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Abstract

We present a bijection between the set An of deterministic and accessible automata
with n states on a k-letters alphabet and some diagrams, which can themselves be
represented as partitions of a set of kn + 1 elements into n non-empty subsets. This
combinatorial construction shows that the asymptotic order of the cardinality of
An is related to the Stirling number

{

kn
n

}

. Our bijective approach also yields an
efficient random sampler of automata with n states for the uniform distribution: its
complexity is O(n3/2), using the framework of Boltzmann samplers.
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1 Introduction

To any regular language, one can associate in a unique way its minimal automaton, that has
the minimal number of states amongst all deterministic automata recognizing this language.
Therefore the space complexity of a regular language can be seen as the number of states of
its minimal automaton. The worst case complexity of algorithms handling finite automata
is most of time known [27]. But the average case analysis of algorithms often requires the
enumeration of the objects that are handled [11] and a good knowledge of their combinatorial
properties. From a theoretical and practical point of view, a precise enumeration (see [7])
and algorithms of random generation of minimal automata are useful for the study of regular
languages.
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In this paper we address the problem of the enumeration of the set An of non-isomorphic
accessible (also called initially connected) complete and deterministic automata with n states
on a k-letters alphabet. These automata are not all minimal, but they contain minimal
automata and experimentally, a constant proportion of them seems to be minimal [22,4].
Moreover these automata constitute a very often used representation of regular languages
even if they have more states than minimal automata. Empirically again, the minimization
of such an automaton provides in average a gain of only one or two states.

The enumeration of finite automata according to various criteria (with or without initial
state [17], non-isomorphic [15], up to permutation of the labels of the edges [15], with a
strongly connected underlying graph [20,17,24,18], acyclic [21], accessible [19,17,24], ...) is a
problem that was studied since 1959 [26]. In particular Korshunov obtained [17] an asymptotic
estimate of the cardinality |An| of An by successive estimations of the cardinalities of classes
of graphs that approximate the underlying graphs of this class of automata.

In the following, we present a bijection between the set An of deterministic and accessible
automata with n states on a k-letters alphabet and some diagrams, which can themselves
be represented as partitions of the set [[ 1, (kn + 1) ]] into n non-empty parts. Making use of
these combinatorial transformations, we establish by a simple, but technical, estimation of
the exact enumeration formula [22,4] that |An| is Θ

(

n2n {kn
n }
)

, where {kn
n } is a number of

Stirling of second kind. We also reformulate the asymptotic estimate due to Korshunov [17]
in the same terms as the bounds we obtained.

To generate uniformly at random accessible complete and deterministic automata with n
states one can use a recursive algorithm [22,4]. But this kind of method, introduced by
Nijenhuis and Wilf [23] and systematized by Flajolet, Zimmermann and Van Custem [13],
requires an important memory space. In this paper we present an algorithm, based on Boltz-
mann samplers [8], for the uniform random generation of the elements of An that runs in
O(n3/2) time complexity with almost no precalculus.

The paper is organized as follows. In Section 2 we present a bijection between the set An

of deterministic and accessible automata with n states on a k-letters alphabet and some
diagrams that can easily be defined recursively. These diagrams can themselves be represented
as partitions of a set of kn+1 elements into n non-empty subsets. The corresponding bijection
is given in Section 3. This combinatorial construction shows that the asymptotic order of the
cardinality of An is related to the Stirling number {kn

n } (see Section 4). Our bijective approach
also yields an efficient random sampler of automata with n states, of complexity O(n3/2),
using the framework of Boltzmann samplers (see Section 5).

A preliminary version of this work has been presented in [1].
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2 Bijective construction of accessible automata

For every n, m ∈ N with n ≥ m, we denote by [[ m, n ]] the set of integers {i ∈ N | m ≤ i ≤ n}.

First recall some definitions about finite automata. Basic elements of theory of finite automata
can be found in [16,25]. A deterministic finite automaton A over the finite alphabet A is a
quintuple A = (A, Q, ·, q0, F ) where Q is a finite set of states, q0 ∈ Q is the initial state,
F ⊂ Q is the set of final states and the transition function · is an element of Q × A 7→ Q. If
A = (A, Q, ·, q0, F ) is a deterministic finite automaton, we extend by morphism its transition
function to Q×A∗ 7→ Q. A deterministic finite automaton A is accessible when for each state
q of A, there exists a word u ∈ A∗ such that q0 · u = q. A finite automaton A is complete
when for each (q, α) ∈ Q × A, q · α is defined.

Two complete deterministic finite automata A = (A, Q, ·, q0, F ) and A′ = (A, Q′, ·, q′0, F ′)
over the same alphabet are isomorphic when there exists a bijection φ from Q to Q′ such
that, φ(q0) = q′0, φ(F ) = F ′ and for each (q, α) ∈ Q×A, φ(q · α) = φ(q) · α. Two isomorphic
automata only differ by the labels of their states.

Our goal is to count the number |An| of accessible complete and deterministic automata
with n states up to isomorphism and to generate these automata at random for the uniform
distribution on An.

2.1 The set Dn of structure automata

We introduce a representation of the elements of An, that allows us to enumerate them easily.
A simple path in a deterministic automaton A is a path labelled by a word u such that for
every prefix v and v′ of u such that v 6= v′, q0 · v 6= q0 · v′. In other words, on the graphical
representation of A the path labelled by u does not go twice through the same state. Let A
be an accessible complete and deterministic finite automaton on the alphabet A and w be
the map from Q to A∗ defined for every state q of Q by

w(q) = min
lex

{u ∈ A∗ | q0 · u = q and u is a simple path in A},

where the mininum is taken according to the lexicographic order. Note that w(q) always exists
since A is accessible. An automaton A = (A, Q, ·, q0, F ) is a base automaton when Q ⊂ A∗

(the states are labelled by words) and for all u ∈ Q, w(u) = u. As two distinct base automata
cannot be isomorphic, we can directly work on isomorphism classes using base automata.

The transition structure of a base automaton A = (A, Q, ·, q0, F ) is D = (A, Q, ·, q0): in D
there is no more distinguished final states. Such structures exactly correspond to 2n base
automata, since the accessibility prevents distinct choices of final sets to form the same
automaton.
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Lemma 1 Denote by Dn the set of all the accessible complete and deterministic transition
structures of base automata with n states, then |An| = 2n|Dn|.

Note that forbiding or not the set of final states to be empty does not basically change the
results, since the probability of this event is 1/2n.

Our purpose is to enumerate the elements in Dn and to generate them at random for the
uniform distribution on Dn.

2.2 A first bijection

In the following we establish a bijection between the transition structures of Dn and pairs
of integer sequences represented by boxed diagrams. We basically give an algorithm that
performs this operation. This construction is an improvement of the ones given in [22,4]
where the complete proof of its validity can be found.

A diagram of width m and height n is a sequence (x1, . . . , xm) of weakly increasing nonnega-
tive integers such that xm = n, represented classically as a diagram of boxes, see Figure 1; A k-
Dyck diagram of size n is a diagram of width (k−1)n+1 and height n such that xi ≥ ⌈i/(k−1)⌉
for each i ≤ (k−1)n. A boxed diagram is a pair of sequences ((x1, . . . , xm), (y1, . . . , ym)) where
(x1, . . . , xm) is a diagram and for each i ∈ [[ 1..m ]], the yith box of the column i of the diagram
is marked, in other words yi ≤ xi (see Figure 1). As a consequence, a diagram gives rise to
∏m

i=1 xi boxed diagrams. A k-Dyck boxed diagram of size n is a boxed diagram such that its
first coordinate (x1, . . . , x(k−1)n+1) is a k-Dyck diagram of size n.

(1,1,2,2,4)
(1,3,3,4,4)(1,1,2,4,4) (1,1,2,4,4)

(1,1,2,1,3)
(1,3,3,4,4)

Fig. 1. A diagram of width 5 and height 4, a boxed diagram, a 2-Dyck diagram and a 2-Dyck boxed
diagram

Theorem 2 ([22]) The set Dn of accessible, complete and deterministic transition structures
of size n on a k-letters alphabet is in bijection with the set Bn of k-Dyck boxed diagrams of
size n.

As a consequence, we get the following exact enumeration formula for An due to Nicaud [22]
for two-letters alphabets and generalized to finite alphabets in [4].

Corollary 3 ([22,4]) For any integer n ≥ 1, the number |An| of accessible, complete and
deterministic non-isomorphic automata of size n on a k-letters alphabet is equal to 2n|Bn|.
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From transition structures to k-Dyck boxed diagrams: we associate to any transition
structure D of size n on a k-letters alphabet, using a depth-first algorithm, a k-Dyck boxed
diagram of size n. Starting from q0, recursively visit for each state q that has not yet been
visited, every q · a, following the lexicographical order. If q · a has already been visited, store
the current number of already visited states and the position of q · a in the prefix order as a
part of the result, respectively in the first (Max) and second (Boxed) sequences of the boxed
diagram.

FromDFAtoBoxedDyck(D)
Max = (); Boxed = ();
for every q

V isited[q] = false
Number[q] = 0 // Number[q] is the position of q in the prefix order

nbr = 0 // nbr is the number of already visited states
DepthFirst(D, q0, Max, Boxed, nbr)
return(Max, Boxed)

DepthFirst(D, q, Max, Boxed, nbr)
V isited[q] = true
nbr = nbr + 1
Number[q] = nbr
for each a ∈ A, in the lex. order,

if (V isited[q · a])
Append(Max, nbr)
Append(Boxed, Number[q · a])

else
DepthFirst(D, q · a, Max, Boxed, nbr)

In the execution of the algorithm FromDFAtoBoxedDyck(), two kinds of transitions
are distinguished in the structure: the ones belonging to the covering tree induced by the
depth-first algorithm and the other ones producing the integers of the result.

1

6

2

4

3

5

b

a

b

a

b

b

a

a, b
a, b

a

Fig. 2. A transition structure on a 2-letters alphabet having 1 as initial state
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In the example given in Fig.2, the states are numbered following the prefix order and the
bold edges correspond to the covering tree. Starting from state 1, consider first the transition
1 · a = 2, and then 2 · a = 1 that has already been visited. Therefore set x1 = 2, since two
states have already been visited and y1 = 1 since 2 · a = 1. Next, consider the transitions
2 · b = 3 and 3 · a = 4. As 4 · a = 2, set x2 = 4 and y2 = 2, and so on. The result for this
transition structure is the 2-Dyck boxed diagram of size 5:

((2, 4, 4, 5, 5, 6, 6), (1, 2, 2, 5, 5, 4, 2)) .

From an accessible complete and deterministic transition structure D of size n on a k-letters
alphabet, the algorithm produces a k-Dyck boxed diagram, since there are kn transitions
in D and (n − 1) of them belong to the covering tree of root q0. The growth condition on
the first sequence is due to the fact that the automata is deterministic and complete on a
k-letters alphabet.

From k-Dyck boxed diagrams to transition structures: the idea is to reconstruct
from any k-Dyck boxed diagram of size n of Bn its associated transition structure of size n
on k-letters alphabet in Dn.

We define a missing transition as a transition of the transition structure that has not yet
been defined. The algorithm uses a stack S of missing transitions, initialized with all the
transitions going from the initial state, put in reverse lexicographical order of their labels.
The transition (i, a) where a is then the smallest element of the alphabet is the first one to be
selected. The stack S, at any time, contains some missing transitions of the automaton, with
respect to the depth-first order. Moreover, when S is empty, the automaton is completely
defined.

Two indexes i ∈ [[ 1, (k−1)n+1 ]] and j ∈ [[ 1, n ]] indicate the current position in the graphical
representation of the k-Dyck boxed diagram of size n

B =
(

(x1, · · · , x(k−1)n, x(k−1)n+1), (y1, · · · , y(k−1)n, y(k−1)n+1)
)

.

As long as j < xi, the first element (q, a) (q is the state and a the letter of the missing
transition) of the stack S is in the covering tree. Therefore the algorithm creates a new state
q′ and a transition q ·a = q′; moreover j is incremented by one and all the missing transitions
(q′, a) are added to the stack, in reverse lexicographical order of their labels.

When j = xi, the first element of the stack is a transition that does not belong to the covering
tree, then yi becomes the image of the top of the stack q · a and i is incremented by one.

The algorithm runs while the stack S is not empty.
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In the description of the algorithm kDickBoxedToTransitionStructure(Max[],Boxed[]),
Max[] and Boxed[] are two arrays representing respectively the first and second tuple of a
k-Dyck boxed diagram.

kDickBoxedToTransitionStructure(Max[], Boxed[])
S = empty stack ; q = 1 // q is the last created state
Create the initial state 1
foreach a ∈ A in reversed lex. order

Push (q, a) into S // add the missing transitions from the initial state
end foreach
i = 1; j = 1
while S is not empty

(p, a) = Pop from S // take the last pushed missing transition
if j <Max[i] // creation of a new state

q = q + 1
Create a new state q
Add a transition from p to q labelled by a
foreach a ∈ A in reversed lex. order

Push (q, a) into S // add the missing transitions from q
end foreach
j = j + 1

else // directed toward an already existing state
Add transition from p to Boxed[i] labelled by a
i = i + 1

end if
end while

(2)(1) (3)

(4) (5) (6)

aa

a
b

b

b

1 1

1 1

1

1

2

22

2

33

2

3

Fig. 3. From a 2-Dyck boxed diagram B′ to a transition structure of Dn
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Fig. 3 shows an example of the execution of the algorithm on a two-letters alphabet, for

B = ((2, 3, 3, 3), (1, 2, 3, 2)) .

The grey column corresponds to the last transition. First create the initial state, set i = j = 1.
At steps (1) and (3): as j < xi (the dot can go up), create a new state and its missing
transitions, j is incremented (the dot goes up). At steps (2) and (4-6): j = xi (the dot can
not go up): the missing transition is directed to the state yi, and i is incremented (the dot
goes right). At the end of step (6), the stack is empty. The algorithm ends.

The complexity of the algorithm kDickBoxedToTransitionStructure() is linear in
time and space.

Consequently, the set Dn of accessible, complete and deterministic transition structures of
size n on a k-letters alphabet is in bijection with the set Bn of k-Dyck boxed diagrams of size
n. Moreover for any integer n ≥ 1, the number |Dn| of accessible complete and deterministic
transition structures of size n on a k-letters alphabet is equal to the number |Bn| of k-Dyck
diagrams of size n and |An| = 2n|Bn| as stated in Corollary 3.

3 Representation of set partitions

We describe in this part a bijection between boxed diagrams of width m and height n and
set partitions of n + m elements into n non-empty subsets, based on a construction due to
Bernardi [2]. This transformation will be used in Section 5 to build a Boltzmann sampler for
deterministic and accessible automata. Recall that set partitions are enumerated by Stirling
numbers of the second kind (see Section 4).

Proposition 4 The set Sm,n of boxed diagrams of width m and height n and the set of set
partitions of n + m elements into n non-empty subsets are in bijection.

From a boxed diagram to a set partition: given a boxed diagram of width m and
height n, add n boxed columns c1, c2, . . ., cn. Each ci is of height i and its highest box is
marked. Each column is inserted at the left most position that statisfies the weakly increasing
condition. Figure 4 gives an example of such a transformation.

The associated set partition is obtained from the sequence (y1, . . . , ym+n) of the second coor-
dinates corresponding to the marked boxes: two elements i and j are in the same part if and
only if yi = yj.

From a set partition to a boxed diagram: we now present an algorithm that transforms
a set partition P of a set with m+n elements into n parts into its corresponding boxed diagram
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m m + n

n n

Fig. 4. From a boxed diagram to the set partition {{1, 3, 6}, {2, 5}, {4, 10}, {7, 9, 11}, {8}}

of width m and height n.

The input of the algorithm is a partition P given by an array part, with indices from 1 to
m + n and values in [[ 1, n ]], such that part[i] = part[j] if and only if i and j are in the same
part of P and for every j ∈ [[ 2, m + n ]] such that part[j] ≥ 2, there exists i < j such that
part[i] = part[j]− 1. In other words, the parts of P are sorted in the order of their smallest
element.

For instance, for m = 3 and n = 4, the partition {{1, 3, 6}, {5}, {2, 7}, {4}} is represented by
the array part:

part 1 2 1 3 4 1 2

Then, to each i in [[ 1, m + n ]], associate the maximum mi of part[j] for j ≤ i and denote by
max the new array containing the mi’s. Following with the previous example, we get:

max 1 2 2 3 4 4 4

part 1 2 1 3 4 1 2

Finally remove the columns with the first occurence of each value in max. In the example, we
obtain:

2 4 4

1 1 2

The set partition {{1, 3, 6}, {2, 7}, {4}, {5}} is transformed into the boxed diagram of size 3
((2, 4, 4), (1, 1, 2)). The complexity in time and space of this algorithm is O(n + m).

4 Asymptotic order

In this section we give upper and lower bounds of the same order of magnitude for the
numbers |Bn| of k-Dyck boxed diagrams of size n and therefore for |An|. More precisely we
obtain an upper bound for |Bn| by counting all boxed diagrams of width (k − 1)n + 1 and
height n whose last column is of height n. This overestimation of |Bn| shows a strong relation
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between the objects that we enumerate and the Stirling numbers of the second kind. The
computation of a lower bound for |Bn|, which is more technical, is based on an overestimation
of the contribution to the number of the boxed diagrams that are not k-Dyck boxed diagrams.
Next we reformulate a stronger result due to Korshunov [17] in the same terms as the bounds
we obtained for |An|. Finally we present some numerical results.

The Stirling numbers of the second kind

Recall that the Stirling number of the second kind, denoted by {n
m}, is the number of ways of

partitioning a set of n elements into m non-empty subsets. By convention {0
0} = 1, and for

n ≥ 1 we have {n
0} = 0. The Stirling numbers of the second kind can be recursively obtained

using the following recurrence relation

∀n, m > 0, {n
m} = m {n−1

m } + {n−1
m−1} .

By induction we obtain the following lemma:

Lemma 5 For all integer 0 ≤ i ≤ n − m, {n−i
m } ≤ 1

ni {n
m}.

The Stirling numbers of the second kind can also be computed from the identity

∑

n≥m≥0

{n
m}

zn

n!
=

1

m!
(ez − 1)m

or, equivalently, from the sum

{n
m} =

1

m!

m−1
∑

i=0

(−1)i

(

m

i

)

(m − i)n.

Recall that the LambertW-function [3] is the inverse of the function x → xex. Its principal
branch W0 is real-valuted for x in [−e−1, +∞[ and is the unique branch which is analytic at
zero. Its series expansion is

W0(z) =
∞
∑

n=1

(−n)n−1

n!
zn = z − z2 + O

(

z3
)

.

The Stirling numbers of the second kind {kn
n } can be asymptotically estimated with the

saddle point method [12]. The following lemma is a special case of the asymptotic expansion
obtained by Good [14] for Stirling numbers of the second kind {n

m} when n and m tend
towards infinity with n/m = Θ(1).
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Lemma 6 Setting ζk = W0(−ke−k) + k, then (ζk − k)eζk = −k and one has

{kn
n } = αkβ

n
k n(k−1)n−1/2

(

1 + O
(1

n

))

with αk =

√

1

2π(ζk − (k − 1))
and βk =

kk

ek−1

(eζk − 1)

ζk
k

Remark 7 When k tends towards +∞, ζk = k
(

1− 1
ek +O

(

k
e2k

)

)

, αk =
√

1
2π

(

1− k
2ek +O

(

k2

e2k

)

)

and βk = e
(

1 − 1
ek + O

(

k2

e2k

)

)

.

4.1 Bounds

In this section, we establish the following result.

Theorem 8 The number |An| of accessible, complete and deterministic automata with n

states on a k-letters alphabet is Θ
(

n 2n {kn
n }
)

.

Recall that from Corollary 3
|An| = 2n|Bn|

where Bn is the set of k-Dyck boxed diagrams of size n.

Denote F (k)
m,n, or Fm,n when there is no ambiguity, the set of boxed diagrams of width m and

height n that satisfy the k-Dyck condition: for each i ≤ m, xi ≥ ⌈i/(k − 1)⌉. As the last
column of any k-Dyck boxed diagram of size n is of height n, we uniquely decompose the
elements of Bn into the cartesian product of an element of F (k)

(k−1)n,n and a boxed column of
height n. From this elementary decomposition, we obtain

|Bn| = n |F (k)
(k−1)n,n|. (1)

In the following, we prove that

|F (k)
(k−1)n,n| = Θ

(

{kn
n }
)

.

An upper bound: we obtain an upper bound by relaxing the Dyck condition. In other
words, we use the fact that F (k)

(k−1)n,n ⊂ S(k−1)n,n. As from Proposition 4 the set Sm,n of boxed
diagrams of width m and height n is in bijection with the set of set partitions of n + m
elements into n non-empty subsets, we get:

Lemma 9 For any n ≥ 1, one has |F (k)
(k−1)n,n| ≤ {kn

n } .
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A lower bound: we now give an asymptotic lower bound, which is of the same order of
magnitude as the upper bound, for the numbers |F(k−1)n,n|.

Notations are the ones introduced in Lemma 6. Recall that if |z| < 1, the polylogarithm
function is defined as polylog(s, z) =

∑∞
i=1 zi/is. In the following we establish that

Proposition 10 For all n large enough, one has the inequality

|F (k)
(k−1)n,n| ≥ Ck {kn

n }

with Ck = 1 −
√

k−1
2πk

polylog
(

1
2
, µk

)

+ O
(

1
3
√

n

)

and µk = kk

ek−1(k−1)k−1βk
.

Remark 11 Note that µk is a decreasing function of k whose first values are µ2 ≈ 0.647,
µ3 ≈ 0.355 and µ4 ≈ 0.177. Moreover when k tends towards infinity

µk =
k

ek−1

(

1 − 1

2k
+ O

( 1

k2

)

)

,

and k−1
√

µk tends monotonically towards 1/e.

Noticing that, from Proposition 4,

|F(k−1)n,n| = |S(k−1)n,n| − |S(k−1)n,n \ F(k−1)n,n| = {kn
n } − |S(k−1)n,n \ F(k−1)n,n|, (2)

a lower bound can be computed overestimating the cardinality of S(k−1)n,n \ F(k−1)n,n.

We decompose the diagrams of S(k−1)n,n \F(k−1)n,n depending upon the smallest index i such
that xi < ⌈ i

k−1
⌉. As xi ≥ xi−1 and xi−1 ≥ ⌈ i−1

k−1
⌉, we necessarily get ⌈ i

k−1
⌉ > ⌈ i−1

k−1
⌉, thus

i = h(k − 1) + 1 with 1 ≤ h ≤ n − 1 and xi = h.

To describe the decomposition obtained, we define the set S(h)
m,n of the boxed diagrams of width

m and height n whose first column is of height greater or equal to h. Note that S(1)
m,n = Sm,n.

Any boxed diagram S of S(k−1)n,n \ F(k−1)n,n can then be seen as the cartesian product of a

k-Dyck boxed diagram of size h and an element of S(h)
(k−1)(n−h)−1,n, as shown on Figure 5.

The cardinality of S(k−1)n,n \ F(k−1)n,n is then:

|S(k−1)n,n \ F(k−1)n,n| =
n−1
∑

h=1

|Bh| |S(h)
(k−1)(n−h)−1,n|. (3)

For n, m ≥ 1 and 0 ≤ h ≤ n, denote s(h)
m,n the cardinality of |S(h)

m,n|, sm,n the cardinality of
|Sm,n| and fm,n the one of |Fm,n|. Using Equations (2), (3) and (1), we then can write

f(k−1)n,n = {kn
n } −

n−1
∑

h=1

f(k−1)h,h h s
(h)
(k−1)(n−h)−1,n. (4)
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n

(k−1)n

(k−1)h+1

h

(k−1)(n−h)−1

Fig. 5. Representation of the decomposition: the left part is a k-Dyck boxed diagram of size h

In the following, we compute an upper bound for
∑n−1

h=1 f(k−1)h,h hs
(h)
(k−1)(n−h)−1,n, partitioning

this summation in three parts, h ∈ [[ 1, n/e ]], h ∈ [[ n/e, n− 3
√

n ]] or h ∈ [[ n− 3
√

n, n− 1 ]]. We
prove that the contribution of the two first parts is negligible (Lemmas 13 and 15) and that
only the third part of the sum has the same order of magnitude as {kn

n } (Lemma 16).

Note that s(h)
m,n ≤ sm,n. Moreover the diagrams of width m and height n whose all columns

are higher than h are in bijection with the family of combinations with repetitions of size
m drawn from a set of n − h + 1 distinct elements. Therefore there are

(

n+m−h
m

)

such boxed

diagrams and we obtain the following bounds for s(h)
m,n:

Lemma 12 For all n, m ≥ 1 and 1 ≤ h ≤ n, one has

(

n + m − h

m

)

hm ≤ s(h)
m,n ≤

(

n + m − h

m

)

nm.

We set, for h ∈ [[ 1, n − 1 ]], Λh = f(k−1)h,h h s
(h)
(k−1)(n−h)−1,n.

Lemma 13 For all n big enough,
∑n/e

h=1 Λh = O
(

1
n
{kn

n }
)

.

PROOF. We shall estimate
∑n/e

h=1 Λh where Λh = f(k−1)h,h h s
(h)
(k−1)(n−h)−1,n.

As for all m, n, h ≥ 0 s(h)
m,n ≤ sm,n and fm,n ≤ sm,n, from Proposition 4 we get

Λh ≤ h {kh
h } {kn−(k−1)h−1

n } ,

13



and, from Lemma 5, we have for h ≥ 1,

Λh ≤ 1

n

(

h

n(k−1)h

{

(k−1)h
h

}

)

{kn
n } .

Moreover, using the asymptotic estimation of {kn
n } given in Lemma 6, there exists a positive

real number C such that

∀h ≥ 1,
h

n(k−1)h
{kh

h } ≤ C
√

h

(

βk

(

h

n

)k−1)h

.

As βk < e, when h ≤ n/e, we get βk

(

h
n

)k−1

≤ βke
−(k−1) < 1 and

n/e
∑

h=1

√
h
(

βk

(

h

n

)k−1)h

≤ polylog

(

− 1

2
,

βk

ek−1

)

.

Finally, we obtain
n/e
∑

h=1

Λh ≤ C

n
polylog

(

− 1

2
,

βk

ek−1

)

{kn
n } ,

concluding the proof.

Lemma 14 For every h such that there exist two constants c1 and c2 such that 0 < c1 ≤
c2 < 1 and, for every n large enough, c1n ≤ h ≤ c2n, one has Λh ≤ ∆h with

∆h =

√

k − 1

2πk

(

kk

(k − 1)k−1βk

)n−h 1√
n − h

(

h

n

)(k−1)h+1/2

{kn
n }
(

1 + O
(

1

n

))

.

PROOF. Recall that Λh = f(k−1)h,h hs
(h)
(k−1)(n−h)−1,n. From Lemma 12, we have

s
(h)
(k−1)(n−h)−1,n ≤

(

k(n − h) − 1

(k − 1)(n − h) − 1

)

n(k−1)(n−h)−1

and making use of the Stirling approximation [9, p.54], we get, for 0 ≤ h < n,

(

k(n − h) − 1

(k − 1)(n − h) − 1

)

<

√

k − 1

2πk(n − h)

(

kk

(k − 1)k−1

)n−h

.

On the other hand, from Proposition 4, we have f(k−1)h,h ≤ {kh
h }, and from Lemma 6, we can

write for 0 < c1n ≤ h ≤ c2n < n

{kh
h } =

(

1

βknk−1

)n−h(
h

n

)(k−1)h−1/2

{kn
n }
(

1 + O
(

1

n

))

,

and the announced result follows.
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Lemma 15 For all n large enough, one has
∑n− 3

√
n

h=n/e ∆h = O
(

1
n
{kn

n }
)

.

PROOF. We set

∆h =

√

k − 1

2πk
vh {kn

n }
(

1 + O
(1

n

))

, (5)

with vh =
(

kk

(k − 1)k−1βk

)n−h 1√
n − h

(

h

n

)(k−1)h+1/2

.

Recall that µk = kk

ek−1(k−1)k−1βk
. In the following we show that

• when k = 2 or 3, the sequence (vh) is decreasing for h ≤ k−1
√

µkn − 1 and increasing for
h ≥ k−1

√
µkn − 1,

• when k ≥ 4, the sequence (vh) is decreasing for h ≤ k−1
√

µkn and increasing for h ≥ k−1
√

µkn.

and that in both cases
∑n− 3

√
n

h=n/e vh = O
(

1
n

)

proving in this way Lemma 15.

By definition,

vh

vh+1
=
(

1 − 1

h + 1

)(k−1)(h+1)

µke
k−1

(

n

h

)k−1
√

(1 − 1

n − h
)(1 − 1

h + 1
).

When k = 2 or 3, we write

vh

vh+1
=
(

1 − 1

h + 1

)(k−1)(h+1)−(k−2)

µk ek−1
(

n

h + 1

)k−1
√

√

√

√

(1 − 1
n−h

)

(1 − 1
h+1

)
,

and as
(

1 − 1
h+1

)(k−1)(h+1)−(k−2)

< e−(k−1), we have

vh

vh+1

< µk

(

n

h + 1

)k−1
√

√

√

√

1 − 1/(n − h)

1 − 1/(h + 1)
.

Moreover, when h ≥ k−1
√

µkn − 1, we have µk

(

n
h+1

)k−1

< 1 and

√

√

√

√

1 − 1/(n − h)

1 − 1/(h + 1)
<

√

√

√

√

1 − 1/((1 − k−1
√

µk)n + 1)

1 − 1/ k−1
√

µkn

with
√

√

√

√

1 − 1/((1 − k−1
√

µk)n + 1)

1 − 1/ k−1
√

µkn
= 1 − 2 k−1

√
µk − 1

2 k−1
√

µk(1 − k−1
√

µk)

1

n
+ O

( 1

n2

)

.

15



Note that, from Remark 11, µ2 > 1/2 and µ3 > 1/4. Therefore, there exists a positive
constant C1 such that, for all n large enough and h ≥ k−1

√
µkn− 1, we get vh

vh+1
< 1− C1

n
< 1.

Consequently the sequence (vh)h≥ k−1
√

µkn−1 is increasing and

n− 3
√

n
∑

h= k−1
√

µkn−1

vh ≤ C1 nvn− 3
√

n.

When k ≥ 4, as
(

1 − 1
h+1

)(k−1)(h+1)

< e−(k−1), we get

vh

vh+1
< µk

(

n

h

)k−1
√

(1 − 1

n − h
)(1 − 1

h + 1
).

Moreover when h ≥ k−1
√

µkn − 1, we have µk

(

n
h

)k−1

< 1 and

√

(1 − 1

n − h
)(1 − 1

h + 1
) < 1 − 1

3 k−1
√

µk(1 − k−1
√

µk)

1

n
,

thus the sequence (vh)h≥ k−1
√

µkn is increasing and we obtain

n− 3
√

n
∑

h= k−1
√

µkn

vh ≤ C0 nvn− 3
√

n.

By definition, vn− 3
√

n =
(

1 − n−2/3

)(k−1)(n− 3
√

n)+1/2(

µke
k−1

) 3
√

n

n−1/6 , therefore we get

vn− 3
√

n < µ
3
√

n
k

(

1 +
k − 1

2 3
√

n

)

n−1/6.

Thus we obtain
n− 3

√
n

∑

h=µkn−i

vh ≤ Ci n
5/6µ

3√n
k

(

1 +
k − 1

2 3
√

n

)

. (6)

where i ∈ [[ 0, 1 ]] depending upon the value of k.

On the other hand,
vh

vh−1
=

1

µkek−1

(

h

n

)k−1

τ(h)

where

τ(h) =
(

1 +
1

h − 1

)(k−1)(h−1)+1/2
√

(

1 +
1

n − h

)

.
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When k ≥ 3 the two factors of τ are increasing functions of h. Indeed the derivative

(

1 +
1

h − 1

)(k−1)(h−1)−1/2

(k − 1)
((

1 +
1

h − 1

)

ln
(

1 +
1

h − 1

)

− 1

h − 1
− 1

2(k − 1)(h − 1)2

)

of
(

1 + 1
h−1

)(k−1)(h−1)+1/2

is positive for n large enough. When k ≥ 2 and n large enough,

writing

τ(h) =
(

1 +
1

h − 1

)h−3/4((

1 +
1

h − 1

)1/4 (

1 +
1

n − h

)1/2 )

,

the function τ is the product of two increasing functions of h on the interval [n/e, k−1
√

µkn−1].

When k = 2 or 3, n/e ≤ h ≤ k−1
√

µkn − 1 and n large enough, the function τ is maximal for
h = k−1

√
µkn − 1 and

τ( k−1
√

µkn − 1) < ek−1
(

1 +
1

2n

1 − (k − 1)(1 − k−1
√

µk)

(1 − k−1
√

µk) k−1
√

µk

)

.

Moreover as, for k = 2 or 3,

(

h

n

)k−1

≤ µk

(

1 − 1
k−1
√

µkn

)k−1

≤ µk

(

1 − 1
k−1
√

µkn

)

,

we obtain
vh

vh−1
< 1 − 1

2n

(k + 1)(1 − k−1
√

µk) − 1
k−1
√

µk(1 − k−1
√

µk)
< 1.

And as k−1
√

µk < 1 − 1
k+1

, we have

k−1
√

µkn−1
∑

h=n/e

vh ≤ C ′
1 n vn/e.

When k ≥ 4 and n/e ≤ h ≤ k−1
√

µkn, the function τ is then maximal for h = k−1
√

µkn and

τ( k−1
√

µkn) = ek−1
(

1 − 1

2n

(k − 1)(1 − k−1
√

µk) − 1

(1 − k−1
√

µk) k−1
√

µk

+ O
( 1

n2

)

)

Moreover, as k−1
√

µk < 1 − 1/(k − 1), we have

vh

vh−1

< 1 − 1

3n

(k − 1)(1 − k−1
√

µk) − 1
k−1
√

µk(1 − k−1
√

µk)
< 1.
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Thus
k−1

√
µkn

∑

h=n/e

vh ≤ C ′
0 n vn/e.

By definition, vn/e = (e − 1)−1/2





(

1
µke2(k−1)

)1/e

µke
k−1





n

n−1/2 , thus we obtain

vn/e = (e − 1)−1/2θnn−1/2

where θ < 1 since 3
√

µ4 < e2/e−1 and k−1
√

µk tends monotonically towards 1/e. Consequently
we have

k−1
√

µkn−i
∑

h=n/e

vh ≤ C ′
i(e − 1)−1/2 n1/2 θn with θ < 1. (7)

where i ∈ [[ 0, 1 ]] depending the value of k.

Finally from Equations (5), (6) and (7), we obtain that
∑n− 3

√
n

h=n/e vh = O
(

1/n
)

, concluding the
proof.

Lemma 16 For, all n large enough, one has

n−1
∑

h=n− 3√n

∆h =

√

k − 1

2πk
polylog

(

1

2
, µk

)

{kn
n }
(

1 + O
(

1
3
√

n

))

.

PROOF. Recall that, for h = Θ(n), one has

∆h =

√

k − 1

2πk

(

kk

(k − 1)k−1βk

)n−h 1√
n − h

(

h

n

)(k−1)h+1/2

{kn
n }
(

1 + O
(

1

n

))

.

As, for m ≤ 3
√

n,

(

1 − m

n

)(k−1)(n−m)+1/2

= e−(k−1)m

(

1 + O
(

1
3
√

n

))

,

setting m = n − h, we get

3
√

n
∑

m=1

∆n−m =

√

k − 1

2πk

(

3
√

n
∑

m=1

(

kk

ek−1(k − 1)k−1βk

)m 1√
m

)

{kn
n }
(

1 + O
(

1
3
√

n

))

,

and the result follows.

Then Proposition 10 is a direct consequence of Lemmas 13, 14, 15 and 16.
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PROOF. (Proposition 10) From Equation (4), one has

f(k−1)n,n = {kn
n } −

n−1
∑

h=1

Λh.

Moreover, from Lemmas 14 and 16, for all n large enough, one has

n−1
∑

h=n− 3
√

n

Λh ≤ (1 − Ck) {kn
n } with Ck = 1 −

√

k − 1

2πk
polylog

(

1

2
, µk

)

+ O
(

1
3
√

n

)

.

And for n big enough, respectively from Lemma 13 and from Lemmas 14 and 15, both
∑n/e

h=1 Λh and
∑n− 3

√
n

h=n/e Λh are O
(

1
n
{kn

n }
)

and therefore are negligible. Thus, we finally obtain

f(k−1)n,n ≥ Ck {kn
n } ,

concluding the proof.

Remark 17 The constant terms of the lower and upper bounds can be iteratively improved
making use of the constant terms already computed. Nevertheless it is not enough to get an
asymptotic estimate of |An| when n tends towards infinity.

4.2 The estimate of Korshunov

We derived from simple bijective constructions the asymptotic order of magnitude of the
number of accessible automata, giving a combinatorial interpretation that the asymptotic
order is related to the number of set partitions {kn

n }. Korshunov obtained a more precise
result. He gave an asymptotic estimate [17, Theorem 4.8 p.51] of this number. His long proof
is based on the estimations, when the number of states tends towards infinity, of cardinalities
of classes of graphs that better and better approximate the underlying graphs of this class
of automata. A key result [17, Theorem 3.4 p.33] is the estimation of the number of strongly
connected graphs.

The link we made between the number of accessible automata and the number of set parti-
tions allows us to reformulate the original estimate of Korshunov in the scale of the Stirling
numbers, using their well known asymptotic estimate (see Lemma 6).

Theorem 18 (Korshunov [17,18]) The number |An| of accessible complete and determin-
istic automata with n states on a k-letters alphabet satisfies

|An| ∼ Ek n 2n {kn
n } where Ek =

1 +
∑∞

r=1
1
r

(

kr
r−1

)(

ek−1βk

)−r

1 +
∑∞

r=1

(

kr
r

)(

ek−1βk

)−r .
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PROOF. The statement of the original result of Koshunov [17,18] is the following: the
number |An| of accessible complete and deterministic automata with n states over a k-letters
alphabet satisfies

|An| ∼
(

1 − kak

1 + ak

)−1/2 1 +
∑∞

r=1
1
r

(

kr
r−1

)(

ekν(k)
)−r

1 +
∑∞

r=1

(

kr
r

)(

ekν(k)
)−r

2n νn(k) nkn

(n − 1)!
, (8)

where ak is the root in [0, 1] of the equation 1 + x = xek/(1+x) and

ν(k) = aak
k (1 + ak)

k−1−ak .

The formula given in Theorem 18 is obtained from Equation (8) using that

ζk =
k

1 + ak
and ak =

k

ζk
− 1 =

k

ζk
e−ζk .

From these equalities we deduce that ν(k) =
(

k
ζk

)k−1
eζk−k and ekν(k) = βke

k−1. Moreover,

(

1 − kak

1 + ak

)−1/2

=

(

ζk − (k − 1)

)−1/2

=
√

2παk.

We conclude making use of Stirling’s formula for n! and of the asymptotic estimate for the
Stirling numbers of the second kind {kn

n } mentionned in Lemma 6.

4.3 Numerical results

In the following array, we compare for alphabets of size k = 2, 3 and 4 the values of the ratio
|An|

2n n{kn
n }

for n = 100, 200, 300 and 400 with

Ek = lim
n→+∞

|An|
2nn {kn

n }
.

From Theorem 2, one has |An| = n2n|F(k−1)n,n| and the numbers |F(k−1)n,n| can be computed
making use of the recurrence formula given in Section 5.1 [22,4].

The values of Ek are obtained from the formula given in Theorem 18. Note that Ek quickly
converges towards 1, as k tends towards +∞. For instance, E26 ≈ 0.99999999987.
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k 100 200 300 400 Ek

2 0.74490782 0.74497737 0.74498956 0.74499374 0.74499902

3 0.87341820 0.87342408 0.87342509 0.87342543 0.87342586

4 0.93931196 0.93931392 0.93931428 0.93931440 0.93931456

5 Random generation

Our main goal is to provide algorithms to equally likely generate automata of size n. The
diagram below describes the differents steps of this generation. Recall that Fm,n is the set of
boxed diagrams of width m and height n satisfying the k-Dyck condition, and thus F(k−1)n,n

are obtained by removing the last column from a k-Dyck boxed diagram of size n. In this
section, we present two distinct methods to generate elements of F(k−1)n,n. The first one
is based on a recursive construction of the elements of Fm,n. The other one is based on
Boltzmann samplers, a powerful tool introduced in [8]: we generate set partitions that we
transform into elements of F(k−1)n,n using the algorithm of Section 3. A rejection algorithm,
whose principle is recalled below, is used to guarantee that the Dyck property is satisfied.

In order to obtain k-Dyck boxed diagrams of size n from boxed diagrams of F(k−1)n,n it
remains to add a column of height n and to randomly choose the box to be marked.

The transformation of k-Dyck diagrams into accessible complete and deterministic transition
structures is achieved by the algorithm kDickBoxedToTransitionStructure(Max[],Boxed[])

of Section 2.2. Finally the random choice of a subset of states of the transition structures
produces accesible complete and deterministic automata.

This two random generators of accessible automata can be used to generate minimal au-
tomata, using once again a rejection algorithm. Empirically, in average, less than two draws
from the set An are enough to obtain a minimal automaton. Nevertheless the efficiency of
this rejection algorithm is not yet proved.

partitions boxed
diagrams

k-Dyck
boxed

transition
structures

minimal
automata

Boltzmann sampler Recursive method

O(n3/2)

O(n) O(n)O(n)

reject

?

reject
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Rejection method Suppose that we know how to draw at random, for a given probability
distribution, an element of F , that we are able to check whether an element of F is in a subset
E of F or not. We want to draw at random an element of the set E, with the probability
distribution on E induced by the one on F . A rejection algorithm to generate at random an
element of E from F is the following.

RandomEfromF() // draw at random an element f of E from F
repeat

f = RandomF() // generate a random element f of F
until (f ∈ E)
return(f) // return a random element f of E from F

If p is the probability that an element of F is in E, then, in average, the loop is done 1
p

times. Moreover if the complexity of the random generation in F is CF and CE the one to
decide whether an element of F is in E or not, then the average complexity of the algorithm
is 1

p
CF CE. More detail can be found in [6].

5.1 Random generation of an element of the set F(k−1)n,n

We give two methods to randomly and equiprobably generate an element F of F(k−1)n,n.

A recursive method

Here we use a simple combinatorial decomposition in order to generate elements of Fm,n at
random making use of their enumeration. This kind of recursive method was introduced by
Nijenhuis and Wilf [23] and systematized by Flajolet, Zimmermann and Van Custem [13].

The algorithm we describe in the following is due to Nicaud [22] for two-letters alphabets
and was generalized to finite alphabets in [4].

Recall that for all positive integers m and n

Fm,n = {((x1, · · · , xm), (y1, · · · , ym)) ∈ [[ 1, n ]]m × [[ 1, n ]]m | for all i ∈ [[ 2, m ]], xi ≥ ⌈ i

k − 1
⌉

and xi ≥ xi−1, and for all i ∈ [[ 1, m ]], yi ≤ xi}.

and that fm,n = |Fm,n|.

If m > 1 and n ≥ ⌈ m
k−1

⌉, the last element xm of the first sequence of an element F =
((x1, · · · , xm), (y1, · · · , ym)) of Fm,n is either equal to n and ((x1, · · · , xm−1), (y1, · · · , ym−1))
is an element of Fm−1,n, or strictly smaller than n and F ∈ Fm,n−1. From this decomposition
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and due to the n possible choices for the value of ym if xm = n, we get the following recurrence
formula:















fm,n = 0 if n < ⌈ m
k−1

⌉
fm,n = 1

2
n(n + 1) if m = 1

fm,n = nfm−1,n + fm,n−1 otherwise

Therefore we can compute the values of fi,j for i ∈ [[ 1, (k − 1)n ]] and j ∈ [[ 1, n ]] and store
the results in a two-dimensional array. With this precalculus, done once, we easily generate
a random element F = ((x1, · · · , xm−1), (y1, · · · , ym−1)) of Fm,n from right to left, using the
decomposition that we just described. When m > 1 and n > ⌈ n

k−1
⌉, to choose whether xm = n

or not, we uniformly draw at random an integer x in [[ 1, fm,n ]] and:

- if x ≤ fm,n−1, we decide that xm < n and recursively draw at random F in Fm,n−1.
- if x > fm,n−1, we set xm = n, ym is chosen uniformly in [[ 1, n ]], and we recursively choose

((x1, · · · , xm−1), (y1, · · · , ym−1)) as a random element of Fm−1,n.

This method uses a two-dimensional array of size (k − 1)n × n, thus O(n2) space. But it
stores the values of fm,n which grow exponentially fast (see Section 4). Therefore the bit
space used to store these values is O(n3 log n). The generation of the array requires, for the
computation of each number, at most one addition and one multiplication by a small number,
but as these numbers are big, these operations cannot be done in constant time. Thus the
time complexity of the precalculus is O(n3 log n). When the array is stored, the generation
of a random element itself is done in time O(n2 log n).

In practice, to make this kind of algorithms more efficient [5], one treats integers as real
numbers and approximates them using floating-point arithmetic instead of multi-precision
one. This leads to a slight loss of uniformity due to the floating-point approximation. But,
in general, this loss is not important and one can choose the precision of the floating-point
arithmetics used according to the needs of the computation. Here, with floating point arith-
metics, the algorithm uses O(n2) space, the precalculus requires O(n2) time and the random
generation runs in O(n).

Boltzmann samplers

Duchon, Flajolet, Louchard and Schaeffer [8], introduced a method to build random genera-
tors for classes of labelled objects that can be described with a combinatorial decomposition.
This generators, Boltzmann samplers, can be obtained directly using automatics rules. Note
that a recent paper [10] deals with the unlabelled version of Boltzmann samplers.

A Boltzmann sampler of real parameter x > 0, in its exponential version, is a process that pro-
duces an object γ of a class C whose exponential generating function is C(z) =

∑

γ∈C z|γ|/|γ|!
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with probability

Px(γ) =
1

C(x)

x|γ|

|γ|! .

Boltmann samplers do not generate objects of a fixed size, but they guarantee that two
elements of the same size have the same probability to be generated. Moreover for any given
an integer n, the value of x can be chosen such that the average size of the generated elements
is n.

The value of x can be computed by solving an equation that involves the exponential gener-
ating function of the objects and its derivatives. Floating point arithmetics is required. The
evaluation of x is the only precalculus needed.

The behavior of Boltzmann samplers is often such that the size of the generated object is
between (1 − ε)n and (1 + ε)n with high probability. Therefore, in most cases, an exact size
sampler can be obtained using a rejection algorithm.

We use this technique to uniformly generate random set partitions of a set with kn elements
into n non-empty subsets. Following the construction of Section 3 we then transform the set
partition obtained into a boxed diagram of F(k−1)n,n using rejections when the diagram does
not satisfy the k-Dyck condition.

In order to uniformly generate set partitions of a set with kn elements into n parts, we first
consider the set Pn of partitions of a set into n non-empty sets seen as n sets of non-empty
sets. As the exponential generating function of non-empty sets according to their sizes is
N(z) = ez − 1, the generating function of Pn is Pn(z) = (ez−1)n

n!
, the factor 1/n! ”kills” the

order present in sequences of n sets. Note that every set partition into n non-empty subsets
exactly correponds to n! sequences of n sets.

Under the Boltzmann exponential model of parameter x, the probability for a non-empty set
to be of size s is Px(|γ| = s) = (ex − 1)−1xs/s!. Therefore the size of each of the n sets of
the partition follows a Poisson law Pois≥1 of parameter x (a truncated Poisson variable K,
where K is conditionned to be ≥ 1). This ensures that all resulting objects of the same size
have the same probability to be generated. The average size of the partition is then (see [8]
Proposition 1):

Ex(size of a partition) = x
P ′

n(x)

Pn(x)
= nx

ex

ex − 1
.

Note that

Ex(size of a partition) = nEx(size of a non-empty set) = n
N ′(x)

N(x)
.

Since we want a partition of size kn, we choose x = xn such that nxn
exn

exn−1
= kn. With

notations of Lemma 6, we get xn = ζk. Hence xn is a constant function of n, only depending
upon the size k of the alphabet. The Boltzmann sampler algorithm to uniformly generate a
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set partition P of a set of size kn into n non-empty subsets (Ei)1≤i≤n is then:

BoltzmannSampler(n, k)
computes the value of ζk

repeat
for i from 1 to n

size(Ei) = NonZeroPoissonLaw(ζk)
end for

until (
∑n

i=1 size(Ei) = kn)
return P

NonZeroPoissonLaw(x)
k = 1 and p = x(ex − 1)−1

dice = uniform([0, 1[)
while (dice >= p)

dice = dice − p
k = k + 1 and p = x ∗ p/k

end while
return k

To complete the task, the sampler labels the structure obtained with a random permutation
of [[ 1, kn ]].

Using floating point approximation, the average cost of the generation of a set partition is
O(n). Testing whether the sum of the sizes of the parts of such a partition is equal to kn or
not is also linear.

To compute the average complexity of this algorithm, it remains to estimate the probability
for a partition to be of the correct size. Since the exponential generating function of these
partitions is Pn(z) and the Boltzmann parameter is equal to ζk, the probability for a random
partition to be of size kn is (see [8] Eq. 5):

Pζk
(N = nk) =

ζkn
k [zkn]Pn(z)

Pn(ζk)
=

{kn
n } ζkn

k

(kn)!

n!

(eζk − 1)n
,

where [zm]C(z) is the coefficient of zm in C(z). Using Lemma 6 and Stirling formula, we
obtain the following estimate: Pζk

(N = nk) ∼ αk√
kn

. Thus, the average number of rejections

is O(
√

n) and the average complexity of the random generation of an element F of Fn based
on the Boltzmann sampler, using floating point approximation, is O(n3/2).

Open problem To conclude, the estimation of the proportion of minimal automata in An

remains an important open problem. We conjecture that a constant proportion of accessible
complete and deterministic automata of An is minimal. If it is true, the efficiency of the
rejection algorithm to generate minimal automata from accessible complete and deterministic
ones would be proved and the asymptotic estimation Θ

(

n2n {kn
n }
)

would also hold for minimal
automata.
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