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SUMS OF LARGE GLOBAL SOLUTIONS TO THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

Let G be the (open) set of Ḣ 1 2 (R 3 ) divergence free vector fields generating global smooth solutions to the three dimensional incompressible Navier-Stokes equations. We prove that any element of G can be perturbed by an arbitrarily large, smooth divergence free vector field which varies slowly in one direction, and the resulting vector field (which remains arbitrarily large) is an element of G if the variation is slow enough. This result implies that through any point in G passes an uncountable number of arbitrarily long segments included in G.

(N S)    ∂ t u + u • ∇u -∆u = -∇p div u = 0 u |t=0 = u 0
where u(t, x) denotes the fluid velocity and p(t, x) the pressure. In this paper the space variable x is chosen in R 3 .

All the solutions we are going to consider here are at least continuous in time with values in the Sobolev space Ḣ 1 2 (R 3 ). It is well known that in that case, all concepts of solutions coincide and in particular we shall deal with ′′ mild" solutions of (N S) (see for instance [START_REF] Lemarié-Rieusset | Recent developments in the Navier-Stokes problem[END_REF]).

In order to specify the concept of large data, let us recall the history of results concerning small data. The first one states that if the initial data u 0 is such that u 0 L 2 ∇u 0 L 2 is small enough, (NS) has a global regular solution; this was proved by J. Leray in his seminal paper [START_REF] Leray | Essai sur le mouvement d'un liquide visqueux emplissant l'espace[END_REF]. Then, starting with the paper by H. Fujita and T. Kato (see [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF]), the following approach was developped: let us denote by B the bilinear operator defined by

∂ t B(v, w) -∆B(v, w) = 1 2 P div(v ⊗ w + w ⊗ v) B(v, w) |t=0 = 0
where P denotes the Leray projection onto divergence free vector fields. Then, it is easily checked that u is a solution of (N S) if and only if u = e t∆ u 0 + B(u, u)

which is something like Duhamel's formula. Then the theory of small initial data reduces to finding a Banach space X of time-dependent divergence free vector fields on R + × R 3 such that B is a bilinear map from X × X to X. An elementary abstract fixed point theorem claims that if X is a Banach space of time-dependent divergence free vector fields on R + × R 3 such that B(v, w) X ≤ C v X w X 1 (X will be called from now on an adapted space), a solution of (N S) exists in X and is global as soon as e t∆ u 0 X ≤ (4C) -1 . The search of the largest possible adapted space X is a long story. It started in 1964 with the paper [START_REF] Fujita | On the Navier-Stokes initial value problem I[END_REF] where the space X is defined by the norm

u X def = sup t≥0 t 1 4 ∇u(t) L 2 .
This corresponds to an initial data small in Ḣ 1 2 (R 3 ), and it is shown in particular that the solution belongs to C(R + , Ḣ 1 2 (R 3 )) ∩ L 2 (R + , Ḣ 3 2 (R 3 )). After a number of important steps (see in particular [START_REF] Kato | Nonstationary flows of viscous and ideal fluids in R 3[END_REF], [START_REF] Giga | Solutions in L r of the Navier-Stokes initial value problem[END_REF], [START_REF] Weissler | The Navier-Stokes Initial Value Problem in L p[END_REF] and [START_REF] Cannone | Solutions autosimilaires des équations de Navier-Stokes[END_REF]), the problem of finding the largest adapted space was achieved by H. Koch and D. Tataru. They proved in [START_REF] Koch | Well-posedness for the Navier-Stokes equations[END_REF] that the space of time-dependent divergence free vector fields on R + × R 3 such that

u X KT def = sup t≥0 t 1 2 u(t) L ∞ + sup x∈R 3 R>0 1 R 3 2 P (x,R) |u(t, y)| 2 dydt 1 2
< ∞ where P (x, R) is the parabolic ball [0, R 2 ] × B(x, R), is an adapted space. Now let us observe that the incompressible Navier-Stokes system is translation and scaling invariant: if u is a solution of (N S) on [0, T ] × R 3 then, for any positive λ and for any x 0 in R 3 , the vector field u λ,x 0 defined by

u λ,x 0 (t, x) def = λu(λ 2 t, λ(x -x 0 ))
is also a solution of (N S) on [0, λ -2 T ] × R 3 . Thus, an adapted space must be translation and scaling invariant in the following sense: a constant C exists such that, for any positive λ and for any

x 0 in R 3 , C -1 u X ≤ u λ,x 0 X ≤ C u X .
The second term appearing in the norm • X KT above comes from the fact that the solution of (N S) should be locally in L 2 in order to be able to define the product as a locally L 1 function. The relevant norm on the initial data is e t∆ u 0 X . In the case of the Koch and Tataru theorem, this norm turns out to be equivalent to the norm of ∂BM O, the space of derivatives of BM O functions. Of course, the space of initial data which measures the size of the initial data must be translation and scaling invariant. A remark due to Y. Meyer (see [START_REF] Meyer | Wavelets, Paraproducts and Navier-Stokes[END_REF]) is that the norm in such a space is always greater than the norm in the Besov

space Ḃ-1 ∞,∞ defined by u Ḃ-1 ∞,∞ def = sup t≥0 t 1 2 e t∆ u L ∞ .
This leads to the following definition of a large initial data for the incompressible Navier-Stokes equations. Definition 1.1. A divergence free vector field u 0 is a large initial data for the incompressible Navier-Stokes system if its Ḃ-1 ∞,∞ norm is large. Let us point out that this approach using Duhamel's formula does not use the very special structure of the incompressible Navier-Stokes system. A family of results does use the special structure of (N S): in those cases some geometrical invariance on the initial data is preserved by the flow of (N S) and this leads to some unexpected conservation of quantities, which makes the problem subcritical and thus prevents blow up. We refer for instance to [START_REF] Ladyzhenskaya | The mathematical theory of viscous incompressible flow[END_REF], [START_REF] Mahalov | Invariant helical subspaces for the Navier-Stokes equations[END_REF], [START_REF] Ponce | Global stability of large solutions to the 3D Navier-Stokes equations[END_REF], or [START_REF] Ukhovskii | Axially symmetric flows of ideal and viscous fluids filling the whole space[END_REF], where special symmetries (like helicoidal, or axisymmetric without swirl) allow to prove global wellposedness for any data. Some years ago, the first two authors investigated the possible existence of large initial data (in the sense of Definition 1.1) which have no preserved geometrical invariance and which nevertheless generate global regular solutions to (N S). The first result in this direction was proved in [START_REF] Chemin | On the global wellposedness of the 3D Navier-Stokes equations with large data[END_REF] where such a family of large initial data was constructed, with strong oscillations in one direction. The main point of the proof is that for any element of this family, the first iterate B(e t∆ u 0 , e t∆ u 0 ) is exponentially small with respect to the large initial data u 0 in some appropriate norm. Let us notice that this result does use the fine structure of the non linear term of (N S): M. Paicu and the second author proved in [START_REF] Gallagher | Remarks on the blow-up of solutions to a toy model for the Navier-Stokes equations[END_REF] that for a modified incompressible Navier-Stokes system, this family of initial data generates solutions that blow up at finite time.

In [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF], the first two authors constructed another class of examples, in which the initial data has slow variations in one direction. The proof of global regularity uses the fact that the 2D Navier-Stokes equations are globally wellposed. The initial data presented in the next theorem will be referred to in the following as "quasi-2D").

Theorem 1 ([6]). Let v h 0 = (v 1 0 , v 2 
0 ) be a two component, smooth divergence free vector field on R 3 (i.e. v h 0 is in L 2 (R 3 ) as well as all its derivatives), belonging, as well as all its derivatives, to L 2 (R x 3 ; Ḣ-1 (R 2 )); let w 0 = (w h 0 , w 3 0 ) be a three component, smooth divergence free vector field on R 3 . Then there exists a positive ε 0 such that if ε ≤ ε 0 , the initial data

u 0,ε (x) def = (v h 0 + εw h 0 , w 3 0 )(x 1 , x 2 , εx 3 ) generates a unique, global solution u ε of (N S).
Remark 1.2. It is clear from the proof of [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF] that the dependence of the parameter ε 0 on the profiles v h 0 and w 0 is only through their norms. Note that such an initial data may be arbitrarily large in the sense of Definition 1.1 (see [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF]). We recall for the convenience of the reader the result proved in [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF].

Proposition 1.3 ([6]). Let (f, g) be in S(R 2 ) × S(R) and define h ε (x h , x 3 ) def = f (x h )g(εx 3 ). We have, if ε is small enough, h ε Ḃ-1 ∞,∞ (R 3 ) ≥ 1 4 f Ḃ-1 ∞,∞ (R 2 ) g L ∞ (R) .
In this paper we consider the global wellposedness of the Navier-Stokes equations with data which is the sum of an initial data (which may be large) giving rise to a global solution, and a quasi-2D initial data as presented above (which may also be large). The theorem is the following. Theorem 2. Let u 0 , v h 0 and w 0 be three smooth divergence free vector fields defined on R 3 , satisfying

• u 0 belongs to Ḣ 1 2 (R 3
) and generates a unique global solution to the Navier-Stokes equations;

• v h 0 = (v 1 0 , v 2 
0 ) is a horizontal vector field on R 3 belonging, as well as all its derivatives, to the space L 2 (R

x 3 ; Ḣ-1 (R 2 )); • v h 0 (x 1 , x 2 , 0) = w 3 0 (x 1 , x 2 , 0) = 0 for all (x 1 , x 2 ) ∈ R 2 .
Then there exists a positive number ε 0 depending on u 0 and on norms of v h 0 and w 0 such that for any ε ∈ (0, ε 0 ], there is a unique, global solution to the Navier-Stokes equations with initial data

u 0,ε (x) def = u 0 (x) + (v h 0 + εw h 0 , w 3 0 )(x 1 , x 2 , εx 3 ).
Remark 1.4. Let u 0 be any element of the (open) set G of Ḣ 1 2 (R 3 ) divergence free vector fields generating global smooth solutions to (N S), and let N be an arbitrarily large number. Then for any smooth divergence free vector field f h (over R 2 ) and scalar function g (over R)

satisfying f h Ḃ-1 ∞,∞ (R 2 ) g L ∞ (R) ≥ 4N
, and such that g(0) = 0, Theorem 2 implies that there is ε N depending on u 0 and on norms of f h and g such that

u 0 + (f h ⊗ g, 0)(x 1 , x 2 , ε N x 3 ) belongs to G, where we have denoted f h ⊗ g(x) = (f 1 (x h )g(x 3 ), f 2 (x h )g(x 3
)). Since ε N only depends on norms of f h and g, that implies that for any λ ∈ [-1, 1], the initial data u 0 + λ(f h ⊗g, 0)(x 1 , x 2 , ε N x 3 ) also belongs to G. Using Proposition 1.3 one concludes that: passing through u 0 , there exists uncountable number of segments of length N which are included in G.

Remark 1.5. With the notation of Theorem 2, the data u 0 (x) + (v h 0 + εw h 0 , w 3 0 )(x 1 , x 2 , εx 3 ) belongs to G as long as ε is small enough, so one can add to that initial data any vector field of the type (v

h(1) 0 + ε 1 w h(1) 0 , w 3(1) 0 )(x 1 , x 2 , ε 1 x 3 )
and if ε 1 is small enough (depending on u 0 , on ε, and on norms of v h 0 , w 0 , v h(1) 0 and w

(1) 0 ), then the resulting vector field belongs to G. One thus immediately constructs by induction superpositions of the type

u 0 (x) + J j=0 (v h(j) 0 + ε j w h(j) 0 , w 3(j) 0 )(x 1 , x 2 , ε j x 3 )
which belong to G for small enough ε j 's, depending on u 0 , on the norms of the profiles v h(j) 0 and w (j) 0 , and on (ε k ) k<j . Finally notice that one can also require the slow variation on the profiles to hold on another coordinate than x 3 , up to obvious modifications of the assumptions of the theorem.

Remark 1.6. In [START_REF] Chemin | Global regularity for some classes of large solutions to the Navier-Stokes equations[END_REF], an even larger initial data than the one of Theorem 1 is constructed. However the size of the solution blows up when ε tends to 0, and this is a strong obstacle to the use of a perturbative argument such as the one we will use here.

1.2. Scheme of the proof and organization of the paper. Let us start by introducing some notation. We shall denote by C any constant, which may change from line to line, and we will write A B if A ≤ CB. In the following we shall denote, for any point x = (x 1 , x 2 , x 3 ) ∈ R 3 , its horizontal coordinates by x h def = (x 1 , x 2 ). Similarly the horizontal components of any vector field u = (u 1 , u 2 , u 3 ) will be denoted by u h def = (u 1 , u 2 ) and the horizontal divergence will be defined by div

h u h def = ∇ h • u h , where ∇ h def = (∂ 1 , ∂ 2 ). Finally we shall define the horizontal Laplacian by ∆ h def = ∂ 2 1 + ∂ 2 2 .
We shall often use the following shorthand notation for slowly varying functions: for any function f defined on R 3 , we write

(1.1) [f ] ε (x h , x 3 ) def = f (x h , εx 3 ).
In order to prove Theorem 2, we look for the solution (which exists and is smooth for a short time depending on ε, due to classical existence theory) under the form

(1.2) u ε def = u app ε + R ε
where the approximate solution u app ε is defined by the sum of the global solution associated with u 0 and the quasi-2D approximation:

(1.3) u app ε def = u + [v (2D) ε ] ε with v (2D) ε def = (v h , 0) + (εw h ε , w 3 ε ) while
• u is the global smooth solution of (N S) associated with the initial data u 0 ;

• v h is the global smooth solution of the two dimensional Navier-Stokes equation (with parameter y 3 in R) with pressure p 0 and data v h 0 (•, y 3 )

(N S2D 3 )    ∂ t v h + v h • ∇ h v h -∆ h v h = -∇ h p 0 div h v h = 0 v h | t=0 = v h 0 (x h , y 3 
); • w ε solves the linear equation with data w 0 (and pressure p ε,1 )

(T ε v )    ∂ t w ε + v h • ∇ h w ε -∆ h w ε -ε 2 ∂ 2 3 w ε = -(∇ h p ε,1 , ε 2 ∂ 3 p ε,1 ) div w ε = 0 w ε | t=0 = w 0 .
We will also define the approximate pressure

(1.4) p app ε def = p + [p 0 + εp ε,1 ] ε .
The stability of this approximate solution is described by the following proposition. As in the rest of this paper, we have used the following notation: if X (resp. Y ) is a function space over R 2 (resp. R), then we write X h for X(R 2 ) and Y v for Y (R). We also denote the space

Y (R; X(R 2 )) by Y v X h .
Proposition 1.7. For any positive ε 0 , the family (u app ε ) ε≤ε 0 of approximate solutions is uniformly bounded in L 2 (R + ; L ∞ (R 3 )) and the family (∇u app ε

) ε≤ε 0 is uniformly bounded in L 2 (R + ; L ∞ v (L 2 h )
). The size of the error term E ε (this denomination will become apparent in the next section) defined by

(1.5) E ε def = (∂ t -∆)u app ε + u app ε • ∇u app ε + ∇p app ε
can be estimated as follows.

Proposition 1.8. The family (E ε ) ε≤ε 0 of error terms satisfies

lim ε→0 E ε L 2 (R + ; Ḣ-1 2 ) = 0.
The structure of this article is the following:

• the second section is devoted the proof of Theorem 2 using the above two propositions;

• the third section consists in proving Proposition 1.8 using estimates on the product in anisotropic spaces; • we shall present the proof of some product laws in Sobolev spaces in Appendix A;

• the proof of Proposition 1.7 is postponed to Appendix B. Indeed most of the proof is actually contained in Lemma 2.1 of [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF], apart from the fact that the global solution u satisfies the required properties. One way to avoid having to rely on that last result would be simply to replace, in the definition of u app ε , the solution u by any smooth approximation (that is possible due to the stability result of [START_REF] Gallagher | Asymptotics and stability for global solutions to the Navier-Stokes equations[END_REF]). However we feel the result in itself is interesting so we prove in Appendix B that any global solution associated to

Ḣ 1 2 (R 3 ) initial data belongs to L 2 (R + ; L ∞ (R 3 
)), and its gradient to

L 2 (R + ; L ∞ v (L 2 h )).

Proof of Theorem 2

Assuming Proposition 1.8, the proof of Theorem 2 follows the sames lines as the proof of Theorem 3 of [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF]; we recall it for the reader's convenience. Using the definition of the approximate solution (u app ε , p app ε ) given in (1.3,1.4), and the error term E ε given in (1.5), we find that the remainder R ε satisfies the following modified three-dimensional Navier-Stokes equation

(M N S ε ) ∂ t R ε + R ε • ∇R ε -∆R ε + u app ε • ∇R ε + R ε • ∇u app ε = -E ε -∇q ε div R ε = 0 and R ε | t=0 = 0, with q ε def = p ε -p app ε .
The proof of the theorem reduces to the proof that (M N S ε ) is globally wellposed. We shall only write the useful a priori estimates on R ε , and leave to the reader the classical arguments allowing to deduce the result. In particular we omit the proof of the fact that the solution R ε constructed in this way is continuous in time with values in Ḣ 1 2 (R 3 ). So let us define, for any λ > 0,

R λ ε (t) def = R ε (t) exp -λ t 0 V ε (t ′ ) dt ′ with V ε (t) def = u app ε (t) 2 L ∞ + ∇u app ε (t) 2 L ∞ v L 2 h .
Note that Proposition 1.7 implies that

R + V ε (t)
dt is uniformly bounded, by a constant denoted by U in the following. Writing also

E λ ε (t) def = E ε (t) exp -λ t 0 V ε (t ′ ) dt ′ , an Ḣ 1 2 energy estimate on (M N S ε ) implies 1 2 d dt R λ ε (t) 2 Ḣ 1 2 + ∇R λ ε (t) 2 Ḣ 1 2 = -λV ε (t) R λ ε (t) 2 Ḣ 1 2 -E λ ε |R λ ε Ḣ 1 2 (t) -exp λ t 0 V ε (t ′ )dt ′ R λ ε • ∇R λ ε + u app ε • ∇R λ ε + R λ ε • ∇u app ε R λ ε Ḣ 1 2 (t).
A law of product in Sobolev spaces (see (A.2) in Appendix A) and Proposition 1.7 imply that

exp λ t 0 V ε (t ′ )dt ′ (R λ ε • ∇R λ ε |R λ ε ) Ḣ 1 2 ≤Ce λU R λ ε (t) 2 Ḣ1 ∇R λ ε (t) Ḣ 1 2 ≤Ce λU R λ ε (t) Ḣ 1 2 ∇R λ ε (t) 2 Ḣ 1 2 . Lemma 2.3 of [6] claims that (2.1) (b • ∇a + a • ∇b|b) Ḣ 1 2 ≤ C a L ∞ + ∇a L ∞ v L 2 h b Ḣ 1 2 ∇b Ḣ 1 2 , so by definition of V ε we get (u app ε • ∇R λ ε + R λ ε • ∇u app ε |R λ ε Ḣ 1 2 ≤ 1 4 ∇R λ ε (t) 2 Ḣ 1 2 + CV ε (t) R λ ε (t) 2 Ḣ 1 2 .
Let us choose λ ≥ C. Then using the fact that

(E λ ε |R λ ε ) Ḣ 1 2 (t) ≤ 1 4 ∇R λ ε (t) 2 Ḣ 1 2 + C E λ ε (t) 2 Ḣ-1 2 we obtain d dt R λ ε (t) 2 Ḣ 1 2 + 3 2 ∇R λ ε (t) 2 Ḣ 1 2 ≤ C E ε (t) 2 Ḣ-1 2 + Ce CU R λ ε (t) Ḣ 1 2 ∇R λ ε (t) 2 Ḣ 1 2 .
Since R ε|t=0 = 0 and lim

ε→0 E ε L 2 (R + ; Ḣ-1 2 )
= 0 by Proposition 1.8, we deduce that as long as R λ ε (t) Ḣ 1 2 is smaller than (4Ce CU ) -1 , then for any η > 0 there is ε 0 such that

∀ε ≤ ε 0 , R λ ε (t) 2 Ḣ 1 2 + 3 4 t 0 ∇R λ ε (t ′ ) 2 Ḣ 1 2 dt ′ ≤ η, which in turn implies that ∀ε ≤ ε 0 , ∀t ∈ R + , R λ ε (t) 2 Ḣ 1 2 + 3 4 t 0 ∇R λ ε (t ′ ) 2 Ḣ 1 2 dt ′ ≤ η.
That concludes the proof of the theorem.

The estimate of the error term

In this section, we shall prove Proposition 1.8. Let us first remark that the error term E ε can be decomposed as

E ε = E 1 ε + E 2 ε with E 2 ε def = u • ∇[v (2D) ε ] ε + [v (2D) ε ] ε • ∇u.
Thus the term E 1 ε is exactly the error term which appears in [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF], and Lemmas 4.1, 4.2 and 4.3 of [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF] imply that

(3.2) E 1 ε L 2 (R + ; Ḣ-1 2 )
≤ C 0 ε 1 3 .

In order to estimate the term E 2 ε , let us first observe that Lemmas 3.1 and 3.2 of [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF] imply the following proposition.

Proposition 3.1 ([6]

). For any s greater than -1, for any α ∈ N 3 and for any positive t, we have

∂ α v (2D) ε (t) 2 L 2 v Ḣs h + t 0 ∂ α ∇ h v (2D) ε (t ′ ) 2 L 2 v Ḣs h dt ′ ≤ C 0 .
We shall also be using the following result, whose proof is postponed to the end of this paragraph.

Proposition 3.2. The vector field v

(2D) ε satisfies (3.3) v (2D) ε (•, 0) L ∞ (R + ;L 2 h ) + ∇ h v (2D) ε (•, 0) L 2 (R + ;L 2 h ) ≤ Cε 1 2 . Furthermore, v (2D) ε is uniformly bounded in L ∞ (R + , Ḣ 1 2 (R 3 )) ∩ L 2 (R + , Ḣ 3 2 (R 3 )).
Assuming this result, let us prove Proposition 1.8.

Proof of Proposition 1.8:

The stability theorem of [START_REF] Gallagher | Asymptotics and stability for global solutions to the Navier-Stokes equations[END_REF] claims in particular that lim t→∞ u(t) Ḣ 1 2 = 0. As the set of smooth compactly supported divergence free vector fields is dense in the space of Ḣ 1 2 (R 3 ) divergence free vector fields, this allows to construct for any positive η, a family (t j ) 1≤j≤N of positive real numbers and a family (φ j ) 1≤j≤N of smooth compactly supported divergence free vector fields such that (with t 0 = 0)

(3.4) u η L ∞ (R + ; Ḣ 1 2 ) ≤ η with u η def = u -u η and u η (t, x) def = N j=1 1 [t j-1 ,t j ] (t)φ j (x).
Then, for any positive η, let us decompose E 2 ε as

(3.5) E 2 ε = E ε,η + E ε,η with E ε,η def = u η • ∇[v (2D) ε ] ε + [v (2D) ε ] ε • ∇u η .
The term E ε,η will be estimated thanks to the following lemma which is a generalization of (2.1).

Lemma 3.3. Let a and b be two smooth functions. We have

ab Ḣ 1 2 ≤ C a Ḣ 1 2 ∇ h b L ∞ v (L 2 h ) + b L ∞ + ∂ 3 b L 2 v ( Ḣ 1 2 h )
.

Proof. For any function f in Ḣ 1 2 (R 3 ), one has

(3.6) f Ḣ 1 2 ≤ f L 2 h Ḣ 1 2 v + f L 2 v Ḣ 1 2 h
.

That estimate may be proved simply by Plancherel's theorem (see for instance the end of the proof of Lemma 2.3 of [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF]). Now we observe that by two-dimensional product laws (taking s = 1 2 and d = 2 in (A.1) of Appendix A), one has for any

x 3 in R a(•, x 3 )b(•, x 3 ) Ḣ 1 2 h ≤ C a(•, x 3 ) Ḣ 1 2 h ∇ h b(•, x 3 ) L 2 h + a(•, x 3 ) Ḣ 1 2 h b(•, x 3 ) L ∞ h .
One has of course

(3.7) s ≤ 0 =⇒ a Ḣs ≤ a L 2 v ( Ḣs h ) and s ≥ 0 =⇒ a L 2 v ( Ḣs h ) ≤ a Ḣs so taking s = 1/2 gives ab L 2 v Ḣ 1 2 h ≤ C a L 2 v ( Ḣ 1 2 h ) ∇ h b L ∞ v (L 2 h ) + b L ∞ ≤ a Ḣ 1 2 ∇ h b L ∞ v (L 2 h ) + b L ∞ . (3.8) Now let us estimate ab L 2 h Ḣ 1 2 v
. A law of product in the vertical variable (taking s = 1 2 and d = 1 in (A.1) of Appendix A) implies that for any

x h in R 2 a(x h , •)b(x h , •) Ḣ 1 2 v ≤ C a(x h , •) Ḣ 1 2 v b(x h , •) L ∞ v + a(x h , •) L 2 v ∂ 3 b(x h , •) L 2 v .
Taking the L 2 norm in the horizontal variable gives

ab L 2 h Ḣ 1 2 v ≤ C a L 2 h Ḣ 1 2 v b L ∞ + a L 4 h L 2 v ∂ 3 b L 4 h L 2 v .
Using Minkowski's inequality, we get that ab

L 2 h Ḣ 1 2 v ≤ C a L 2 h Ḣ 1 2 v b L ∞ + a L 2 v L 4 h ∂ 3 b L 2 v L 4 h .
Then using the Sobolev embedding Ḣ 1 2 h ֒→ L 4 h and (3.7), we infer ab

L 2 h Ḣ 1 2 v ≤ C a L 2 h Ḣ 1 2 v b L ∞ + a L 2 v Ḣ 1 2 h ∂ 3 b L 2 v Ḣ 1 2 h ≤ C a Ḣ 1 2 b L ∞ + ∂ 3 b L 2 v Ḣ 1 2 h .
Together with (3.6) and (3.8), this proves Lemma 3.3.

That lemma allows to obtain the required estimate for E ε,η . Using the divergence free condition, we indeed have that

E ε,η = div(u η ⊗ [v (2D) ε ] ε + [v (2D) ε ] ε ⊗ u η ).
So the above lemma implies that for any positive time t

E ε,η (t) Ḣ-1 2 ≤ C u η ⊗ [v (2D) ε ] ε + [v (2D) ε ] ε ⊗ u η Ḣ 1 2 (t) ≤ C u η Ḣ 1 2 ∇ h [v (2D) ε ] ε L ∞ v L 2 h + [v (2D) ε ] ε L ∞ + ∂ 3 [v (2D) ε ] ε L 2 v Ḣ 1 2 h (t).
By definition of [ • ] ε and using (3.4), we get

E ε,η (t) Ḣ-1 2 ≤ Cη ∇ h v (2D) ε L ∞ v L 2 h + v (2D) ε L ∞ + ε 1 2 ∂ 3 v (2D) ε L 2 v Ḣ 1 2 h
. Proposition 3.1, along with Proposition 1.7, gives finally

(3.9) E ε,η L 2 (R + ; Ḣ-1 2 ) ≤ C 0 η.
In order to estimate the term E ε,η let us observe that thanks to the divergence free condition, we have

(3.10) E ε,η = u h η • ∇ h [v (2D) ε ] ε + ε u 3 η [∂ 3 v (2D) ε ] ε + [v (2D) ε ] ε • ∇ u η .
Using a 3D law of product (namely (A.2) in Appendix A) gives

ε u 3 η [∂ 3 v (2D) ε ] ε Ḣ-1 2 ≤ Cε u η Ḣ 1 2 [∂ 3 v (2D) ε ] ε Ḣ 1 2 . This gives (3.11) ε u 3 η [∂ 3 v (2D) ε ] ε Ḣ-1 2 ≤ ε 1 2 u η Ḣ 1 2 v (2D) ε Ḣ 3 
2 . The two other terms of (3.10) are estimated using the following lemma. Lemma 3.4. Let a and b be two smooth functions. We have

ab Ḣ-1 2 ≤ C a L 2 v Ḣ 1 2 h b(•, 0) L 2 h + C x 3 a L 2 ∂ 3 b L ∞ v Ḣ 1 2 h .
Proof. Let us decompose b in the following way:

(3.12) b(x h , x 3 ) = b(x h , 0) + x 3 0 ∂ 3 b(x h , y 3 )dy 3 .
Laws of product for Sobolev spaces on R 2 (see (A.2) in Appendix A) together with Assertion (3.7) gives

a(b |x 3 =0 ) Ḣ-1 2 ≤ a(b |x 3 =0 ) L 2 v Ḣ-1 2 h ≤ R a(•, x 3 )b(•, 0) 2 Ḣ-1 2 h dx 3 1 2 ≤ C b(•, 0) L 2 R a(•, x 3 ) 2 Ḣ 1 2 h dx 3 1 2 ≤ C a L 2 v Ḣ 1 2 h b(•, 0) L 2 h . (3.13)
In order to use (3.12), let us observe that for any x 3 , two-dimensional product laws give a(•, x 3 )

x 3 0 ∂ 3 b(•, y 3 )dy 3 Ḣ-1 2 h ≤ C a(•, x 3 ) L 2 h x 3 0 ∂ 3 b(•, y 3 ) Ḣ 1 2 h dy 3 ≤ C|x 3 | a(•, x 3 ) L 2 h ∂ 3 b L ∞ v Ḣ 1 2 h .
The above estimate integrated in x 3 together with (3.12) and (3.13) gives the result.

Now let us apply this lemma to estimate u

h η • ∇ h [v (2D) ε ] ε and [v (2D) ε ] ε • ∇ u η . We get u h η • ∇ h [v (2D) ε ] ε (t) Ḣ-1 2 ≤ C u h η (t, •) L 2 v ( Ḣ 1 2 h ) ∇ h v (2D) ε (t, •, 0) L 2 h + ε x 3 u h η (t) L 2 ∂ 3 ∇ h v (2D) ε (t, •) L ∞ v ( Ḣ 1 2 h ) and [v (2D) ε ] ε • ∇ u η (t) Ḣ-1 2 ≤ C ∇ u η (t, •) L 2 v ( Ḣ 1 2 h ) v (2D) ε (t, •, 0) L 2 h + ε x 3 ∇ u η (t, •) L 2 ∂ 3 v (2D) ε (t, •) L ∞ v ( Ḣ 1 2 h )
.

By construction of u η and by Proposition 3.1 and 3.2 (using the embedding of H 1 (R) into L ∞ (R)), together with (3.10) and (3.11), we infer that

(3.14) E ε,η L 2 (R + ; Ḣ-1 2 ) ≤ C η ε 1 2
and putting (3.2), (3.9) and (3.14) together proves Proposition 1.8, up to the proof of Proposition 3.2.

Let us finally prove Proposition 3.2.

Proof of Proposition 3.2. We recall that v

(2D) ε = (v h , 0) + (εw h ε , w 3 
ε ), and due to the form of (N S2D 3 ) it is clear that v h (t, x h , 0) = 0 for any (t, x h ) in R + × R 2 . So it remains to estimate (εw h ε , w 3 ε ). We first notice that due to Lemma 3.2 of [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF],

εw h ε (•, 0) L ∞ (R + ;L 2 h ) + ε∇ h w h ε (•, 0) L 2 (R + ;L 2 h ) ≤
Cε, so we are left with the computation of w 3 ε (t, •, 0). By definition of w ε we have

∂ t w 3 ε + v h • ∇ h w 3 ε -∆ h w 3 ε = ε 2 F ε w 3 ε |t=0 = w 3 0 with F ε def = ∂ 2 3 w 3 ε -∂ 3 p ε,1 .
We shall start by writing an Ḣ 1 2 h energy estimate (with y 3 seen as a parameter) which will imply that

w 3 ε (t, •, 0) is smaller than Cε in L ∞ (R + ; Ḣ 1 2 h ) ∩ L 2 (R + ; Ḣ 3 2 h ). The result in the space L ∞ (R + ; L 2 h ) ∩ L 2 (R + ; Ḣ1 h
) will follow by interpolation with a bound in a negative order Sobolev space, given by Lemma 3.2 of [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF].

Let us start by the Ḣ 1 2 h energy estimate. We claim that there is a constant C 0 such that for any ε ≤ ε 0 ,

(3.15) ε F ε L 2 (R + ;L ∞ v Ḣ-1 2 h ) ≤ C 0 . Assuming (3.15), an Ḣ 1 2 
h energy estimate (joint with the fact that w 3 ε|t=0 (•, 0) = 0) gives directly that

w 3 ε (•, 0) L ∞ (R + ; Ḣ 1 2 h ) + ∇ h w 3 ε (•, 0) L 2 (R + ; Ḣ 1 2 h ) ≤ Cε.
But by Lemma 3.2 of [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF] we know that w 3 ε is uniformly bounded, say in

L ∞ (R + ; L ∞ v Ḣ-1 2 h ) and ∇ h w 3 ε is uniformly bounded in L 2 (R + ; L ∞ v Ḣ-1 2 
h ), so we get by interpolation that

w 3 ε (•, 0) L ∞ (R + ;L 2 h ) + ∇ h w 3 ε (•, 0) L 2 (R + ;L 2 h ) ≤ Cε 1 2 .
This achieves (3.3). It remains to prove the claim (3.15). On the one hand, Lemma 3.2 of [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF] implies that

(3.16) ∂ 2 3 w 3 ε L 2 (R + ;L ∞ v Ḣ-1 2 h ) = ∂ 3 ∇ h • w h ε L 2 (R + ;L ∞ v Ḣ-1 2 h ) ≤ C 0 .
The estimate on the pressure seems slightly more delicate, but we notice as in [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF] that

(3.17) -(ε 2 ∂ 2 3 + ∆ h )p ε,1 = div h v h • ∇ h w h ε + ∂ 3 (w 3 ε v h ) . Since ε∂ 3 div h (ε 2 ∂ 2 3 +∆ h ) -1
is a uniformly bounded Fourier multiplier, this implies by Sobolev embedding that

ε∂ 3 p ε,1 L 2 (R + ;L ∞ v Ḣ-1 2 h ) ε∂ 3 p ε,1 L 2 (R + ;H 1 v Ḣ-1 2 h ) v h • ∇ h w h ε + ∂ 3 w 3 ε v h + w 3 ε ∂ 3 v h L 2 (R + ;H 1 v Ḣ-1 2 h )
.

However thanks to (A.2) and using the estimates of Lemmas 3.1 and 3.2 of [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF], one has

v h • ∇ h w h ε L 2 (R + ;H 1 v Ḣ-1 2 h ) ≤ C v h L ∞ (R + ;H 1 v Ḣ 1 2 h ) ∇ h w h ε L 2 (R + ;H 1 v L 2 h ) ≤ C.
Due to the divergence free condition of w ε , a similar estimate holds for

∂ 3 w 3 ε v h L 2 (R + ;H 1 v Ḣ-1 2 h )
.

While again thanks to (A.2) and using the estimates of Lemmas 3.1 and 3.2 of [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF], we obtain

w 3 ε ∂ 3 v h L 2 (R + ;H 1 v Ḣ-1 2 h ) ≤ C w 3 ε L 2 (R + ;H 1 v Ḣ 1 2 h ) ∂ 3 v h L ∞ (R + ;H 1 v L 2 h ) ≤ C.
As a consequence, we arrive at

(3.18) ε∂ 3 p ε,1 L 2 (R + ;L ∞ v Ḣ-1 2 h ) ≤ C 0 .
The combination of (3.16) and (3.18) proves the claim, hence Estimate (3.3) of Proposition 3.2.

Finally let us prove the bound in

L ∞ (R + ; Ḣ 1 2 (R 3 ))∩L 2 (R + , Ḣ 3 2 (R 3 )) of v (2D) ε
. Actually the bound for (v h , 0) follows from Lemma 3.1 and Corollary 3.1 of [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF], so we just have to concentrate on (εw h ε , w 3 ε ). Lemma 3.2 of [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF] gives that w ε is uniformly bounded in L ∞ (R + ; Ḣ 1 2 (R 3 )), as well as the fact that ∇ h w ε is uniformly bounded in L 2 (R + ; Ḣ 1 2 (R 3 )) so by the divergence free condition we only need to check that ε∂ 3 w h ε is uniformly bounded in L 2 (R + ; Ḣ 1 2 (R 3 )). In fact, we shall prove first that ε∂ 3 w h ε is uniformly bounded in L 2 (R + ; L 2 (R 3 )) and then that (ε∂ 3 ) 2 w h ε is uniformly bounded in L 2 (R + ; L 2 (R 3 )), so that the result will follow by interpolation, using Lemma 3.2 of [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF] to deal with horizontal derivatives. Actually we shall only concentrate on the first bound and leave the second to the reader as it is very similar. Indeed we get by a standard L 2 energy estimate on w h ε that 1 2

d dt w h ε 2 L 2 + ∇ h w h ε 2 L 2 + ε∂ 3 w h ε 2 L 2 = -(v h • ∇ h w h ε + ∇ h p ε,1 |w h ε ) L 2 .
On the one hand we can write

|(v h • ∇ h w h ε |w h ε ) L 2 | ≤ C v h L ∞ ∇ h w h ε L 2 w h ε L 2 which implies that |(v h • ∇ h w h ε |w h ε ) L 2 | ≤ 1 4 ∇ h w h ε 2 L 2 + C w h ε 2 L 2 v h 2 L ∞ .
To estimate the pressure term, we use again (3.17) which allows to write (using the fact that

∂ 3 w 3 ε = -div h w h ε ) |(∇ h p ε,1 |w h ε ) L 2 | ≤ C R w h ε Ḣ 1 2 h v h Ḣ 1 2 h ∇ h w h ε L 2 h + w 3 ε Ḣ 1 2 h ∂ 3 v h L 2 h dx 3 ≤ C w h ε L 2 v Ḣ 1 2 h v h L ∞ v Ḣ 1 2 h ∇ h w h ε L 2 + w 3 ε L 2 v Ḣ 1 2 h ∂ 3 v h L ∞ v L 2 h .
This implies, after some interpolation estimates, that

|(∇ h p ε,1 |w h ε ) L 2 | ≤ 1 4 ∇ h w h ε 2 L 2 + C w h ε 2 L 2 v h 4 L ∞ v Ḣ 1 2 h + C w ε 2 L 2 v Ḣ 1 2 h ∂ 3 v h L ∞ v L 2 h .
Thus applying Gronwall's lemma ensures that

w h ε (t) 2 L 2 + t 0 ∇ h w h ε (t ′ ) 2 L 2 dt ′ + t 0 ε∂ 3 w h ε (t ′ ) 2 L 2 dt ′ ≤ C w ε 2 L 2 (R + ;L 2 v Ḣ 1 2 h ) ∂ 3 v h L ∞ (R + ;L ∞ v L 2 h ) + w h ε (0) 2 L 2 × exp C v h 4 L 4 (R + ;L ∞ v Ḣ 1 2 h ) + v h 2 L 2 (R + ;L ∞ ) ,
so the results of Lemmas 3.1, 3.2 and Corollary 3.1 of [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF] allow to conclude that (ε∂ 3 )w h ε is uniformly bounded in L 2 (R + , L 2 (R 3 )). The estimates are similar for (ε∂ 3 ) 2 w h ε , and that concludes the proof of the proposition.

Proof. In what follows (c j ) j∈Z (resp. (d j ) j∈Z ) will always be a generic element in the sphere of ℓ 2 (resp. (i) Bernstein's inequalities give

S j a L ∞ c j 2 j 2 a Ḣ d-1 2 
, so thanks to the support to the Fourier transform of T a b we have

∆ ℓ T a b L 2 |j-ℓ|≤5 S j-1 a L ∞ ∆ j b L 2 c ℓ 2 -ℓs a Ḣ d-1 2 b Ḣs+ 1 2 . Similarly as s > 0, it follows that ∆ ℓ T b a + R(a, b) L 2 j≥ℓ-N 0 ∆ j a L 2 S j+2 b L ∞ j≥ℓ-N 0 c j 2 -js a Ḣs b L ∞ c ℓ 2 -ℓs a Ḣs b L ∞ .
This achieves (A.1). (ii) The proof is similar to that of (A.1) noticing that as

s 1 < d 2 , ∆ ℓ T a b L 2 |j-ℓ|≤5 S j-1 a L ∞ ∆ j b L 2 |j-ℓ|≤5 c 2 j 2 -j(s 1 +s 2 -d 2 ) a Ḣs 1 b Ḣs 2 d ℓ 2 -ℓ(s 1 +s 2 -d 2 ) a Ḣs 1 b Ḣs 2 .
The same estimate holds for ∆ ℓ T b a) L 2 . On the other hand, as s 1 + s 2 > 0, we deduce that

∆ ℓ R(a, b) L 2 j≥ℓ-N 0 2 d 2 ℓ ∆ j a L 2 ∆ j b L 2 2 d 2 ℓ j≥ℓ-N 0 c 2 j 2 -j(s 1 +s 2 ) a Ḣs 1 b Ḣs 2 d ℓ 2 -ℓ(s 1 +s 2 -d 2 ) a Ḣs 1 b Ḣs 2 .
This completes the proof of (A.2).

Appendix B. Proof of Proposition 1.7

Proposition 1.7 follows from the next statement, as the [v

(2D) ε
] ε part was dealt with in Lemma 2.1 of [START_REF] Chemin | Large, global solutions to the Navier-Stokes equations, slowly varying in one direction[END_REF]. It remians prove the next result.

Proposition B.1. Let u 0 ∈ Ḣ 1 2 (R 3 ) be a divergence free vector field generating a smooth, global solution u to (N S). Then u belongs to L 2 (R + ; L ∞ (R 3 )) and ∇u to L 2 (R + ; L ∞ v (L 2 h )). Proof. We shall start by proving that u belongs to the space L 2 (R + ; L ∞ (R 3 )). Writing u = e t∆ u 0 + w with w def = -t 0 e (t-t ′ )∆ Pdiv (u ⊗ u)(t ′ ) dt ′ , we only need to prove the result for w since by the continuous embedding of Ḣ 1 2 (R 3 ) into Ḃ-1 ∞,2 (R 3 ) it is immediate to check using the definition of Besov spaces via the heat flow, that e t∆ u 0 belongs to L 2 (R + ; L ∞ (R 3 )). So let us concentrate on w. By Theorems 1.1 and 2.1 of [START_REF] Gallagher | Asymptotics and stability for global solutions to the Navier-Stokes equations[END_REF], u belongs to L ∞ (R + ; Ḣ 1 2 (R 3 )) ∩ L 2 (R + ; Ḣ 3 2 (R 3 )), so we infer that u belongs to L 4 (R + ; Ḣ1 (R 3 )) and therefore u ⊗ u belongs to L 2 (R + , Ḃ 1 2 2,1 (R 3 )) thanks to (A.2). In particular there is a sequence d ℓ in the unit sphere of ℓ 1 ℓ (L .

By the Plancherel formula, we get

∆ ℓ w(t) L 2 t 0 e -(t-t ′ )2 2ℓ 2 ℓ ∆ ℓ (u ⊗ u)(t ′ ) L 2 dt ′ 2 ℓ 2 t 0 e -(t-t ′ )2 2ℓ d ℓ (t ′ ) dt ′ u L ∞ (R + ; Ḣ 1 2 ) u L 2 (R + ; Ḣ 3 2 ) 
.

Using the Cauchy-Schwarz inequality, we infer

∆ ℓ w(t) L 2 d ℓ (•) L 2 t 2 -3ℓ 2 u L ∞ (R + ; Ḣ 1 2 ) u L 2 (R + ; Ḣ 3 2 ) 
.

Then, using (anisotropic) Bernstein inequalities (see for instance [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]) we have

∆ ℓ w(t) L ∞ + ∇∆ ℓ w(t) L 2 h (L ∞ v ) 2 3ℓ 2 ∆ ℓ w(t) L 2 .
Then we conclude that

ℓ ∆ ℓ w L 2 (R + ;L ∞ ) + ∆ ℓ ∇w L 2 (R + ;L 2 h (L ∞ )) u L ∞ (R + ; Ḣ 1 2 ) u L 2 (R + ; Ḣ 3 2 ) 
.

Let us now prove the result for ∇e t∆ u 0 . The proof follows the lines of the equivalence of the dyadic and heat definitions of Besov spaces (see for instance [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF]). Using Lemma 2.1 of [START_REF] Chemin | Théorèmes d'unicité pour le système de Navier-Stokes tridimensionnel[END_REF] and the Bernstein inequality, we get that where (c j ) j∈Z denotes, as in all this proof, a generic element of the unit sphere of ℓ 2 . Using that sup t>0 j t 1 2 2 j e -ct2 2j < ∞, we infer, using the Cauchy-Schwarz inequality (in j) with the weight 2 j e -ct2 2j , 

∇e t∆ u 0 2 L 2 (R;L ∞ v (L 2 h )) = ∞ 0 t ∇e t∆ u 0 2 L ∞ v (L 2 h ) dt t u 0 2 Ḣ 1 2 ∞ 0 j∈Z t 1 2 2 j e -ct2
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To prove the product laws in Ḣs (R d ) as well as Proposition B.1 below, we shall need some basic facts on Littlewood-Paley analysis, which we shall recall here without proof but refer for instance to [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] for all necessary details. Let φ (the Fourier transform of φ) be a radial function in D(R d ) such that φ(ξ) = 1 for |ξ| ≤ 1 and φ(ξ) = 0 for |ξ| > 2, and we define φ ℓ (x) = 2 dℓ φ(2 ℓ x). Then the frequency localization operators are defined by

Let f be in S ′ (R d ), let p, q belong to [1, ∞], and let s < d/p. We say that f belongs to Ḃs p,q (R d ) if and only if

We will also need a slight modification of those spaces, taking into account the time variable; we refer to [START_REF] Chemin | Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes[END_REF] for the introduction of that type of space in the context of the Navier-Stokes equations. Let u(t, x) ∈ S ′ (R 1+d ) and let ∆ ℓ be a frequency localization with respect to the x variable. We will say that u ∈ L ρ (R + ; Ḃs p,q (R d )) if and only if

and other requirements are the same as in the previous definition. Note that there is an equivalent definition of Besov spaces in terms of the heat flow: for any positive s,

. Now let us apply the above facts to study product laws in Ḣs (R d ). The proofs are very classical (see [START_REF] Bahouri | Fourier Analysis and Nonlinear Partial Differential Equations[END_REF] for instance), and we present them here just for the readers' convenience.

Using Fubini's theorem, we infer

2 j e -ct2 2j dt t which gives the result.