln
γ kn − |x|2

4tn
=

1

2
ln kn − |x|2

4tn
≥ 0 ⇐⇒ |x| ≤ rβ t

β−2
2(β−1)
n ,

where rβ = 2
β−2

2(β−1)M
1

2(1−β)

β . Because 1 < β ≤ 2, it follows

lim
n→∞

U(x, tn) = ∞,

uniformly on R
N if 1 ≤ β < 2, or uniformly on the ball Br2 where r2 = (2M)−

1
2 if

β = 2. Since the sequence {tn} is arbitrary,

lim
t→0

U(x, t) = ∞

uniformly on R
N if 1 ≤ β < 2, or uniformly on the ball Br2 .
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We pick some point x0 in R
N (resp. Br2) if 1 < β < 2 (resp. β = 2). Since for

any k > 0, the solution ukδx0 of (1.1) with initial data kδx0 can be approximated by
solutions with bounded initial data and support in Bσ(x0) where 0 < σ < r2 − |x0|,
it follows, by comparison principle, that

U(x, t) ≥ ukδx0 (x, t) = uk(x− x0, t).

Letting k → ∞ yields to U(x, t) ≥ U(x−x0, t). Reversing the role of 0 and x0 yields
to U(x, t) = U(x− x0, t). If we iterate this process we derive

U(x, t) = U(x− y, t), ∀y ∈ R
N .

This implies that U(x, t) is independent of x and therefore it is a solution of
{

φ′ + φh(φ) = 0 on (0,∞)
limt→0 φ(t) = ∞

Thus U(x, t) = φ∞, ∀(x, t) ∈ Q∞. �

Proposition 2.8 Assume (2.2) and the Keller-Osserman condition are satisfied.
Then there holds

U(x, t) ≤ Φ(|x|) ∀(x, t) ∈ Q∞

where Φ is a solution to the problem
{

−Φ′′ +Φh(Φ) = 0 in (0,∞)
lims→0Φ(s) = ∞

Proof. Step 1: Upper estimate. Since s 7→ sh(s) satisfies (2.14) condition, for any
R > 0, there exists a solution wR to the problem

{

−∆wR + wRh(wR) = 0 in BR

lim|x|→R wR(x) = ∞

Let x0 6= 0 arbitrary be in R
N . Set E = {~e : |~e| = 1} and take ~e ∈ E. Put x~e = |x0|~e

and for n > |x0| put an = n~e. Denote by H~e the open half-space generated by ~e, then
x~e, an ∈ H~e. Take R such that n − |x0| < R < n. We put W~e,n,R(x) = wR(x− an),
then W~e,n,R is a solution of (1.1) in BR(an) and satisfies the blow-up condition on
the boundary lim|x−an|→RW~e,n,R(x) = ∞. By the maximum principle,

uk(x, t) ≤W~e,n,R(x) in BR(an)× (0,∞). (2.23)

The sequence {W~e,n,R}R is decreasing and is bounded from below, then there exisits
W~e,n := limR→nW~e,n,R. Letting successively R→ n, k → ∞ in (2.23) yields to

U(x, t) ≤W~e,n(x) in Bn(an)× (0,∞). (2.24)
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The sequence (W~e,n)n is also decreasing and is bounded from below, then there exists
W~e,∞ := limn→∞W~e,n. Letting n→ ∞ in (2.24) yields to

U(x, t) ≤W~e,∞(x) in H~e × (0,∞). (2.25)

In particular,
U(x~e, t) ≤W~e,∞(x~e). (2.26)

Since U is radial, it follows that

U(x0, t) = U(x~e, t) ≤W~e,∞(x~e).

Because ~e is arbitrary in E, we obtain that

U(x0, t) ≤W (x0),

where W (x) := inf~e∈EW~e,∞(|x|~e). Note that W is radially symmetric, finite in R
N
∗

and satisfies lim|x|→0W (x) = ∞.

Step 2: End of the proof. We claim that

W (x) = Φ(|x|) ∀x 6= 0. (2.27)

Let ~e ∈ E, n be large enough and R < n. By the maximum principle, there holds
Φ(|x|) ≤ W~e,n,R(x) for all x ∈ H~e. Letting successively R → n, n → ∞ yields to
Φ(|x|) ≤W~e,∞(x), which implies that

Φ(|x|) ≤W (x). (2.28)

Next for any ǫ > 0, we set Φǫ(s) = Φ(s − ǫ), s > ǫ and W̃ǫ(x) = Φǫ(|x|) in Bc
ǫ .

Since Φ′
ǫ ≤ 0, Wǫ is a supersolution, which dominates W on ∂Bǫ. By the maximum

principle, W ≤ W̃ǫ in B
c
ǫ . Letting ǫ→ ∞ yields to

W (x) ≤ Φ(|x|) ∀x 6= 0. (2.29)

Combining (2.28) and (2.29) leads to (2.27), which implies U(x, t) ≤ Φ(|x|) ∀(x, t) ∈
Q∞ \ ({0} × (0,∞)). Since lims→0Φ(s) = ∞, the conclusion follows. �

Remark 1. In the proof, we have used the fact that Φ′
ǫ ≤ 0. Indeed, if there exists

s0 > 0 such that Φ′(s0) ≥ 0, then by the convexity property,

Φ(s) ≥ Φ(s0) + (s− s0)Φ
′(s0) ∀s > s0.

Hence lims→∞Φ(s) = ∞, which contradicts with (2.28).

Remark 2. Combining Proposition 2.4 and Proposition 2.8 yields to

U(x, t) ≤ min{φ∞(t),Φ(|x|)}, ∀(x, t) ∈ Q∞. (2.30)

As a consequence, the function U has the following properties:
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• (i) It is positive inQ∞, belongs to C(Q\{(0, 0)}) and vanishes on R
N×{0}\{0}.

• (ii) Is satisfies (1.1) and

lim
t→0

∫

Bσ

U(x, t)dx = ∞, ∀σ > 0. (2.31)

In the sense of initial trace, U has initial trace ν0 := ({0}, 0) (here {0} is the singular
part and the Radon measure on R

N \ {0} is the zero measure).

By a simple adaptation of the proof of Proposition 2.4 and Proposition 2.8 it is
possible to extend (2.30) to any positive solution vanishing on R

N × {0} \ {0}.

Proposition 2.9 Assume (2.2) and the Keller-Osserman condition are satisfied.
Then any positive solution u of (1.1) which C(Q \ {(0, 0)}) and vanishes on R

N ×
{0} \ {0} satisfies

u(x, t) ≤ min{φ∞(t),Φ(|x|)}, ∀(x, t) ∈ Q∞. (2.32)

Proof. Estimate (2.23) is valid with uk replaced by u. The remaining of the proof
of Proposition 2.8 is similar and yields to the first estimate

u(x, t) ≤ Φ(|x|) ∀(x, t) ∈ Q∞.

For the second estimate, due to the convexity, for any R, τ > 0, (x, t) 7→ φ∞(t−τ)+
wR(x) is a supersolution of (1.1 ) in BR × (τ,∞). It dominates u on the parabolic
boundary, thus in the domain itself by the comparison principle. Since h(r) > 0 if
r > 0, limR→∞wR = 0. Therefore

u(x, t) ≤ φ∞(t) = lim
τ→0

lim
R→∞

(φ∞(t− τ) +wR(x)) ∀(x, t) ∈ Q∞.

This implies (2.32). �

It is also possible to construct a maximal solution of (1.1) in Q∞ which satisfies
(i). For ℓ > 0 and ǫ > 0, let u := Uǫ,ℓ be the solution of

{

∂tu−∆u+ uh(u) = 0 in Q∞
u(x, 0) = ℓχBǫ in R

N .

Lemma 2.10 For any τ > 0 and ǫ > 0, there exist ℓ > 0 and m(τ, ǫ) > 0 such that
any positive solution u of (1.1) which verifies (i) satisfies

u(x, t) ≤ Uǫ,ℓ(x, t− τ) +m(τ, ǫ) ∀(x, t) ∈ Q∞, t ≥ τ. (2.33)
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Furthermore
lim
τ→0

m(τ, ǫ) = 0 ∀ǫ > 0. (2.34)

Finally
U(x, t) = lim

τ→0
lim
ǫ→0

lim
ℓ→∞

(Uǫ,ℓ(x, t− τ) +m(τ, ǫ)) (2.35)

is the maximal solution.

Proof. We set ℓ = φ∞(τ), then u(x, τ) ≤ ℓ for any x ∈ R
N . Let W := Wǫ/2 be the

solution of the following Cauchy-Dirichlet problem











∂tW −∆W +Wh(W ) = 0 in Bc
ǫ/2 × (0,∞)

W (x, 0) = 0 in Bc
ǫ/2

W (x, t) = φ∞(t) in ∂Bc
ǫ/2 × (0,∞)

(2.36)

and put m(τ, ǫ) := max{Wǫ/2(x, δ) : |x| > ǫ, 0 < δ ≤ τ}. It is clear to see that

lim
τ→0

m(τ, ǫ) =Wǫ/2(x, 0) = 0. (2.37)

From the fact that u(x, 0) = 0 in Bc
ǫ/2, u(x, t) ≤ φ∞(t) in ∂Bc

ǫ/2 × (0,∞) and the

maximum principle, it follows that u(x, t) ≤Wǫ/2(x, t) in B
c
ǫ/2 × (0,∞).

Next we compare Uǫ,ℓ(., . − τ) + m(τ, ǫ) with u in R
N × (τ,∞). The func-

tion Uǫ,ℓ(., . − τ) + m(τ, ǫ) is a supersolution of (1.1) in R
N × (τ,∞). If x ∈ Bǫ,

Uǫ,ℓ(x, 0) = ℓ ≥ u(x, τ), which implies Uǫ,ℓ(x, 0) + m(τ, ǫ) ≥ u(x, τ). If x ∈ Bc
ǫ ,

m(τ, ǫ) ≥ Wǫ/2(x, τ) ≥ u(x, τ), hence Uǫ,ℓ(x, 0) + m(τ, ǫ) ≥ u(x, τ). So we always

have Uǫ,ℓ(x, 0) + m(τ, ǫ) ≥ u(x, τ) for any x ∈ R
N . Applying maximum principle

yields to Uǫ,ℓ(., .− τ) +m(τ, ǫ) ≥ u in R
N × (τ,∞). Finally, the function U defined

by (2.35) is the maximal solution because Uǫ,ℓ(x, t − τ) → Uǫ,ℓ(x, t) as τ → 0 and
Uǫ,ℓ ↑ Uǫ,∞ when ℓ→ ∞ and Uǫ,∞ ↓ U when ǫ→ 0. �

3 About uniqueness

Proposition 3.1 Assume (2.16) holds. For any a > 0, there exists a unique positive
function w := wa ∈ C2([0,∞)) to the problem























−w′′ − N − 1

r
w′ + wh(w) = 0 in R+

w′(0) = 0

w(0) = a

(3.1)
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Proof. A solution of (3.1) is locally given by the formula

w(r) = a+

∫ r

0
s1−N

∫ s

0
tN−1w(t)h(w)dtds (3.2)

Existence follows from Picard-Lipschitz fixed point theorem. The function is increas-
ing and defined on a maximal interval [0, ra). By a result of Vazquez and Veron [11]
ra = ∞, thus the solution is global. Uniqueness on [0, ra) follows always from local
uniqueness. The function r 7→ w(r) is increasing and

w′(r) ≥ ah(a)

N
r,

w(r) ≥ a+
ah(a)

2N
r2

for all r > 0 �

Proposition 3.2 Assume (2.16) holds. For any u0 ∈ C(RN) which satisfies

wa(|x|) ≤ u0(x) ≤ wb(|x|) ∀x ∈ R
N (3.3)

for some 0 < a < b, there exists a positive function u ∈ C(Q∞)∩C2,1(Q∞) solution
of (1.1) in Q∞ and satisfying u(x, 0) = u0. Furthermore

wa(|x|) ≤ u(x, t) ≤ wb(|x|) ∀(x, t) ∈ Q∞. (3.4)

Proof. Clearly wa and wb are ordered solutions of (1.1). We denote by un the
solution of the initial-boundary problem






∂tun −∆un + unh(un) = 0 in Qn = Bn × (0,∞)
un(x, 0) = u0(x) in Bn

un(x, t) = (wa(|x|) + wb(|x|))/2 in ∂Bn × (0,∞).
(3.5)

By the maximum principle, un satisfies (3.4) inQn. Using locally parabolic equations
regularity theory, we derive that the set of functions {un} is eventually equicontin-
uous on any compact subset of Q∞. Using a diagonal sequence, we conclude that
there exists a subsequence {unk

} which converges locally uniformly in Q∞ to some
weak solution u ∈ C(Q∞) which satisfies u(., 0) = u0. By standard method, u is a
strong solution (at least C2,1(Q∞)). �

Proposition 3.3 Assume (2.16) and (2.8) hold. Then for any u0 ∈ C(RN ) which
satisfies

wa(|x|) ≤ u0(x) ≤ wb(|x|) ∀x ∈ R
N (3.6)

for some 0 < a < b, there exists a positive function u ∈ C(Q∞) solution of (1.1) in
Q∞ satisfying u(x, 0) = u0 and

u(x, t) ≤ min{φ∞(t), wb(|x|)} ∀(x, t) ∈ Q∞. (3.7)
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Proof. For any R > 0, let uR be the solution of
{

∂tuR −∆uR + uRh(uR) = 0 in Q∞
uR(x, 0) = u0(x)χBR

(x) in R
N .

The solution which is constructed is domainated by the solution of the heat equation
with the same initial data. Thus

uR(x, t) ≤ (4πt)−N/2

∫

BR

e−|x−y|2/4tu0(x)dy ∀(x, t) ∈ Q∞. (3.8)

and lim|x|→∞ uR(x, t) = 0 uniformly with respect to t. The function φ∞ and wb are
solution of (1.1) in Q∞, which dominate uR at t = 0. By the maximum principle,

min{φ∞(t), wb(|x|)} ≥ uR(x, t) ∀(x, t) ∈ Q∞. (3.9)

The fact that the mapping R 7→ uR is increasing and (3.9) imply that there exists
u := limR→∞ uR which satisfies u(x, 0) = u0(x) in R

N . Letting R → ∞ in (3.9)
yields to (3.7). �

Corollary 3.4 Assume (2.16) and (2.8) hold. Then for any u0 ∈ C(RN ) which
satisfies

wa(|x|) ≤ u0(x) ≤ wb(|x|) ∀x ∈ R
N , (3.10)

there exists two solutions u ∈ C(Q∞) of (1.1) satisfying u(., 0) = u0.

Proof. Combining Proposition 3.2 and Proposition 3.3 we see that there exists two
solutions u and u with the same initial data u0 which are ordered and different since
lim|x|→∞ u(x, t) = ∞ and lim|x|→∞ u(x, t) ≤ φ∞(t) <∞ for all t > 0. �

Theorem 3.5 Assume (2.16) holds. Let u, ũ ∈ C(Q∞) ∩ C2,1(Q∞) be two positive
solutions of (1.1) with initial data u0. If for any ǫ > 0,

u(x, t)− ũ(x, t) = o(wǫ(|x|)) as x→ ∞ (3.11)

locally uniformly with respect to t ≥ 0, then u = ũ.

Proof. Step 1. There always holds

(ah(a) − bh(b))sign(a − b) ≥ |a− b|h(|a− b|) ∀a, b > 0. (3.12)

In fact, since h is increasing and assuming a > b,

ah(a)− bh(b) = (a− b)h(a) + b(h(a)− h(b))
≥ (a− b)h(a)
≥ (a− b)h(a− b)
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Step 2. End of the proof. By Kato’s inequality,

∂t |u− ũ| −∆ |u− ũ| ≤ [∂t(u− ũ)−∆(u− ũ)]sign(u − ũ),

therefore,
∂t |u− ũ| −∆ |u− ũ|+ |u− ũ| h(|u− ũ|) ≤ 0. (3.13)

Let ǫ > 0. There exists Rǫ > 0 such that for any R ≥ Rǫ,

0 ≤ |u− ũ| (x, t) ≤ wǫ(|x|) ∀(x, t) ∈ Bc
R × [0, 1]. (3.14)

Since wǫ is a positive solution of (1.1) which dominates |u− ũ| on ∂BR × [0, 1] and
at t = 0, it follows that |u− ũ| ≤ wǫ in QR. Letting R → ∞ yields to |u− ũ| ≤ wǫ

in Q∞. Letting ǫ → 0 and since limǫ→0wǫ(|x|) = 0 for any x ∈ R
N , we derive

|u− ũ| = 0, thus u = u∗ for 0 ≤ t ≤ 1. Iterating yields that equality holds in Q∞.
Similarly ũ = u∗ and the claim follows. �

4 Initial trace

Let Ω is an arbitrary open domain in R
N , we denote by M(Ω) (resp. M

b(Ω)) the
set of Radon measures in Ω (resp. bounded Radon measures), and by M+(Ω) (resp.
M

b
+(Ω)) its positive cone. We set QΩ

T = Ω× (0, T ).

4.1 The regular part of the initial trace

In this section we only assume that f is a continuous nonnegative function defined
on R+ and that u is a C2,1 positive solution of

ut −∆u+ f(u) = 0 (4.1)

in QΩ
T .

Lemma 4.1 Assume G is a bounded C2 domain in R
N , QG

T := G × (0, T ] and let

u ∈ C2,1(QG
T ) be a positive solution of (4.1) in QG

T such that f(u) ∈ L1(QG
T ). Then

u ∈ L∞(0, T ;L1(G′)) for any domain G′ ⊂ G′ ⊂ G and there exists a positive Radon
measure µG on G such that

lim
t→0

∫

G
u(x, t)ζ(x)dx =

∫

G
ζ(x)dµG(x) ∀ζ ∈ C0(G). (4.2)

Proof. Let φ := φG be the first eigenfunction of −∆ in W 1,2
0 (G) with corresponding

eigenvalue λG. We assume φ > 0. Then

d

dt

∫

G
uφdx+ λG

∫

G
uφdx+

∫

G
f(u)φdx+

∫

∂G
uφndS = 0
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Since φn < 0, the function

t 7→ eλGt

∫

G
u(x, t)φ(x)dx −

∫ T

t

∫

G
eλGsf(u)φdxds

is increasing and
∫

G
u(x, t)φ(x)dx ≤ eλG(T−t)

∫

G
u(x, T )φ(x)dx + e−λGt

∫ T

t

∫

G
eλGsf(u)φdxds

for 0 < t ≤ T . Thus u ∈ L∞(0, T ;L1(G′)) for any strict domain G′ of G. If
ζ ∈ C2

0 (G), there holds

d

dt

(
∫

G
u(x, t)ζ(x)dx −

∫ T

t

∫

G
(f(u)ζ − u∆ζ) dxds

)

= 0. (4.3)

Consequently

lim
t→0

∫

G
u(x, t)ζ(x)dx =

∫

G
u(x, T )ζ(x)dx +

∫ T

0

∫

G
(f(u)ζ − u∆ζ) dxds. (4.4)

This implies that u(., t) admits a limit in D′(G) and this limit is a positive distribu-
tion, then a measure. Therefore (4.2) follows by density. �

Corollary 4.2 Let u ∈ C2,1(QΩ
T ) be a positive solution of (4.1) in QΩ

T . The set
R(u) of the points z ∈ Ω such that there exists an open ball Br(z) such that f(u) ∈
L1Q

Br(z)
T is an open subset of Ω. Furthermore there exists a positive Radon measure

µ := µ(u) on R(u) such that

lim
t→0

∫

R(u)
u(x, t)ζ(x)dx =

∫

R(u)
ζ(x)dµ(x) ∀ζ ∈ C0(R(u)). (4.5)

Proof. It is clear that R(u) is an open subset of Ω. If G is a strict subdomain of Ω,
i.e. G ⊂ Ω, there exists a finite number of points zj (j = 1, ..., k) and r′j > rj > 0

such that f(u) ∈ L1(Q
Br′

j
(zj)

T ) and G ⊂ ∪jBrj (zj). Let µj = µBrj (zj)
the measure

defined in Lemma 4.1. If ζ ∈ C0(G) there exists a partition ηj of unity relative to
the Brj(zj) such that ηj ∈ C∞

0 (Brj (zj)) and ζ =
∑

j ηjζ. Since

lim
t→0

∫

u(x, t)(ηjζ)(x)dx =

∫

(ηjζ)(x)dµj(x) ∀j = 1, ..., k,

relation (4.5). Notice also that u ∈ L∞(0, T ;L1(G)) for any G ⊂ G ⊂ R(u). �

Definition 4.3 The set R(u) is called the regular set of the initial trace of u and
the measure µ(u) the regular part of the initial trace. The set S(u) = Ω \ R(u) is
the singular part of the initial trace of u. It is relatively closed in Ω.

The main problem is to analyse what does happen on the singular set S(u).
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4.2 The Keller-Osserman condition holds

If the Keller-Osserman condition holds, the existence of an initial trace of arbitrary
positive solutions of (1.1) is based upon a dichotomy in the behaviour of those
solutions near t = 0.

Lemma 4.4 Assume u is a positive solution of (4.1) in QΩ
T and z ∈ S(u). Suppose

that at least one of the following sets of conditions holds

(i) There exists an open neighborhood G of z such that u ∈ L1(QG
T ).

(ii) f is nondecreasing and (2.14) holds.

Then for every open relative neighborhood G′ of z

lim
t→0

∫

G′

u(x, t)dx = ∞. (4.6)

Proof. If z in S(u), then for every open relative neighborhood G′ of z, there holds

∫ T

0

∫

G′

f(u)dxdt = ∞. (4.7)

First, we assume (i) holds and let ζ ∈ C2
0 (G), ζ ≥ 0. Since there exists

lim
t→0

∫ T

t

∫

G′

u∆ζdxdt = L ∈ R,

it follows from (4.4) that

∫

G′

u(x, t)ζ(x)dx =

∫ T

t

∫

G′

f(u)ζdxds+O(1), (4.8)

which implies (4.6).

Next we assume that (2.14) holds and u /∈ L1(QG
T ) for every relative neighborhood

G of z. If there exists an open neighborhood G ⊂ Ω of z such that (4.6) does not
hold, there exists a sequence {tn} decreasing to 0 and 0 ≤M <∞ such that

sup
tn

∫

G
u(x, tn)dx =M. (4.9)

Furthermore, we can always replace G by an open ball BR(z) ⊂ G. Thus (4.9 )
holds with G replaced by BR(z). Let w := wR be the maximal solution of

{

−∆w + f(w) = 0 in BR(z)

lim|x−z|→Rw(x) = ∞.
(4.10)
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Let v := vn be the solution of







vt −∆v = 0 in BR(z)× (tn,∞)

v = 0 in ∂BR(z)× (tn,∞)
v(., tn) = u(., tn) in BR(z).

(4.11)

Since vn ≥ 0, f(wR + vn) ≥ f(wR), and wR + vn is a supersolution. It dominates
u on ∂BR(z) × (tn, T ) and at t = tn, thus u ≤ wR + vn in BR(z) × (tn, T ). We
can assume that u(., tn) → ν for some positive and bounded measure ν on BR(z).
Therefore

u(x, t) ≤ v(x, t) + wR(x) in Q
BR(z)
T (4.12)

where v is the solution of










vt −∆v = 0 in Q
BR(z)
∞

v = 0 in ∂BR(z)× (0,∞)
v(., 0) = ν in D′(BR(z)).

(4.13)

Since v ∈ L1(Q
BR(z)
T ) and wR is uniformly bounded in any ball BR′(z) for 0 < R′ < R

we conclude that u ∈ L1(Q
BR′ (z)
T ), contradiction. �

Definition 4.5 Let u ∈ C2,1(QΩ
T ) be a positive solution of (4.1) in QΩ

T . We say
that u possesses an initial trace with regular part µ ∈ M+(R(u)) and singular part
S(u) = Ω \ R(u) if

(i) For any ζ ∈ C0(R(u)),

lim
t→0

∫

R(u)
u(x, t)ζ(x)dx =

∫

R(u)
ζ(x)dµ(x). (4.14)

(ii) For any open set G ⊂ Ω such that G ∩ S(u) 6= ∅

lim
t→0

∫

G
u(x, t)ζ(x)dx = ∞. (4.15)

Remark. To the couple (S(u), µ), where µ ∈ M+(R(u)) we can associate a unique
outer regular Borel measure ν (i.e. ν ∈ Breg

+ (Ω)) which is the initial trace of u. We
shall denote it by TrΩ(u).

Theorem 4.6 Assume f satisfies the Keller-Osserman condition and is nondecreas-
ing. If u ∈ C2,1(QΩ

T ) is a positive solution of (4.1), it possesses an initial trace
ν ∈ Breg

+ (Ω).
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Proof. The set R(u) and the measure µ ∈ M+(R(u)) are defined by Definition 4.3
thanks to Corollary 4.2. Because (2.14) holds, S(u) = Ω\R(u) inherits the property
(ii) above because of Lemma 4.4 (ii). �

As a counterpart of this result we have the following existence theorem.

Proposition 4.7 Assume f satisfies the Keller-Osserman condition, (2.2) and is
nondecreasing. Then for any outer regular positive Borel measure ν on R

N there
exists a positive solution u ∈ C2,1(Q∞) of (4.1) in Q∞, with initial trace ν.

Proof. It is essentially similar to the one of [5, Th 3.4]-to be outlined. Notice that
we can actually construct a maximal solution uν and a minimal solution uν with the
same initial trace ν. �

Remark. When f(r) = |r|q−1r with 1 < q < 1+2/N , precise expansion of u∞δ(x, t),
when t→ 0 allows to prove uniqueness. Even when f(r) = r lnα(r + 1) with α > 2,
uniqueness is not known.

4.3 The Keller-Osserman condition does not hold

In this section we assume that (2.14) does not hold but (2.1) is always satisfied. If
Ω is a bounded domain with a C2 boundary and µ ∈ M

b
+(Ω), we denote by uµ the

solution of






ut −∆u+ f(u) = 0 in QΩ
∞

u = 0 in ∂Ω× (0,∞)
u(., 0) = µ in D′Ω.

(4.16)

We recall the following stability result proved in [6, Th 1.1].

Lemma 4.8 Let Ω be a bounded domain with a C2 boundary and {µn} ⊂ M
b
+(Ω) a

sequence weakly converging to some µ ∈ M
b
+(Ω). Then uµn → uµ locally uniformly

in Ω× (0,∞) and in L1(QΩ
T ), and f(uµn) → f(uµ) in L

1(QΩ
T ), for every T > 0.

Remark. The result remains true if Ω = R
N and µn have their support in a fixed

compact set.

Lemma 4.9 Assume (2.14) does not hold and (2.8), and (C3) are satisfied. If u is
a positive solution of (1.1) in Q∞ which satisfies

lim sup
t→0

∫

G
u(x, t)dx = ∞, (4.17)

for some bounded open subset G ⊂ R
N , then u(x, t) ≥ φ∞(t).
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Proof. By assumpion, there exists a sequence {tn} decreasing to 0 such that

lim
n→∞

∫

G
u(x, tn)dx = ∞. (4.18)

If (4.17), we can construct a decreasing sequence of open subsets Gk ⊂ G such that
Gk ⊂ Gk−1, diam(Gk) = ǫk → 0 when k → ∞, and

lim
n→∞

∫

Gk

u(x, tn)dx = ∞ ∀k ∈ N. (4.19)

Furthermore there exists a unique a ∈ ∩kGk. We set

∫

Gk

u(x, tn)dx =Mn,k.

Since limn→∞Mn,k = ∞, we claim that for any m > 0 and any k, there exists
n = n(k) ∈ N such that

∫

Gk

u(x, tn(k))dx ≥ m. (4.20)

By induction, we define n(1) as the smallest integer n such that Mn,1 ≥ m. This is
always possible. Then we define n(2) as the smallest integer larger than n(1) such
that Mn,2 ≥ m. By induction, n(k) is the smallest integer n larger than n(k − 1)
such that Mn,k ≥ m. Next, for any k, there exists ℓ = ℓ(k) such that

∫

Gk

inf{u(x, tn(k)); ℓ}dx = m. (4.21)

and we set
Vk(x) = inf{u(x, tn(k)); ℓ}χGk

(x).

Let vk = v be the unique bounded solution of

{

vt −∆v + f(v) = 0 in Q∞
v(., 0) = Vk in R

N (4.22)

Since v(x, 0) ≤ u(x, tn(k)), it follows

u(x, t+ tn(k)) ≥ vk(x, t) ∀(x, t) ∈ Q∞. (4.23)

When k → ∞, Vk → mδa, thus vk → umδa by Lemma 4.8. Therefore u ≥ umδa .
Since m is arbitrary and umδa → φ∞ when m → ∞ by Theorem 2.7, it follows that
u ≥ φ∞. �
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Lemma 4.10 Assume (2.14) does not hold and (2.7), and (C3) are satisfied. There
exists no u positive solution of (1.1) in Q∞ which satisfies (4.17) for some bounded
open subset G ⊂ R

N .

Proof. If we assume that such a u exists, we proceed as in the proof of the pre-
vious lemma. Since Lemma 4.8 holds, we derive that u ≥ umδa for any m. Since
limm→∞ umδa(x, t) = ∞ for all (x, t) ∈ Q∞, we derive a contradiction. �

Thanks to these results, we can characterize the initial trace of positive solutions
of (4.1) when the Keller-Osserman condition does not hold.

Theorem 4.11 Assume f is nondeacreasing, (2.14) does not hold but (2.8), and
(C3) are verified. If u is a positive solution of (4.1) in Q∞, it possesses an initial
trace which is either the Borel measure infinity ν∞ which satisfies ν∞(O) = ∞ for
any open subset O ⊂ R

N , or is a positive Radon measure µ on R
N .

Proof. If there exists some open subset G of R
N with the property (4.17), then

u ≥ φ∞ and the initial trace of u is the Borel measure ν∞. Next we assume that for
any bounded open subset G of RN there holds

lim sup
t→0

∫

G
u(x, t)dx <∞, (4.24)

If S(u) 6= ∅, there exists z ∈ R
N and an bounded open neighborhood G of z such

that
∫ T

0

∫

G
f(u)dxdxt = ∞

By (4.24), u ∈ L∞(0, T ;L1(G)) ⊂ L1(QG
T ). Then, by Lemma 4.4, (4.6) holds, which

contradict (4.24). Thus S(u) = ∅ and R(u) = R
N . It follows from Corollary 4.2

that there exists a positive Radon measure µ such that

lim
t→0

∫

RN

u(x, t)ζ(x)dx =

∫

RN

ζ(x)dµ(x) ∀ζ ∈ C0(R
N ), (4.25)

�

Because of the lack of uniqueness from Corollary 3.4 it is difficult to give a
complete characterization of admissible initial data for solutions of 4.1 under the
asssumptions of Theorem 4.11. However, we have the following result

Proposition 4.12 Under the assumptions of Theorem 4.11, for any b > 0 there
exists a positive solution u ∈ C(Q∞) of (4.1) satisfying

max{φ∞(t);wb(|x|)} ≤ u(x, t) ≤ φ∞(t) + wb(|x|) ∀(x, t) ∈ Q∞. (4.26)

Consequently there exist infinitely many positive solutions of (4.1) with initial trace
ν∞. Furthermore φ∞ is the smallest of all these solutions.
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Proof. We first notice that max{φ∞(t);wb(|x|)} is a subsolution of (4.1) which is
dominated by the supersolution φ∞(t)+wb(|x|). The process is standard: for τ > 0
we set

ψ(x, τ) =
1

2
(max{φ∞(t);wb(|x|)} + φ∞(t) + wb(|x|))

There exists a function u = uτ ∈ C(Q∞) solution of (4.1) in Q∞ satisfying uτ (., 0) =
ψ(., τ). Furthermore

max{φ∞(t+ τ);wb(|x|)} ≤ uτ (x, t) ≤ φ∞(t+ τ) +wb(|x|) ∀(x, t) ∈ Q∞. (4.27)

By parabolic equation regularity theory, the set {uτ} is locally equicontinuous in
Q∞. Thus there exists a subsequence {τn} and u ∈ C(Q∞) such that uτn → u on
any compact subset of Q∞. Clearly u is a weak, thus a strong solutions of (4.1)
and it satisfies (4.26). Since any solution u with initial trace ν∞ dominates φ∞ by
Lemma 4.9, it follows that φ∞ is the minimal one. �

Theorem 4.13 Assume f is nondeacreasing, (2.14) does not hold and (2.7), and
(C3) are verified. If u is a positive solution of (4.1) in Q∞, it possesses an initial
trace which is a positive Radon measure µ on R

N .

Proof. As in the proof of Theorem 4.11 and because of Lemma 4.10, S(u) = ∅.
Therefore R(u) = R

N and the proof follows from Corollary 4.2. �

Remark. Under the assumptions of Theorem 4.11, it is clear, from the proof of
Proposition 3.2, that for any 0 < a < b and any initial data u0 ∈ C(RN ) satisfying

wa(x) ≤ u0(x) ≤ wb(x) ∀x ∈ R
N

there exists a solution u ∈ C(Q∞) of (4.1) in Q∞ satisfying u(., 0) = u0 and

wa(x) ≤ u(x, t) ≤ wb(x) ∀(x, t) ∈ Q∞.

We conjecture that for any positive measure µ on R
N which satisfies, for some b > 0,

∫

BR

dµ(x) ≤
∫

BR

wb(x)dx ∀R > 0 (4.28)

there exists a positive solution u of (4.1) in Q∞ with initial trace µ. Another
interesting open problem is to see if there exists local solutions in QT with an initial
trace µ satisfying

lim
R→∞

∫

BR

dµ(x)

∫

BR

wb(x)dx
= ∞ ∀b > 0. (4.29)
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