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We present a bijection between the set A n of deterministic and accessible automata with n states on a k-letters alphabet and some diagrams, which can themselves be represented as partitions of a set of kn + 1 elements into n non-empty subsets. This combinatorial construction shows that the asymptotic order of the cardinality of A n is related to the Stirling number kn n . Our bijective approach also yields an efficient random sampler of automata with n states for the uniform distribution: its complexity is O(n 3/2 ), using the framework of Boltzmann samplers.

Introduction

To any regular language, one can associate in a unique way its minimal automaton, that has the minimal number of states amongst all deterministic automata recognizing this language. Therefore the space complexity of a regular language can be seen as the number of states of its minimal automaton. The worst case complexity of algorithms handling finite automata is most of time known [START_REF] Yu | The state complexities of some basic operations on regular languages[END_REF]. But the average case analysis of algorithms often requires the enumeration of the objects that are handled [START_REF] Flajolet | An introduction to the analysis of algorithms[END_REF] and a good knowledge of their combinatorial properties. From a theoretical and practical point of view, a precise enumeration (see [START_REF] Domaratzki | On the number of distinct languages accepted by finite automata with n states[END_REF]) and algorithms of random generation of minimal automata are useful for the study of regular languages.
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In this paper we address the problem of the enumeration of the set A n of non-isomorphic accessible (also called initially connected) complete and deterministic automata with n states on a k-letters alphabet. These automata are not all minimal, but they contain minimal automata and experimentally, a constant proportion of them seems to be minimal [START_REF] Nicaud | Étude du comportement en moyenne des automates finis et des langages rationnels[END_REF][START_REF] Champarnaud | Random generation of DFAs[END_REF]. Moreover these automata constitute a very often used representation of regular languages even if they have more states than minimal automata. Empirically again, the minimization of such an automaton provides in average a gain of only one or two states.

The enumeration of finite automata according to various criteria (with or without initial state [START_REF] Korshunov | Enumeration of finite automata[END_REF], non-isomorphic [START_REF] Harrison | A census of finite automata[END_REF], up to permutation of the labels of the edges [START_REF] Harrison | A census of finite automata[END_REF], with a strongly connected underlying graph [START_REF] Liskovets | Enumeration of non-isomorphic strongly connected automata[END_REF][START_REF] Korshunov | Enumeration of finite automata[END_REF][START_REF] Robinson | Counting strongly connected finite automata[END_REF][START_REF] Korshunov | On the number of non-isomorphic strongly connected finite automata[END_REF], acyclic [START_REF] Liskovets | Exact enumeration of acyclic automata[END_REF], accessible [START_REF] Liskovets | The number of connected initial automata[END_REF][START_REF] Korshunov | Enumeration of finite automata[END_REF][START_REF] Robinson | Counting strongly connected finite automata[END_REF], ...) is a problem that was studied since 1959 [START_REF] Vyssotsky | A counting problem for finite automata[END_REF]. In particular Korshunov obtained [START_REF] Korshunov | Enumeration of finite automata[END_REF] an asymptotic estimate of the cardinality |A n | of A n by successive estimations of the cardinalities of classes of graphs that approximate the underlying graphs of this class of automata.

In the following, we present a bijection between the set A n of deterministic and accessible automata with n states on a k-letters alphabet and some diagrams, which can themselves be represented as partitions of the set [ [ 1, (kn + 1) ]] into n non-empty parts. Making use of these combinatorial transformations, we establish by a simple, but technical, estimation of the exact enumeration formula [START_REF] Nicaud | Étude du comportement en moyenne des automates finis et des langages rationnels[END_REF][START_REF] Champarnaud | Random generation of DFAs[END_REF] that

|A n | is Θ n2 n { kn n }
, where { kn n } is a number of Stirling of second kind. We also reformulate the asymptotic estimate due to Korshunov [START_REF] Korshunov | Enumeration of finite automata[END_REF] in the same terms as the bounds we obtained.

To generate uniformly at random accessible complete and deterministic automata with n states one can use a recursive algorithm [START_REF] Nicaud | Étude du comportement en moyenne des automates finis et des langages rationnels[END_REF][START_REF] Champarnaud | Random generation of DFAs[END_REF]. But this kind of method, introduced by Nijenhuis and Wilf [START_REF] Nijenhuis | Combinatorial Algorithms[END_REF] and systematized by Flajolet, Zimmermann and Van Custem [START_REF] Flajolet | A calculus of random generation of labelled combinatorial structures[END_REF], requires an important memory space. In this paper we present an algorithm, based on Boltzmann samplers [START_REF] Duchon | Boltzmann Samplers for the Random Generation of Combinatorial Structures[END_REF], for the uniform random generation of the elements of A n that runs in O(n 3/2 ) time complexity with almost no precalculus.

The paper is organized as follows. In Section 2 we present a bijection between the set A n of deterministic and accessible automata with n states on a k-letters alphabet and some diagrams that can easily be defined recursively. These diagrams can themselves be represented as partitions of a set of kn+1 elements into n non-empty subsets. The corresponding bijection is given in Section 3. This combinatorial construction shows that the asymptotic order of the cardinality of A n is related to the Stirling number { kn n } (see Section 4). Our bijective approach also yields an efficient random sampler of automata with n states, of complexity O(n 3/2 ), using the framework of Boltzmann samplers (see Section 5).

A preliminary version of this work has been presented in [START_REF] Bassino | Accessible and Deterministic Automata: Enumeration and Boltzmann Samplers[END_REF].

Bijective construction of accessible automata

For every n, m ∈ N with n ≥ m, we denote by [[ m, n ]] the set of integers {i ∈ N | m ≤ i ≤ n}.

First recall some definitions about finite automata. Basic elements of theory of finite automata can be found in [START_REF] Hopcroft | Introduction to automata theory, languages, and computation[END_REF][START_REF] Sakarovitch | Eléments de théorie des automates[END_REF]. A deterministic finite automaton A over the finite alphabet A is a quintuple A = (A, Q, •, q 0 , F ) where Q is a finite set of states, q 0 ∈ Q is the initial state, F ⊂ Q is the set of final states and the transition function

• is an element of Q × A → Q. If A = (A, Q, •, q 0 ,
F ) is a deterministic finite automaton, we extend by morphism its transition function to Q × A * → Q. A deterministic finite automaton A is accessible when for each state q of A, there exists a word u ∈ A * such that q 0 • u = q. A finite automaton A is complete when for each (q, α) ∈ Q × A, q • α is defined.

Two complete deterministic finite automata A = (A, Q, •, q 0 , F ) and A ′ = (A, Q ′ , •, q ′ 0 , F ′ ) over the same alphabet are isomorphic when there exists a bijection φ from

Q to Q ′ such that, φ(q 0 ) = q ′ 0 , φ(F ) = F ′ and for each (q, α) ∈ Q × A, φ(q • α) = φ(q) • α.
Two isomorphic automata only differ by the labels of their states.

Our goal is to count the number |A n | of accessible complete and deterministic automata with n states up to isomorphism and to generate these automata at random for the uniform distribution on A n .

The set D n of structure automata

We introduce a representation of the elements of A n , that allows us to enumerate them easily. A simple path in a deterministic automaton A is a path labelled by a word u such that for every prefix v and v ′ of u such that v = v ′ , q 0 • v = q 0 • v ′ . In other words, on the graphical representation of A the path labelled by u does not go twice through the same state. Let A be an accessible complete and deterministic finite automaton on the alphabet A and w be the map from Q to A * defined for every state q of Q by

w(q) = min lex {u ∈ A * | q 0 • u = q and u is a simple path in A},
where the mininum is taken according to the lexicographic order. Note that w(q) always exists since A is accessible. An automaton A = (A, Q, •, q 0 , F ) is a base automaton when Q ⊂ A * (the states are labelled by words) and for all u ∈ Q, w(u) = u. As two distinct base automata cannot be isomorphic, we can directly work on isomorphism classes using base automata.

The transition structure of a base automaton A = (A, Q, •, q 0 , F ) is D = (A, Q, •, q 0 ): in D there is no more distinguished final states. Such structures exactly correspond to 2 n base automata, since the accessibility prevents distinct choices of final sets to form the same automaton.

Lemma 1 Denote by D n the set of all the accessible complete and deterministic transition structures of base automata with n states, then

|A n | = 2 n |D n |.
Note that forbiding or not the set of final states to be empty does not basically change the results, since the probability of this event is 1/2 n .

Our purpose is to enumerate the elements in D n and to generate them at random for the uniform distribution on D n .

A first bijection

In the following we establish a bijection between the transition structures of D n and pairs of integer sequences represented by boxed diagrams. We basically give an algorithm that performs this operation. This construction is an improvement of the ones given in [START_REF] Nicaud | Étude du comportement en moyenne des automates finis et des langages rationnels[END_REF][START_REF] Champarnaud | Random generation of DFAs[END_REF] where the complete proof of its validity can be found.

A diagram of width m and height n is a sequence (x 1 , . . . , x m ) of weakly increasing nonnegative integers such that x m = n, represented classically as a diagram of boxes, see Figure 1; A k-Dyck diagram of size n is a diagram of width (k-1)n+1 and height n such that x i ≥ ⌈i/(k-1)⌉ for each i ≤ (k -1)n. A boxed diagram is a pair of sequences ((x 1 , . . . , x m ), (y 1 , . . . , y m )) where (x 1 , . . . , x m ) is a diagram and for each i ∈ [[ 1..m ]], the y i th box of the column i of the diagram is marked, in other words y i ≤ x i (see Figure 1). As a consequence, a diagram gives rise to m i=1 x i boxed diagrams. A k-Dyck boxed diagram of size n is a boxed diagram such that its first coordinate (x 1 , . . . , x (k-1)n+1 ) is a k-Dyck diagram of size n.

(1,1,2,2,4) [START_REF] Bassino | Accessible and Deterministic Automata: Enumeration and Boltzmann Samplers[END_REF][START_REF] Corless | On the Lambert W-function[END_REF][START_REF] Corless | On the Lambert W-function[END_REF][START_REF] Champarnaud | Random generation of DFAs[END_REF][START_REF] Champarnaud | Random generation of DFAs[END_REF] (1,1,2,4,4)

( As a consequence, we get the following exact enumeration formula for A n due to Nicaud [START_REF] Nicaud | Étude du comportement en moyenne des automates finis et des langages rationnels[END_REF] for two-letters alphabets and generalized to finite alphabets in [START_REF] Champarnaud | Random generation of DFAs[END_REF].

Corollary 3 ( [START_REF] Nicaud | Étude du comportement en moyenne des automates finis et des langages rationnels[END_REF][START_REF] Champarnaud | Random generation of DFAs[END_REF]) For any integer n ≥ 1, the number |A n | of accessible, complete and deterministic non-isomorphic automata of size n on a k-letters alphabet is equal to

2 n |B n |.
From transition structures to k-Dyck boxed diagrams: we associate to any transition structure D of size n on a k-letters alphabet, using a depth-first algorithm, a k-Dyck boxed diagram of size n. Starting from q 0 , recursively visit for each state q that has not yet been visited, every q • a, following the lexicographical order. If q • a has already been visited, store the current number of already visited states and the position of q • a in the prefix order as a part of the result, respectively in the first (Max) and second (Boxed) sequences of the boxed diagram.

FromDFAtoBoxedDyck(D) Max = (); Boxed = ();

for every q V isited[q] = f alse Number[q] = 0 // Number[q]
is the position of q in the prefix order nbr = 0 // nbr is the number of already visited states DepthFirst(D, q 0 , Max, Boxed, nbr) return(Max, Boxed)

DepthFirst(D, q, Max, Boxed, nbr) V isited[q] = true nbr = nbr + 1 Number[q] = nbr for each a ∈ A, in the lex. order, if (V isited[q • a]) Append(Max, nbr) Append(Boxed, Number[q • a]) else DepthFirst(D, q • a, Max, Boxed, nbr)
In the execution of the algorithm FromDFAtoBoxedDyck(), two kinds of transitions are distinguished in the structure: the ones belonging to the covering tree induced by the depth-first algorithm and the other ones producing the integers of the result. From an accessible complete and deterministic transition structure D of size n on a k-letters alphabet, the algorithm produces a k-Dyck boxed diagram, since there are kn transitions in D and (n -1) of them belong to the covering tree of root q 0 . The growth condition on the first sequence is due to the fact that the automata is deterministic and complete on a k-letters alphabet.

From k-Dyck boxed diagrams to transition structures: the idea is to reconstruct from any k-Dyck boxed diagram of size n of B n its associated transition structure of size n on k-letters alphabet in D n .

We define a missing transition as a transition of the transition structure that has not yet been defined. The algorithm uses a stack S of missing transitions, initialized with all the transitions going from the initial state, put in reverse lexicographical order of their labels. The transition (i, a) where a is then the smallest element of the alphabet is the first one to be selected. The stack S, at any time, contains some missing transitions of the automaton, with respect to the depth-first order. Moreover, when S is empty, the automaton is completely defined.

Two indexes i ∈ [[ 1, (k -1)n+1 ]] and j ∈ [[ 1, n ]] indicate the current position in the graphical representation of the k-Dyck boxed diagram of size n B = (x 1 , • • • , x (k-1)n , x (k-1)n+1 ), (y 1 , • • • , y (k-1)n , y (k-1)n+1 ) .
As long as j < x i , the first element (q, a) (q is the state and a the letter of the missing transition) of the stack S is in the covering tree. Therefore the algorithm creates a new state q ′ and a transition q • a = q ′ ; moreover j is incremented by one and all the missing transitions (q ′ , a) are added to the stack, in reverse lexicographical order of their labels.

When j = x i , the first element of the stack is a transition that does not belong to the covering tree, then y i becomes the image of the top of the stack q • a and i is incremented by one.

The algorithm runs while the stack S is not empty.

In the description of the algorithm kDickBoxedToTransitionStructure(Max[],Boxed[]), Max[] and Boxed[] are two arrays representing respectively the first and second tuple of a k-Dyck boxed diagram.

kDickBoxedToTransitionStructure(Max[],

Boxed[]) S = empty stack ; q = 1 // q is the last created state Create the initial state 1 foreach a ∈ A in reversed lex. order Push (q, a) into S // add the missing transitions from the initial state end foreach i = 1; j = 1 while S is not empty (p, a) = Pop from S // take the last pushed missing transition if j <Max[i] // creation of a new state q = q + 1 Create a new state q Add a transition from p to q labelled by a foreach a ∈ A in reversed lex. order Push (q, a) into S // add the missing transitions from q end foreach j = j + 1 else // directed toward an already existing state Add transition from p to Boxed[i] labelled by a The grey column corresponds to the last transition. First create the initial state, set i = j = 1. At steps (1) and (3): as j < x i (the dot can go up), create a new state and its missing transitions, j is incremented (the dot goes up). At steps ( 2) and (4-6): j = x i (the dot can not go up): the missing transition is directed to the state y i , and i is incremented (the dot goes right). At the end of step ( 6), the stack is empty. The algorithm ends.

i = i + 1 end if end while (2) (1) (3) (4) (5) (6) 
The complexity of the algorithm kDickBoxedToTransitionStructure() is linear in time and space. 

Representation of set partitions

We describe in this part a bijection between boxed diagrams of width m and height n and set partitions of n + m elements into n non-empty subsets, based on a construction due to Bernardi [START_REF] Bernardi | A note on Stirling numbers[END_REF]. This transformation will be used in Section 5 to build a Boltzmann sampler for deterministic and accessible automata. Recall that set partitions are enumerated by Stirling numbers of the second kind (see Section 4).

Proposition 4

The set S m,n of boxed diagrams of width m and height n and the set of set partitions of n + m elements into n non-empty subsets are in bijection.

From a boxed diagram to a set partition: given a boxed diagram of width m and height n, add n boxed columns c 1 , c 2 , . . ., c n . Each c i is of height i and its highest box is marked. Each column is inserted at the left most position that statisfies the weakly increasing condition. Figure 4 gives an example of such a transformation.

The associated set partition is obtained from the sequence (y 1 , . . . , y m+n ) of the second coordinates corresponding to the marked boxes: two elements i and j are in the same part if and only if y i = y j . Next we reformulate a stronger result due to Korshunov [START_REF] Korshunov | Enumeration of finite automata[END_REF] in the same terms as the bounds we obtained for |A n |. Finally we present some numerical results.

The Stirling numbers of the second kind

Recall that the Stirling number of the second kind, denoted by { n m }, is the number of ways of partitioning a set of n elements into m non-empty subsets. By convention { 0 0 } = 1, and for n ≥ 1 we have { n 0 } = 0. The Stirling numbers of the second kind can be recursively obtained using the following recurrence relation

∀n, m > 0, { n m } = m { n-1 m } + { n-1 m-1 } .
By induction we obtain the following lemma:

Lemma 5 For all integer 0 ≤ i ≤ n -m, { n-i m } ≤ 1 n i { n m }.
The Stirling numbers of the second kind can also be computed from the identity

n≥m≥0 { n m } z n n! = 1 m! (e z -1) m
or, equivalently, from the sum

{ n m } = 1 m! m-1 i=0 (-1) i m i (m -i) n .
Recall that the LambertW-function [START_REF] Corless | On the Lambert W-function[END_REF] is the inverse of the function x → xe x . Its principal branch W 0 is real-valuted for x in [-e -1 , +∞[ and is the unique branch which is analytic at zero. Its series expansion is

W 0 (z) = ∞ n=1 (-n) n-1 n! z n = z -z 2 + O z 3 .
The Stirling numbers of the second kind { kn n } can be asymptotically estimated with the saddle point method [START_REF] Flajolet | Analytic combinatorics, Book in preparation[END_REF]. The following lemma is a special case of the asymptotic expansion obtained by Good [START_REF] Good | An asymptotic formula for the differences of the powers at zero[END_REF] for Stirling numbers of the second kind { n m } when n and m tend towards infinity with n/m = Θ(1).

Lemma 6 Setting ζ k = W 0 (-ke -k ) + k, then (ζ k -k)e ζ k = -k and one has { kn n } = α k β n k n (k-1)n-1/2 1 + O 1 n with α k = 1 2π(ζ k -(k -1))
and

β k = k k e k-1 (e ζ k -1) ζ k k Remark 7 When k tends towards +∞, ζ k = k 1-1 e k +O k e 2k , α k = 1 2π 1-k 2e k +O k 2 e 2k
and

β k = e 1 -1 e k + O k 2 e 2k
.

Bounds

In this section, we establish the following result.

Theorem 8

The number |A n | of accessible, complete and deterministic automata with n

states on a k-letters alphabet is Θ n 2 n { kn n } .
Recall that from Corollary 3

|A n | = 2 n |B n |
where B n is the set of k-Dyck boxed diagrams of size n.

Denote F (k) m,n , or F m,n when there is no ambiguity, the set of boxed diagrams of width m and height n that satisfy the k-Dyck condition: for each i ≤ m, x i ≥ ⌈i/(k -1)⌉. As the last column of any k-Dyck boxed diagram of size n is of height n, we uniquely decompose the elements of B n into the cartesian product of an element of F (k) (k-1)n,n and a boxed column of height n. From this elementary decomposition, we obtain

|B n | = n |F (k) (k-1)n,n |. (1) 
In the following, we prove that

|F (k) (k-1)n,n | = Θ { kn n } .
An upper bound: we obtain an upper bound by relaxing the Dyck condition. In other words, we use the fact that F A lower bound: we now give an asymptotic lower bound, which is of the same order of magnitude as the upper bound, for the numbers |F (k-1)n,n |.

Notations are the ones introduced in Lemma 6. Recall that if |z| < 1, the polylogarithm function is defined as polylog(s, z) = ∞ i=1 z i /i s . In the following we establish that Proposition 10 For all n large enough, one has the inequality

|F (k) (k-1)n,n | ≥ C k { kn n } with C k = 1 -k-1 2πk polylog 1 2 , µ k + O 1 3 √ n and µ k = k k e k-1 (k-1) k-1 β k .
Remark 11 Note that µ k is a decreasing function of k whose first values are µ 2 ≈ 0.647, µ 3 ≈ 0.355 and µ 4 ≈ 0.177. Moreover when k tends towards infinity

µ k = k e k-1 1 - 1 2k + O 1 k 2 ,
and k-1 √ µ k tends monotonically towards 1/e.

Noticing that, from Proposition 4,

|F (k-1)n,n | = |S (k-1)n,n | -|S (k-1)n,n \ F (k-1)n,n | = { kn n } -|S (k-1)n,n \ F (k-1)n,n |, (2) 
a lower bound can be computed overestimating the cardinality of S (k-1)n,n \ F (k-1)n,n .

We decompose the diagrams of S (k-1)n,n \ F (k-1)n,n depending upon the smallest index i such that

x i < ⌈ i k-1 ⌉. As x i ≥ x i-1 and x i-1 ≥ ⌈ i-1 k-1 ⌉, we necessarily get ⌈ i k-1 ⌉ > ⌈ i-1 k-1 ⌉, thus i = h(k -1) + 1 with 1 ≤ h ≤ n -1 and x i = h.
To describe the decomposition obtained, we define the set S (h) m,n of the boxed diagrams of width m and height n whose first column is of height greater or equal to h. Note that S (1) m,n = S m,n .

Any boxed diagram S of S (k-1)n,n \ F (k-1)n,n can then be seen as the cartesian product of a k-Dyck boxed diagram of size h and an element of S (h) (k-1)(n-h)-1,n , as shown on Figure 5.

The cardinality of S (k-1)n,n \ F (k-1)n,n is then:

|S (k-1)n,n \ F (k-1)n,n | = n-1 h=1 |B h | |S (h) (k-1)(n-h)-1,n |. (3) 
For n, m ≥ 1 and 0 ≤ h ≤ n, denote s 2), ( 3) and (1), we then can write In the following, we compute an upper bound for n-1 h=1 f (k-1)h,h hs

f (k-1)n,n = { kn n } - n-1 h=1 f (k-1)h,h h s (h) (k-1)(n-h)-1,n . (4) n 
(k-1)n (k-1)h+1 h (k-1)(n-h)-1
(h) (k-1)(n-h)-1,n , partitioning this summation in three parts, h ∈ [[ 1, n/e ]], h ∈ [[ n/e, n -3 √ n ]] or h ∈ [[ n -3 √ n, n -1 ]
]. We prove that the contribution of the two first parts is negligible (Lemmas 13 and 15) and that only the third part of the sum has the same order of magnitude as { kn n } (Lemma 16).

Note that s (h) m,n ≤ s m,n . Moreover the diagrams of width m and height n whose all columns are higher than h are in bijection with the family of combinations with repetitions of size m drawn from a set of nh + 1 distinct elements. Therefore there are n+m-h m such boxed diagrams and we obtain the following bounds for s (h) m,n :

Lemma 12 For all n, m ≥ 1 and 1 ≤ h ≤ n, one has

n + m -h m h m ≤ s (h) m,n ≤ n + m -h m n m . We set, for h ∈ [[ 1, n -1 ]], Λ h = f (k-1)h,h h s (h) (k-1)(n-h)-1,n .
Lemma 13 For all n big enough,

n/e h=1 Λ h = O 1 n { kn n } . PROOF. We shall estimate n/e h=1 Λ h where Λ h = f (k-1)h,h h s (h) (k-1)(n-h)-1,n .
As for all m, n, h ≥ 0 s (h) m,n ≤ s m,n and f m,n ≤ s m,n , from Proposition 4 we get

Λ h ≤ h { kh h } { kn-(k-1)h-1 n } ,
and, from Lemma 5, we have for h ≥ 1,

Λ h ≤ 1 n h n (k-1)h (k-1)h h { kn n } .
Moreover, using the asymptotic estimation of { kn n } given in Lemma 6, there exists a positive real number C such that

∀h ≥ 1, h n (k-1)h { kh h } ≤ C √ h β k h n k-1 h . As β k < e, when h ≤ n/e, we get β k h n k-1 ≤ β k e -(k-1) < 1 and n/e h=1 √ h β k h n k-1 h ≤ polylog - 1 2 , β k e k-1 .
Finally, we obtain

n/e h=1 Λ h ≤ C n polylog - 1 2 , β k e k-1 { kn n } ,
concluding the proof.

Lemma 14

For every h such that there exist two constants c 1 and c 2 such that 0 < c 1 ≤ c 2 < 1 and, for every n large enough,

c 1 n ≤ h ≤ c 2 n, one has Λ h ≤ ∆ h with ∆ h = k -1 2πk k k (k -1) k-1 β k n-h 1 √ n -h h n (k-1)h+1/2 { kn n } 1 + O 1 n . PROOF. Recall that Λ h = f (k-1)h,h hs (h) (k-1)(n-h)-1,n . From Lemma 12, we have s (h) (k-1)(n-h)-1,n ≤ k(n -h) -1 (k -1)(n -h) -1 n (k-1)(n-h)-1
and making use of the Stirling approximation [9, p.54], we get, for 0

≤ h < n, k(n -h) -1 (k -1)(n -h) -1 < k -1 2πk(n -h) k k (k -1) k-1 n-h .
On the other hand, from Proposition 4, we have f (k-1)h,h ≤ { kh h }, and from Lemma 6, we can write for 0 < c

1 n ≤ h ≤ c 2 n < n { kh h } = 1 β k n k-1 n-h h n (k-1)h-1/2 { kn n } 1 + O 1 n ,
and the announced result follows.

Lemma 15 For all n large enough, one has

n-3 √ n h=n/e ∆ h = O 1 n { kn n } .
PROOF. We set

∆ h = k -1 2πk v h { kn n } 1 + O 1 n , (5) 
with

v h = k k (k -1) k-1 β k n-h 1 √ n -h h n (k-1)h+1/2 . Recall that µ k = k k e k-1 (k-1) k-1 β k .
In the following we show that By definition,

• when k = 2 or 3, the sequence (v h ) is decreasing for h ≤ k-1 √ µ k n -1 and increasing for h ≥ k-1 √ µ k n -1, • when k ≥ 4, the sequence (v h ) is decreasing for h ≤ k-1 √ µ k n and increasing for h ≥ k-1 √ µ k n.
v h v h+1 = 1 - 1 h + 1 (k-1)(h+1) µ k e k-1 n h k-1 (1 - 1 n -h )(1 - 1 h + 1
).

When k = 2 or 3, we write

v h v h+1 = 1 - 1 h + 1 (k-1)(h+1)-(k-2) µ k e k-1 n h + 1 k-1 (1 -1 n-h ) (1 -1 h+1 )
, and as 1 -

1 h+1 (k-1)(h+1)-(k-2)
< e -(k-1) , we have

v h v h+1 < µ k n h + 1 k-1 1 -1/(n -h) 1 -1/(h + 1)
.

Moreover, when h ≥ k-1 √ µ k n -1, we have µ k n h+1 k-1 < 1 and 1 -1/(n -h) 1 -1/(h + 1) < 1 -1/((1 -k-1 √ µ k )n + 1) 1 -1/ k-1 √ µ k n with 1 -1/((1 -k-1 √ µ k )n + 1) 1 -1/ k-1 √ µ k n = 1 - 2 k-1 √ µ k -1 2 k-1 √ µ k (1 -k-1 √ µ k ) 1 n + O 1 n 2 .
Note that, from Remark 11, µ 2 > 1/2 and µ 3 > 1/4. Therefore, there exists a positive constant C 1 such that, for all n large enough and h

≥ k-1 √ µ k n -1, we get v h v h+1 < 1 -C 1 n < 1. Consequently the sequence (v h ) h≥ k-1 √ µ k n-1 is increasing and n-3 √ n h= k-1 √ µ k n-1 v h ≤ C 1 nv n-3 √ n . When k ≥ 4, as 1 -1 h+1 (k-1)(h+1)
< e -(k-1) , we get

v h v h+1 < µ k n h k-1 (1 - 1 n -h )(1 - 1 h + 1
).

Moreover when

h ≥ k-1 √ µ k n -1, we have µ k n h k-1 < 1 and (1 - 1 n -h )(1 - 1 h + 1 ) < 1 - 1 3 k-1 √ µ k (1 -k-1 √ µ k ) 1 n , thus the sequence (v h ) h≥ k-1 √ µ k n is increasing and we obtain n-3 √ n h= k-1 √ µ k n v h ≤ C 0 nv n-3 √ n .
By definition, v n-

3 √ n = 1 -n -2/3 (k-1)(n-3 √ n)+1/2 µ k e k-1 3 √ n n -1/6
, therefore we get

v n-3 √ n < µ 3 √ n k 1 + k -1 2 3 √ n n -1/6 .
Thus we obtain

n-3 √ n h=µ k n-i v h ≤ C i n 5/6 µ 3 √ n k 1 + k -1 2 3 √ n . (6) 
where i ∈ [[ 0, 1 ]] depending upon the value of k.

On the other hand,

v h v h-1 = 1 µ k e k-1 h n k-1 τ (h) where τ (h) = 1 + 1 h -1 (k-1)(h-1)+1/2 1 + 1 n -h .
When k ≥ 3 the two factors of τ are increasing functions of h. Indeed the derivative

1 + 1 h -1 (k-1)(h-1)-1/2 (k -1) 1 + 1 h -1 ln 1 + 1 h -1 - 1 h -1 - 1 2(k -1)(h -1) 2 of 1 + 1 h-1 (k-1)(h-1)+1/2
is positive for n large enough. When k ≥ 2 and n large enough, writing

τ (h) = 1 + 1 h -1 h-3/4 1 + 1 h -1 1/4 1 + 1 n -h 1/2 , the function τ is the product of two increasing functions of h on the interval [n/e, k-1 √ µ k n-1]. When k = 2 or 3, n/e ≤ h ≤ k-1 √ µ k n -1 and n large enough, the function τ is maximal for h = k-1 √ µ k n -1 and τ ( k-1 √ µ k n -1) < e k-1 1 + 1 2n 1 -(k -1)(1 -k-1 √ µ k ) (1 -k-1 √ µ k ) k-1 √ µ k .
Moreover as, for k = 2 or 3,

h n k-1 ≤ µ k 1 - 1 k-1 √ µ k n k-1 ≤ µ k 1 - 1 k-1 √ µ k n , we obtain v h v h-1 < 1 - 1 2n (k + 1)(1 -k-1 √ µ k ) -1 k-1 √ µ k (1 -k-1 √ µ k ) < 1.

And as

k-1 √ µ k < 1 -1 k+1 , we have k-1 √ µ k n-1 h=n/e v h ≤ C ′ 1 n v n/e . When k ≥ 4 and n/e ≤ h ≤ k-1 √ µ k n, the function τ is then maximal for h = k-1 √ µ k n and τ ( k-1 √ µ k n) = e k-1 1 - 1 2n (k -1)(1 -k-1 √ µ k ) -1 (1 -k-1 √ µ k ) k-1 √ µ k + O 1 n 2 Moreover, as k-1 √ µ k < 1 -1/(k -1), we have v h v h-1 < 1 - 1 3n (k -1)(1 -k-1 √ µ k ) -1 k-1 √ µ k (1 -k-1 √ µ k ) < 1.
PROOF. (Proposition 10) From Equation ( 4), one has

f (k-1)n,n = { kn n } - n-1 h=1 Λ h .
Moreover, from Lemmas 14 and 16, for all n large enough, one has

n-1 h=n-3 √ n Λ h ≤ (1 -C k ) { kn n } with C k = 1 - k -1 2πk polylog 1 2 , µ k + O 1 3 √ n .
And for n big enough, respectively from Lemma 13 and from Lemmas 14 and 15, both

n/e h=1 Λ h and n-3 √ n
h=n/e Λ h are O 1 n { kn n } and therefore are negligible. Thus, we finally obtain

f (k-1)n,n ≥ C k { kn n } ,
concluding the proof.

Remark 17

The constant terms of the lower and upper bounds can be iteratively improved making use of the constant terms already computed. Nevertheless it is not enough to get an asymptotic estimate of |A n | when n tends towards infinity.

The estimate of Korshunov

We derived from simple bijective constructions the asymptotic order of magnitude of the number of accessible automata, giving a combinatorial interpretation that the asymptotic order is related to the number of set partitions { kn n }. Korshunov obtained a more precise result. He gave an asymptotic estimate [START_REF] Korshunov | Enumeration of finite automata[END_REF]Theorem 4.8 p.51] of this number. His long proof is based on the estimations, when the number of states tends towards infinity, of cardinalities of classes of graphs that better and better approximate the underlying graphs of this class of automata. A key result [START_REF] Korshunov | Enumeration of finite automata[END_REF]Theorem 3.4 p.33] is the estimation of the number of strongly connected graphs.

The link we made between the number of accessible automata and the number of set partitions allows us to reformulate the original estimate of Korshunov in the scale of the Stirling numbers, using their well known asymptotic estimate (see Lemma 6).

Theorem 18 (Korshunov [17,[START_REF] Korshunov | On the number of non-isomorphic strongly connected finite automata[END_REF]) The number |A n | of accessible complete and deterministic automata with n states on a k-letters alphabet satisfies

|A n | ∼ E k n 2 n { kn n } where E k = 1 + ∞ r=1 1 r kr r-1 e k-1 β k -r 1 + ∞ r=1 kr r e k-1 β k -r .
PROOF. The statement of the original result of Koshunov [START_REF] Korshunov | Enumeration of finite automata[END_REF][START_REF] Korshunov | On the number of non-isomorphic strongly connected finite automata[END_REF] is the following: the number |A n | of accessible complete and deterministic automata with n states over a k-letters alphabet satisfies

|A n | ∼ 1 - ka k 1 + a k -1/2 1 + ∞ r=1 1 r kr r-1 e k ν(k) -r 1 + ∞ r=1 kr r e k ν(k) -r 2 n ν n (k) n kn (n -1)! , (8) 
where a k is the root in [0, 1] of the equation 1 + x = xe k/(1+x) and

ν(k) = a a k k (1 + a k ) k-1-a k .
The formula given in Theorem 18 is obtained from Equation ( 8) using that

ζ k = k 1 + a k and a k = k ζ k -1 = k ζ k e -ζ k .
From these equalities we deduce that ν

(k) = k ζ k k-1 e ζ k -k and e k ν(k) = β k e k-1 . Moreover, 1 - ka k 1 + a k -1/2 = ζ k -(k -1) -1/2 = √ 2πα k .
We conclude making use of Stirling's formula for n! and of the asymptotic estimate for the Stirling numbers of the second kind { kn n } mentionned in Lemma 6.

Numerical results

In the following array, we compare for alphabets of size k = 2, 3 and 4 the values of the ratio |An| 2 n n{ kn n } for n = 100, 200, 300 and 400 with

E k = lim n→+∞ |A n | 2 n n { kn n } .
From Theorem 2, one has |A n | = n2 n |F (k-1)n,n | and the numbers |F (k-1)n,n | can be computed making use of the recurrence formula given in Section 5.1 [START_REF] Nicaud | Étude du comportement en moyenne des automates finis et des langages rationnels[END_REF][START_REF] Champarnaud | Random generation of DFAs[END_REF].

The values of E k are obtained from the formula given in Theorem 18. Note that E k quickly converges towards 1, as k tends towards +∞. For instance, E 26 ≈ 0.99999999987.

Rejection method Suppose that we know how to draw at random, for a given probability distribution, an element of F , that we are able to check whether an element of F is in a subset E of F or not. We want to draw at random an element of the set E, with the probability distribution on E induced by the one on F . A rejection algorithm to generate at random an element of E from F is the following.

RandomEfromF()

// draw at random an element

f of E from F repeat f = RandomF() // generate a random element f of F until (f ∈ E) return(f ) // return a random element f of E from F
If p is the probability that an element of F is in E, then, in average, the loop is done 1 p times. Moreover if the complexity of the random generation in F is C F and C E the one to decide whether an element of F is in E or not, then the average complexity of the algorithm is 1 p C F C E . More detail can be found in [START_REF] Devroye | Non-uniform random variate generation[END_REF].

Random generation of an element of the set F (k-1)n,n

We give two methods to randomly and equiprobably generate an element F of F (k-1)n,n .

A recursive method

Here we use a simple combinatorial decomposition in order to generate elements of F m,n at random making use of their enumeration. This kind of recursive method was introduced by Nijenhuis and Wilf [START_REF] Nijenhuis | Combinatorial Algorithms[END_REF] and systematized by Flajolet, Zimmermann and Van Custem [START_REF] Flajolet | A calculus of random generation of labelled combinatorial structures[END_REF].

The algorithm we describe in the following is due to Nicaud [START_REF] Nicaud | Étude du comportement en moyenne des automates finis et des langages rationnels[END_REF] for two-letters alphabets and was generalized to finite alphabets in [START_REF] Champarnaud | Random generation of DFAs[END_REF].

Recall that for all positive integers m and n

F m,n = {((x 1 , • • • , x m ), (y 1 , • • • , y m )) ∈ [[ 1, n ]] m × [[ 1, n ]] m | for all i ∈ [[ 2, m ]], x i ≥ ⌈ i k -1 ⌉ and x i ≥ x i-1 , and for all i ∈ [[ 1, m ]], y i ≤ x i }. and that f m,n = |F m,n |. If m > 1 and n ≥ ⌈ m k-1 ⌉, the last element x m of the first sequence of an element F = ((x 1 , • • • , x m ), (y 1 , • • • , y m )) of F m,n is either equal to n and ((x 1 , • • • , x m-1 ), (y 1 , • • • , y m-1 )
) is an element of F m-1,n , or strictly smaller than n and F ∈ F m,n-1 . From this decomposition and due to the n possible choices for the value of y m if x m = n, we get the following recurrence formula:

       f m,n = 0 if n < ⌈ m k-1 ⌉ f m,n = 1 2 n(n + 1) if m = 1 f m,n = nf m-1,n + f m,n-1 otherwise
Therefore we can compute the values of f i,j for i ∈ [[ 1, (k -1)n ]] and j ∈ [ [ 1, n ]] and store the results in a two-dimensional array. With this precalculus, done once, we easily generate a random element F

= ((x 1 , • • • , x m-1 ), (y 1 , • • • , y m-1
)) of F m,n from right to left, using the decomposition that we just described. When m > 1 and n > ⌈ n k-1 ⌉, to choose whether x m = n or not, we uniformly draw at random an integer x in [[ 1, f m,n ]] and:

-if x ≤ f m,n-1 , we decide that x m < n and recursively draw at random F in F m,n-1 .

-if x > f m,n-1 , we set x m = n, y m is chosen uniformly in [ [ 1, n ]], and we recursively choose

((x 1 , • • • , x m-1 ), (y 1 , • • • , y m-1 )) as a random element of F m-1,n .
This method uses a two-dimensional array of size (k -1)n × n, thus O(n 2 ) space. But it stores the values of f m,n which grow exponentially fast (see Section 4). Therefore the bit space used to store these values is O(n 3 log n). The generation of the array requires, for the computation of each number, at most one addition and one multiplication by a small number, but as these numbers are big, these operations cannot be done in constant time. Thus the time complexity of the precalculus is O(n 3 log n). When the array is stored, the generation of a random element itself is done in time O(n 2 log n).

In practice, to make this kind of algorithms more efficient [START_REF] Denise | Uniform random generation of decomposable structures using floating-point arithmetics[END_REF], one treats integers as real numbers and approximates them using floating-point arithmetic instead of multi-precision one. This leads to a slight loss of uniformity due to the floating-point approximation. But, in general, this loss is not important and one can choose the precision of the floating-point arithmetics used according to the needs of the computation. Here, with floating point arithmetics, the algorithm uses O(n 2 ) space, the precalculus requires O(n 2 ) time and the random generation runs in O(n).

Boltzmann samplers

Duchon, Flajolet, Louchard and Schaeffer [START_REF] Duchon | Boltzmann Samplers for the Random Generation of Combinatorial Structures[END_REF], introduced a method to build random generators for classes of labelled objects that can be described with a combinatorial decomposition. This generators, Boltzmann samplers, can be obtained directly using automatics rules. Note that a recent paper [START_REF] Flajolet | Boltzmann Sampling of Unlabelled Structures[END_REF] deals with the unlabelled version of Boltzmann samplers.

A Boltzmann sampler of real parameter x > 0, in its exponential version, is a process that produces an object γ of a class C whose exponential generating function is C(z) = γ∈C z |γ| /|γ|! with probability

P x (γ) = 1 C(x)
x |γ| |γ|! .

Boltmann samplers do not generate objects of a fixed size, but they guarantee that two elements of the same size have the same probability to be generated. Moreover for any given an integer n, the value of x can be chosen such that the average size of the generated elements is n.

The value of x can be computed by solving an equation that involves the exponential generating function of the objects and its derivatives. Floating point arithmetics is required. The evaluation of x is the only precalculus needed.

The behavior of Boltzmann samplers is often such that the size of the generated object is between (1ε)n and (1 + ε)n with high probability. Therefore, in most cases, an exact size sampler can be obtained using a rejection algorithm.

We use this technique to uniformly generate random set partitions of a set with kn elements into n non-empty subsets. Following the construction of Section 3 we then transform the set partition obtained into a boxed diagram of F (k-1)n,n using rejections when the diagram does not satisfy the k-Dyck condition.

In order to uniformly generate set partitions of a set with kn elements into n parts, we first consider the set P n of partitions of a set into n non-empty sets seen as n sets of non-empty sets. As the exponential generating function of non-empty sets according to their sizes is N(z) = e z -1, the generating function of P n is P n (z) = (e z -1) n n!

, the factor 1/n! "kills" the order present in sequences of n sets. Note that every set partition into n non-empty subsets exactly correponds to n! sequences of n sets.

Under the Boltzmann exponential model of parameter x, the probability for a non-empty set to be of size s is P x (|γ| = s) = (e x -1) -1 x s /s!. Therefore the size of each of the n sets of the partition follows a Poisson law Pois ≥1 of parameter x (a truncated Poisson variable K, where K is conditionned to be ≥ 1). This ensures that all resulting objects of the same size have the same probability to be generated. The average size of the partition is then (see [START_REF] Duchon | Boltzmann Samplers for the Random Generation of Combinatorial Structures[END_REF] Proposition 1): E x (size of a partition) = x P ′ n (x) P n (x)

= nx e x e x -1 .

Note that E x (size of a partition) = nE x (size of a non-empty set) = n N ′ (x) N(x) .

Since we want a partition of size kn, we choose x = x n such that nx n 

Fig. 1 .

 1 Fig. 1. A diagram of width 5 and height 4, a boxed diagram, a 2-Dyck diagram and a 2-Dyck boxed diagram

Fig. 2 .

 2 Fig. 2. A transition structure on a 2-letters alphabet having 1 as initial state

Fig. 3 .

 3 Fig. 3. From a 2-Dyck boxed diagram B ′ to a transition structure of D n

Fig. 3

 3 Fig.3shows an example of the execution of the algorithm on a two-letters alphabet, for B = ((2, 3, 3, 3), (1, 2, 3, 2)) .

  Consequently, the set D n of accessible, complete and deterministic transition structures of size n on a k-letters alphabet is in bijection with the set B n of k-Dyck boxed diagrams of size n. Moreover for any integer n ≥ 1, the number |D n | of accessible complete and deterministic transition structures of size n on a k-letters alphabet is equal to the number |B n | of k-Dyck diagrams of size n and |A n | = 2 n |B n | as stated in Corollary 3.

Fig. 4 .Finally

 4 Fig. 4. From a boxed diagram to the set partition {{1, 3, 6}, {2, 5}, {4, 10}, {7, 9, 11}, {8}} of width m and height n. The input of the algorithm is a partition P given by an array part, with indices from 1 to m + n and values in [[ 1, n ]], such that part[i] = part[j] if and only if i and j are in the same part of P and for every j ∈ [[ 2, m + n ]] such that part[j] ≥ 2, there exists i < j such that part[i] = part[j] -1. In other words, the parts of P are sorted in the order of their smallest element.For instance, for m = 3 and n = 4, the partition {{1, 3, 6}, {5}, {2, 7}, {4}} is represented by the array part:

Lemma 9

 9 n,n ⊂ S (k-1)n,n . As from Proposition 4 the set S m,n of boxed diagrams of width m and height n is in bijection with the set of set partitions of n + m elements into n non-empty subsets, we get: For any n ≥ 1, one has |F (k) (k-1)n,n | ≤ { kn n } .

  (h) m,n the cardinality of |S (h) m,n |, s m,n the cardinality of |S m,n | and f m,n the one of |F m,n |. Using Equations (

Fig. 5 .

 5 Fig. 5. Representation of the decomposition: the left part is a k-Dyck boxed diagram of size h

  and that in both cases n-3√ nh=n/e v h = O 1 n proving in this way Lemma 15.

e xn e xn - 1 =

 1 kn. With notations of Lemma 6, we get x n = ζ k . Hence x n is a constant function of n, only depending upon the size k of the alphabet. The Boltzmann sampler algorithm to uniformly generate a

where θ < 1 since 3 √ µ 4 < e 2/e-1 and k-1 √ µ k tends monotonically towards 1/e. Consequently we have

where i ∈ [[ 0, 1 ]] depending the value of k.

Finally from Equations ( 5), ( 6) and ( 7), we obtain that n-3

√ n

h=n/e v h = O 1/n , concluding the proof.

Lemma 16

For, all n large enough, one has

PROOF. Recall that, for h = Θ(n), one has

As, for m

and the result follows.

Then Proposition 10 is a direct consequence of Lemmas 

reject set partition P of a set of size kn into n non-empty subsets (E i ) 1≤i≤n is then:

To complete the task, the sampler labels the structure obtained with a random permutation of [ [ 1, kn ]].

Using floating point approximation, the average cost of the generation of a set partition is O(n). Testing whether the sum of the sizes of the parts of such a partition is equal to kn or not is also linear.

To compute the average complexity of this algorithm, it remains to estimate the probability for a partition to be of the correct size. Since the exponential generating function of these partitions is P n (z) and the Boltzmann parameter is equal to ζ k , the probability for a random partition to be of size kn is (see [START_REF] Duchon | Boltzmann Samplers for the Random Generation of Combinatorial Structures[END_REF] Eq. 5):

where [z m ]C(z) is the coefficient of z m in C(z). Using Lemma 6 and Stirling formula, we obtain the following estimate: P ζ k (N = nk) ∼ α k √ kn . Thus, the average number of rejections is O( √ n) and the average complexity of the random generation of an element F of F n based on the Boltzmann sampler, using floating point approximation, is O(n 3/2 ).

Open problem To conclude, the estimation of the proportion of minimal automata in A n remains an important open problem. We conjecture that a constant proportion of accessible complete and deterministic automata of A n is minimal. If it is true, the efficiency of the rejection algorithm to generate minimal automata from accessible complete and deterministic ones would be proved and the asymptotic estimation Θ n2 n { kn n } would also hold for minimal automata.