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SUMS OF LARGE GLOBAL SOLUTIONS

TO THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

JEAN-YVES CHEMIN, ISABELLE GALLAGHER, AND PING ZHANG

Abstract. Let G be the (open) set of Ḣ
1

2 divergence free vector fields generating a global
smooth solution to the three dimensional incompressible Navier-Stokes equations. We prove
that any element of G can be perturbed by an arbitrarily large, smooth divergence free
vector field which varies slowly in one direction, and the resulting vector field (which remains
arbitrarily large) is an element of G if the variation is slow enough. This result implies that
through any point in G passes an uncountable number of arbitrarily long segments included
in G.

1. Introduction

1.1. Setting of the problem and statement of the result. Let us first recall the classical
Navier-Stokes system for incompressible fluids in three space dimensions:

(NS)





∂tu+ u · ∇u−∆u = −∇p
div u = 0
u|t=0 = u0

where u(t, x) denotes the fluid velocity and p(t, x) the pressure. In this paper the space
variable x is chosen in R

3.
To start with, let us recall the history of results concerning small data. The first one

states that if the initial data u0 is such that ‖u0‖L2‖∇u0‖L2 is small enough, a global regular
solution exists; this was proved by J. Leray in his seminal paper [12]. Then, starting with
the paper by H. Fujita and T. Kato (see [5]), the following approach was developped: let us
denote by B the bilinear operator defined by

{
∂tB(v,w) −∆B(v,w) =

1

2
P div(v ⊗ w + w ⊗ v)

B(v,w)|t=0 = 0

where P denotes the Leray projection onto divergence free vector fields. Then, it is easily
checked that u is a solution of (NS) if and only if

u = et∆u0 + B(u, u)

which is something like Duhamel’s formula. Then the theory of small initial data reduces to
finding a Banach space X of time-dependent divergence free vector fields on R

+ × R
3 such

that B is a bilinear map from X × X to X. An elementary abstract fixed point theorem
claims that if X is a Banach space of time-dependent divergence free vector fields on R

+×R
3

such that

‖B(v,w)‖X ≤ C‖v‖X‖w‖X

(X will be called from now on an adapted space), a solution of (NS) exists in X and is global
as soon as

‖et∆u0‖X ≤ (4C)−1.
1
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The search of the largest possible adapted space X is a long story. It started in 1964 with
the paper [5] where the space X is defined by the norm

‖u‖X
def
= sup

t≥0
t
1

4 ‖∇u(t)‖L2 .

After a number of important steps (see in particular [6], [9], [17] and [1]), the problem of
finding the largest adapted space was achieved by H. Koch and D. Tataru. They proved
in [10] that the space of time-dependent divergence free vector fields on R

+ × R
3 such that

‖u‖XKT

def
= sup

t≥0
t
1

2 ‖u(t)‖L∞ + sup
x∈R3

R>0

1

R
3

2

(∫

P (x,R)
|u(t, y)|2dydt

) 1

2

< ∞

where P (x,R) is the parabolic ball [0, R2]×B(x,R), is an adapted space.
Now let us observe that the incompressible Navier-Stokes system is translation and scaling

invariant: if u is a solution of (NS) on [0, T ] × R
3 then, for any positive λ and for any x0

in R
3, the vector field uλ,x0

defined by

uλ,x0
(t, x)

def
= λu(λ2t, λ(x− x0))

is also a solution of (NS) on [0, λ−2T ]×R
3. Thus, an adapted space must be translation and

scaling invariant in the following sense: a constant C exists such that, for any positive λ and
for any x0 in R

3,
C−1‖u‖X ≤ ‖uλ,x0

‖X ≤ C‖u‖X .

The second term appearing in the norm ‖ · ‖XKT
above comes from the fact that the solution

of (NS) should be locally in L2 in order to be able to define the product as a locally L1

function. The relevant norm on the initial data is ‖et∆u0‖X . In the case of the Koch and
Tataru theorem, this norm turns out to be equivalent to the norm of the space ∂BMO of
derivatives of BMO functions. Of course, the space of initial data which measures the size
of the initial data must be translation and scaling invariant. A remark due to Y. Meyer
(see [14]) is that the norm in such a space is always greater than the norm in the Besov

space Ḃ−1
∞,∞ defined by

‖u‖Ḃ−1
∞,∞

def
= sup

t≥0
t
1

2 ‖u(t)‖L∞ .

This leads to the following definition of a large initial data for the incompressible Navier-
Stokes equation.

Definition 1.1. A divergence free vector field u0 is a large initial data for the incompressible
Navier-Stokes system if its Ḃ−1

∞,∞ norm is large.

Let us point out that this approach using Duhamel’s formula does not use the very special
structure of the incompressible Navier-Stokes system. A family of results does use the special
structure of (NS): in those cases some geometrical invariance on the initial data is preserved
by the flow of (NS) and this leads to some unexpected conservation of quantities, which
makes the problem subcritical and thus prevents blow up. We refer for instance to [11], [13],
[15], or [16], where special symmetries (like helicoidal, or axisymmetric without swirl) allow
to prove global wellposedness for any data.

Some years ago, the first two authors investigated the possible existence of large initial data
(in the sense of Definition 1.1) which have no preserved geometrical invariance and which
nevertheless generate global regular solution. The first result in this direction was proved
in [2] where such a family of large initial data was constructed, with strong oscillations in
one direction. The main point of the proof is that for any element of this family, the first
iterate B(et∆u0, e

t∆u0) is exponentially small with respect to the large initial data u0 in
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some appropriate norm. Let us notice that this result does use the fine structure of the
non linear term of (NS): M. Paicu and the second author proved in [8] that for a modified
incompressible Navier-Stokes system, this family of initial data generates solutions that blow
up at finite time.

In [3], the first two authors constructed another class of examples, in which the initial data
has slow variations in one direction. The proof of global regularity uses the fact that the
2D Navier-Stokes equations are globally wellposed. The initial data presented in the next
theorem will be referred to in the following as “quasi-2D” (see [3]).

Theorem 1. Let vh0 = (v10 , v
2
0) be a horizontal, smooth divergence free vector field on R

3

(i.e. vh0 is in L2(R3) as well as all its derivatives), belonging, as well as all its derivatives,

to L2(Rx3
; Ḣ−1(R2)); let w0 be a smooth divergence free vector field on R

3. Then there
exists a positive ε0 such that if ε ≤ ε0, the initial data

u0,ε(x)
def
= (vh0 + εwh

0 , w
3
0)(x1, x2, εx3)

generates a unique, global solution uε of (NS).

Remark 1.2. It is clear from the proof of [3] that the dependence of the parameter ε0 on
the profiles vh0 and w0 is only through their norms.

Note that such an initial data may be arbitrarily large in the sense of Definition 1.1 (see [3]).
We recall for the convenience of the reader the result proved in [3].

Proposition 1.3. Let (f, g) be in S(R2) × S(R) and define hε(xh, x3)
def
= f(xh)g(εx3). We

have, if ε is small enough,

‖hε‖Ḃ−1
∞,∞(R3) ≥

1

4
‖f‖

Ḃ−1
∞,∞(R2)‖g‖L∞(R).

In this paper we consider the global wellposedness of the Navier-Stokes equations with
data which is the sum of an initial data (which may be large) giving rise to a global solution,
and a quasi-2D initial data as presented above (which may also be large). The theorem is
the following.

Theorem 2. Let u0, v
h
0 and w0 be three smooth divergence free vector fields defined on R

3,
satisfying

• u0 belongs to Ḣ
1

2 (R3) and generates a unique global solution to the Navier-Stokes
equations;

• vh0 = (v10 , v
2
0) is a horizontal, smooth divergence free vector field on R

3 belonging, as

well as all its derivatives, to the space L2(Rx3
; Ḣ−1(R2));

• vh0 (x1, x2, 0) = w3
0(x1, x2, 0) = 0 for all (x1, x2) ∈ R

2.

Then there exists a positive number ε0 depending on u0 and on norms of vh0 and w0 such
that for any ε ∈ (0, ε0], there is a unique, global solution to the Navier-Stokes equations with
initial data

u0,ε(x)
def
= u0(x) + (vh0 + εwh

0 , w
3
0)(x1, x2, εx3).

Remark 1.4. Let u0 be any element of the (open) set G of Ḣ
1

2 divergence free vector
fields generating a global smooth solution to (NS), and let N be an arbitrarily large num-
ber. Then for any smooth divergence free vector field fh (over R

2) and g (over R) satisfy-
ing ‖fh‖Ḃ−1

∞,∞(R2)‖g‖L∞(R) ≥ 4N , and such that g(0) = 0, Theorem 2 implies that there is εN

depending on u0 and on norms of fh and g such that u0 + (fh ⊗ g, 0)(x1, x2, εNx3) belongs
to G. Since εN only depends on norms of fh and g, that implies that for any λ ∈ [−1, 1],
the initial data u0 + λ(fh ⊗ g, 0)(x1, x2, εNx3) also belongs to G. Using Proposition 1.3 one
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concludes that through u0 passes an uncountable number of segments of length N included
in G.

Remark 1.5. With the notation of Theorem 2, the data u0(x) + (vh0 + εwh
0 , w

3
0)(x1, x2, εx3)

belongs to G as soon as ε is small enough, so one can add to that initial data any vector field

of the type (v
h(1)
0 + ε1w

h(1)
0 , w

3(1)
0 )(x1, x2, ε1x3) and if ε1 is small enough (depending on u0,

on ε, and on norms of vh0 , w0, v
h(1)
0 and w

(1)
0 ), then the resulting vector field belongs to G.

One thus immediately constructs by induction superpositions of the type

u0(x) +

J∑

j=0

(v
h(j)
0 + εjw

h(j)
0 , w

3(j)
0 )(x1, x2, εjx3)

which belong to G for small enough εj ’s, depending on u0, on the norms of the profiles v
h(j)
0

and w
(j)
0 , and on (εk)k<j.

Finally notice that one can also require the slow variation on the profiles to hold on another
coordinate than x3, up to obvious modifications of the assumptions of the theorem.

Remark 1.6. In [4], an even larger initial data than the one of Theorem 1 is constructed
(the size of the solution blows up when ε tends to 0); this is a strong obstacle to the use of a
perturbative argument such as the one we use here.

1.2. Scheme of the proof and organization of the paper. Let us start by introducing
some notation. In the following we shall denote, for any point x = (x1, x2, x3) ∈ R

3, its

horizontal coordinates by xh
def
= (x1, x2). Similarly the horizontal components of any vector

field u = (u1, u2, u3) will be denoted by uh
def
= (u1, u2) and the horizontal divergence will be

defined by divhu
h def

= ∇h · uh, where ∇h def
= (∂1, ∂2). Finally we shall define the horizontal

Laplacian by ∆h
def
= ∂2

1 + ∂2
2 . We shall often use the following shorthand notation for slowly

varying functions: for any function f defined on R
3, we write

(1.1) [f ]ε(xh, x3)
def
= f(xh, εx3).

In order to prove Theorem 2, we look for the solution (which exists and is smooth for a short
time depending on ε, due to classical existence theory) under the form

(1.2) uε
def
= uappε +Rε

where the approximate solution uappε is defined by the sum of the global solution associated
with u0 and the quasi-2D approximation:

(1.3) uappε
def
= u+ [v(2D)

ε ]ε with v(2D)
ε

def
= (vh, 0) + (εwh

ε , w
3
ε)

while

• u is the global smooth solution of (NS) associated with the initial data u0;
• vh is the global smooth solution of the two dimensional Navier-Stokes equation (with
parameter y3 in R) with pressure p0 and data vh0 (·, y3)

(NS2D3)





∂tv
h + vh · ∇hvh −∆hv

h = −∇hp0
divh v

h = 0
vh|t=0 = vh0 (xh, y3);

• wε solves the linear equation with data w0 (and pressure pε,1)

(T ε
v )





∂twε + vh · ∇hwε −∆hwε − ε2∂2
3wε = −(∇hpε,1, ε

2∂3pε,1)
divwε = 0
wε|t=0 = w0.
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We will also define the approximate pressure

(1.4) pappε
def
= p+ [p0 + εpε,1]ε.

The stability of this approximate solution is described by the following proposition, which is
proved in [3], Lemma 2.1. As in the rest of this paper, we have used the following notation:
if X (resp. Y ) is a function space over R

2 (resp. R), then we write Xh for X(R2) and Yv

for Y (R). We also denote the space Y (R;X(R2)) by YvXh.

Proposition 1.7 ([3]). For any positive ε0, the family (uappε )ε≤ε0 of approximate solutions
is uniformly bounded in L2(R+;L∞(R3)) and the family (∇uappε )ε≤ε0 is uniformly bounded
in L2(R+;L∞

v (L2
h)).

The size of the error term Eε (this denomination will become apparent in the next section)
defined by

(1.5) Eε
def
= (∂t −∆)uappε + uappε · ∇uappε + (0, ∂3[p0]ε)

can be estimated as follows.

Proposition 1.8. The family (Eε)ε≤ε0 of error terms satisfies

lim
ε→0

‖Eε‖
L2(R+;Ḣ−

1
2 )

= 0.

The structure of this article is the following:

• the second section is devoted the proof of Theorem 2 using the above two propositions;
• the third section consists in proving Proposition 1.8 using estimates on the product
in anisotropic spaces.

2. Proof of Theorem 2

Assuming Proposition 1.8, the proof of Theorem 2 follows the sames lines as the proof
of Theorem 3 of [3]; we recall it for the reader’s convenience. Using the definition of the
approximate solution (uappε , pappε ) given in (1.3,1.4), and the error term Eε given in (1.5), we
find that the remainder Rε satisfies the following modified three-dimensional Navier-Stokes
equation

(MNSε)

{
∂tRε +Rε · ∇Rε −∆Rε + uappε · ∇Rε +Rε · ∇uappε = −Eε −∇qε

divRε = 0 and Rε|t=0 = 0,

with qε
def
= pε − pappε . The proof of the theorem reduces to the proof that (MNSε) is globally

wellposed. In order to do so, let us define

Rλ
ε (t)

def
= Rε(t) exp

(
−λ

∫ t

0
Vε(t

′) dt′
)

with Vε(t)
def
= ‖uappε (t)‖2L∞ + ‖∇uappε (t)‖2

L∞

v L2
h
.

Note that Proposition 1.7 implies that

∫

R
+

Vε(t) dt is uniformly bounded, by a constant

denoted by U in the following. Writing also Eλ
ε (t)

def
= Eε(t) exp

(
−λ

∫ t

0
Vε(t

′) dt′
)
, an Ḣ

1

2

energy estimate on (MNSε) implies

1

2

d

dt
‖Rλ

ε (t)‖
2

Ḣ
1
2

+ ‖∇Rλ
ε (t)‖

2

Ḣ
1
2

= −2λVε(t)‖R
λ
ε (t)‖

2

Ḣ
1
2

−
(
Eλ

ε |R
λ
ε

)
Ḣ

1
2
(t)

−
(
exp
(
λ

∫ t

0
Vε(t

′)dt′
)
Rλ

ε · ∇Rλ
ε + uappε · ∇Rλ

ε +Rλ
ε · ∇uappε

∣∣Rλ
ε

)
Ḣ

1
2

(t).
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A law of product in Sobolev spaces and Proposition 1.7 imply that

exp
(
λ

∫ t

0
Vε(t

′)dt′
)
(Rλ

ε · ∇Rλ
ε |R

λ
ε )Ḣ

1
2
≤ CeλU‖Rλ

ε (t)‖Ḣ
1
2
‖∇Rλ

ε (t)‖
2

Ḣ
1
2

.

Lemma 2.3 of [3] claims that

(2.1) (b · ∇a+ a · ∇b|b)
Ḣ

1
2
≤ C

(
‖a‖L∞ + ‖∇a‖L∞

v L2
h

)
‖b‖

Ḣ
1
2
‖∇b‖

Ḣ
1
2
,

so by definition of Vε we get

(uappε · ∇Rλ
ε +Rλ

ε · ∇uappε |Rλ
ε

)
Ḣ

1
2
≤

1

4
‖∇Rλ

ε (t)‖
2

Ḣ
1
2

+ CVε(t)‖R
λ
ε (t)‖

2

Ḣ
1
2

.

Let us choose λ = C/2. Then using the fact that

∣∣(Eλ
ε |R

λ
ε )Ḣ

1
2
(t)
∣∣ ≤ 1

4
‖∇Rλ

ε (t)‖
2

Ḣ
1
2

+ C‖Eλ
ε (t)‖

2

Ḣ−
1
2

we obtain

d

dt
‖Rλ

ε (t)‖
2

Ḣ
1
2

+
1

2
‖∇Rλ

ε (t)‖
2

Ḣ
1
2

≤ C‖Eε(t)‖
2

Ḣ
−

1
2

+ CeCU‖Rλ
ε (t)‖Ḣ

1
2
‖∇Rλ

ε (t)‖
2

Ḣ
1
2

.

Since Rε|t=0 = 0 and lim
ε→0

‖Eε‖
L2(R+;Ḣ−

1
2 )

= 0 by Proposition 1.8, we deduce that as long

as ‖Rλ
ε (t)‖Ḣ

1
2
is smaller than 1/4Ce−CU , then for any η > 0 there is ε0 such that

∀ε ≤ ε0, ‖Rλ
ε (t)‖

2

Ḣ
1
2

+
1

4

∫ t

0
‖∇Rλ

ε (t
′)‖2

Ḣ
1
2

dt′ ≤ η,

which in turn implies that

∀ε ≤ ε0, ∀t ∈ R
+, ‖Rλ

ε (t)‖
2

Ḣ
1
2

+
1

4

∫ t

0
‖∇Rλ

ε (t
′)‖2

Ḣ
1
2

dt′ ≤ η.

That concludes the proof of the theorem. �

3. The estimate of the error term

In this section, we shall prove Proposition 1.8. Let us first remark that the error term Eε

can be decomposed as

Eε = E1
ε + E2

ε with E2
ε
def
= u · ∇[v(2D)

ε ]ε + [v(2D)
ε ]ε · ∇u.

Thus the term E1
ε is exactly the error term which appears in [3], and Lemmas 4.1, 4.2 and 4.3

of [3] imply that

(3.2) ‖E1
ε‖L2(R+;Ḣ−

1
2 )

≤ C0ε
1

3 .

In order to estimate the term E2
ε , let us first observe that Lemmas 3.1 and 3.2 of [3] imply

the following proposition.

Proposition 3.1 ([3]). For any s greater than −1, for any α ∈ N
3 and for any positive t, we

have

‖∂αv(2D)
ε (t)‖2

L2
vḢ

s
h

+

∫ t

0
‖∂α∇hv(2D)

ε (t′)‖2
L2
vḢ

s
h

dt′ ≤ C0.

We shall also be using the following result, whose proof is postponed to the end of this
paragraph.

Proposition 3.2. The vector field v
(2D)
ε satisfies

‖v(2D)
ε (·, 0)‖L∞(R+;L2

h
) + ‖∇hv(2D)

ε (·, 0)‖L2(R+;L2
h
) ≤ Cε

1

2 .
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Assuming this result, let us prove Proposition 1.8. The stability theorem of [7] claims in
particular that

lim
t→∞

‖u(t)‖
Ḣ

1
2
= 0.

As the set of smooth compactly supported divergence free vector field is dense in the space

of Ḣ
1

2 divergence free vector fields, this allows to construct for any positive η, a fam-
ily (tj)1≤j≤N of positive real numbers and a family (φj)1≤j≤N of smooth compactly supported
divergence free vector fields such that (with t0 = 0)

(3.3) ‖uη‖L∞(R+;Ḣ
1
2 )

≤ η with uη
def
= u− ũη and ũη(t, x)

def
=

N∑

j=1

1[tj−1,tj ](t)φj(x).

Then, for any positive η, let us decompose E2
ε as

(3.4) E2
ε = Eε,η + Ẽε,η with Eε,η

def
= uη · ∇[v(2D)

ε ]ε + [v(2D)
ε ]ε · ∇uη.

The term Eε,η will be estimated thanks to the following lemma which is a generalization
of (2.1).

Lemma 3.3. Let a and b be two smooth functions. We have

‖ab‖
Ḣ

1
2
≤ C‖a‖

Ḣ
1
2

(
‖∇hb‖L∞

v (L2
h
) + ‖b‖L∞ + ‖∂3b‖

L2
v(Ḣ

1
2
h
)

)
.

Proof. Let us first notice that, for any function f in Ḣ
1

2 (R3)

(3.5) ‖f‖
Ḣ

1
2
≤ ‖f‖

L2
h
Ḣ

1
2
v

+ ‖f‖
L2
vḢ

1
2
h

.

Now we observe that by two-dimensional product laws, one has for any x3 in R

‖a(·, x3)b(·, x3)‖
Ḣ

1
2
h

≤ C
(
‖a(·, x3)‖

Ḣ

1
2
h

‖∇hb(·, x3)‖L2
h
+ ‖a(·, x3)‖

Ḣ
1
2
h

‖b(·, x3)‖L∞

h

)
.

One has of course

(3.6) s ≤ 0 =⇒ ‖a‖Ḣs ≤ ‖a‖L2
v(Ḣ

s
h
) and s ≥ 0 =⇒ ‖a‖L2

v(Ḣ
s
h
) ≤ ‖a‖Ḣs

so taking s = 1/2 gives

‖ab‖
L2
vḢ

1
2
h

≤ C‖a‖
L2
v(Ḣ

1
2
h
)

(
‖∇hb‖L∞

v (L2
h
) + ‖b‖L∞

)

≤ ‖a‖
Ḣ

1
2

(
‖∇hb‖L∞

v (L2
h
) + ‖b‖L∞

)
.(3.7)

Now let us estimate ‖ab‖
L2
h
Ḣ

1
2
v

. A law of product in the vertical variable implies that for

any xh in R
2

‖a(xh, ·)b(xh, ·)‖
Ḣ

1
2
v

≤ C
(
‖a(xh, ·)‖

Ḣ
1
2
v

‖b(xh, ·)‖L∞

v
+ ‖a(xh, ·)‖L2

v
‖∂3b(xh, ·)‖L2

v

)
.

Taking the L2 norm in the horizontal variable gives

‖ab‖
L2
h
Ḣ

1
2
v

≤ C
(
‖a‖

L2
h
Ḣ

1
2
v

‖b‖L∞ + ‖a‖L4
h
L2
v
‖∂3b‖L4

h
L2
v

)
.

Using Minkowski’s inequality, we get that

‖ab‖
L2
h
Ḣ

1
2
v

≤ C
(
‖a‖

L2
h
Ḣ

1
2
v

‖b‖L∞ + ‖a‖L2
vL

4
h
‖∂3b‖L2

vL
4
h

)
.
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Then using the Sobolev embedding L4
h →֒ Ḣ

1

2

h and again (3.6), we infer

‖ab‖
L2
h
Ḣ

1
2
v

≤ C
(
‖a‖

L2
h
Ḣ

1
2
v

‖b‖L∞ + ‖a‖
L2
vḢ

1
2
h

‖∂3b‖
L2
vḢ

1
2
h

)

≤ C‖a‖
Ḣ

1
2

(
‖b‖L∞ + ‖∂3b‖

L2
vḢ

1
2
h

)
.

Together with (3.5) and (3.7), this proves Lemma 3.3. �

That lemma allows to obtain the required estimate for Eε,η. Using the divergence free
condition, we indeed have that

Eε,η = div(uη ⊗ [v(2D)
ε ]ε + [v(2D)

ε ]ε ⊗ uη).

So the above lemma implies that for any positive time t

‖Eε,η(t)‖Ḣ−
1
2

≤ C‖uη ⊗ [v(2D)
ε ]ε + [v(2D)

ε ]ε ⊗ uη‖Ḣ
1
2
(t)

≤ C‖uη‖Ḣ
1
2

(
‖∇h[v(2D)

ε ]ε‖L∞

v L2
h
+ ‖[v(2D)

ε ]ε‖L∞ + ‖∂3[v
(2D)
ε ]ε‖

L2
vḢ

1
2
h

)
(t).

By definition of [ · ]ε and using (3.3), we get

‖Eε,η(t)‖Ḣ−
1
2
≤ Cη

(
‖∇hv(2D)

ε ‖L∞

v L2
h
+ ‖v(2D)

ε ‖L∞ + ε
1

2‖∂3v
(2D)
ε ‖

L2
vḢ

1
2
h

)
.

Proposition 3.1 gives finally

(3.8) ‖Eε,η‖L2(R+;Ḣ−
1
2 )

≤ C0η.

In order to estimate the term Ẽε,η let us observe that thanks to the divergence free condition,
we have

(3.9) Ẽε,η = ũhη · ∇
h[v(2D)

ε ]ε + εũ3η[∂3v
(2D)
ε ]ε + [v(2D)

ε ]ε · ∇ũη.

Using the 3D law of product gives

‖εũ3η[∂3v
(2D)
ε ]ε‖

Ḣ
−

1
2
≤ Cε‖ũη‖

Ḣ
1
2
‖[∂3v

(2D)
ε ]ε‖

Ḣ
1
2

Using (3.6), this gives

(3.10) ‖εũ3η [∂3v
(2D)
ε ]ε‖

Ḣ−
1
2
≤ ε

1

2‖ũη‖
Ḣ

1
2
‖v(2D)

ε ‖
Ḣ

3
2
.

The two other terms of (3.9) are estimated using the following lemma.

Lemma 3.4. Let a and b be two smooth functions. We have

‖ab‖
Ḣ

−
1
2
≤ C‖a‖

L2
vḢ

1
2
h

‖b(·, 0)‖L2
h
+ C‖x3a‖L2‖∂3b‖

L∞

v Ḣ
1
2
h

.

Proof. Let us decompose b in the following way:

(3.11) b(xh, x3) = b(xh, 0) +

∫ x3

0
∂3b(xh, y3)dy3.

Laws of product for Sobolev spaces on R
2 together with Assertion (3.6) gives

‖a(b|x3=0)‖
Ḣ

−
1
2

≤ ‖a(b|x3=0)‖
L2
vḢ

−
1
2

h

≤

(∫

R

‖a(·, x3)b(·, 0)‖
2

Ḣ
−

1
2

h

dx3

) 1

2

≤ C‖b(·, 0)‖L2

(∫

R

‖a(·, x3)‖
2

Ḣ
1
2
h

dx3

) 1

2

≤ C‖a‖
L2
vḢ

1
2
h

‖b(·, 0)‖L2
h
.(3.12)
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In order to use (3.11), let us observe that for any x3, two-dimensional product laws give
∥∥∥∥a(·, x3)

∫ x3

0
∂3b(·, y3)dy3

∥∥∥∥
Ḣ

−
1
2

h

≤ C‖a(·, x3)‖L2
h

∣∣∣∣
∫ x3

0
‖∂3b(·, y3)‖

Ḣ
1
2
h

dy3

∣∣∣∣

≤ C|x3|‖a(·, x3)‖L2
h
‖∂3b‖

L∞

v Ḣ
1
2
h

.

The above estimate integrated in x3 together with (3.11) and (3.12) gives the result. �

Now let us apply this lemma to estimate ũhη · ∇
h[v

(2D)
ε ]ε and [v

(2D)
ε ]ε · ∇ũη. We get

‖ũhη · ∇
h[v(2D)

ε ]ε(t)‖
Ḣ

−
1
2
≤ C‖ũhη(t, ·)‖

L2
v(Ḣ

1
2
h
)
‖∇hv(2D)

ε (t, ·, 0)‖L2
h

+ ε‖x3ũ
h
η(t)‖L2‖∂3∇

hv(2D)
ε (t, ·)‖

L∞

v (Ḣ
1
2
h
)

and

‖[v(2D)
ε ]ε · ∇ũη(t)‖

Ḣ
−

1
2
≤ C‖∇ũη(t, ·)‖

L2
v(Ḣ

1
2
h
)
‖v(2D)

ε (t, ·, 0)‖L2
h

+ ε‖x3∇ũη(t, ·)‖L2‖∂3v
(2D)
ε (t, ·)‖

L∞

v (Ḣ
1
2
h
)
.

By construction of ũη and by Proposition 3.1 and 3.2, together with (3.9) and (3.10), we infer
that

(3.13) ‖Ẽε,η‖
L2(R+;Ḣ−

1
2 )

≤ Cηε
1

2

and putting (3.2), (3.8) and (3.13) together proves Proposition 1.8, up to the proof of Propo-
sition 3.2.

So let us finally prove Proposition 3.2. We recall that v
(2D)
ε = (vh, 0) + (εwh

ε , w
3
ε), and due

to the form of (NS2D3) it is clear that vh(t, xh, 0) = 0 for any (t, xh) in R
+ × R

2. So it
remains to estimate (εwh

ε , w
3
ε). We first notice that due to Proposition 3.1

‖εwh
ε (·, 0)‖L∞(R+;L2

h
) + ‖ε∇hwh

ε (·, 0)‖L2(R+;L2
h
) ≤ Cε,

so we are left with the computation of w3
ε(t, ·, 0). By definition of wε we have

{
∂tw

3
ε + vh · ∇hw3

ε −∆hw
3
ε = ε2Fε

w3
ε |t=0 = w3

0
with Fε

def
= ∂2

3w
3
ε − ∂3pε,1.

We shall start by writing an Ḣ
1

2

h energy estimate (with y3 seen as a parameter) which will

imply that w3
ε(t, ·, 0) is smaller than Cε in L∞(R+; Ḣ

1

2

h ) ∩ L2(R+; Ḣ
3

2

h ). The result in the

space L∞(R+;L2
h)∩L2(R+; Ḣ1

h) will follow by interpolation with a bound in a negative order
Sobolev space, given by Proposition 3.1.

Let us start by the Ḣ
1

2

h energy estimate. We claim that there is a constant C0 such that
for any ε ≤ ε0,

(3.14) ε‖Fε‖
L2(R+;L∞

v Ḣ
−

1
2

h
)
≤ C0.

Assuming (3.14), an Ḣ
1

2

h energy estimate (joint with the fact that w3
ε|t=0(·, 0) = 0) gives

directly that

‖w3
ε(·, 0)‖

L∞(R+;Ḣ
1
2
h
)
+ ‖∇hw3

ε(·, 0)‖
L2(R+;Ḣ

1
2
h
)
≤ Cε.
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But by Proposition 3.1 we know that w3
ε is uniformly bounded, say in L∞(R+;L∞

v Ḣ
− 1

2

h )

and ∇hw3
ε is uniformly bounded in L2(R+;L∞

v Ḣ
− 1

2

h ), so we get by interpolation that

‖w3
ε(·, 0)‖L∞(R+;L2

h
) + ‖∇hw3

ε(·, 0)‖L2(R+;L2
h
) ≤ Cε

1

2 .

It remains to prove the claim (3.14). On the one hand, Proposition 3.1 and Lemma 3.2 of [3]
imply that

(3.15) ‖∂2
3w

3
ε‖

L2(R+;L∞

v Ḣ
−

1
2

h
)
≤ C0.

The estimate on the pressure seems slightly more delicate, but we notice as in [3] that

−(ε2∂2
3 +∆h)pε,1 = divh

(
vh · ∇hw

h
ε + ∂3(w

3
εv

h)
)
.

Since ε∂3 divh(ε
2∂2

3 + ∆h)
−1 is a uniformly bounded Fourier multiplier, this implies easily

using the estimates of Proposition 3.1 and Sobolev embeddings that that

(3.16) ‖ε∂3pε,1‖
L2(R+;L∞

v Ḣ
−

1
2

h
)
≤ C‖ε∂3pε,1‖

L2(R+;H1
v Ḣ

−
1
2

h
)
≤ C0.

The combination of (3.15) and (3.16) proves the claim, hence Proposition 3.2.
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