
HAL Id: hal-00459643
https://hal.science/hal-00459643v1

Submitted on 24 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

REGAL: a library to randomly and exhaustively
generate automata

Frédérique Bassino, Julien David, Cyril Nicaud

To cite this version:
Frédérique Bassino, Julien David, Cyril Nicaud. REGAL: a library to randomly and exhaustively
generate automata. 12th International Conference on Implementation and Application of Automata
(CIAA’07), Jul 2007, Prague, Czech Republic. pp.303-305., �10.1007/978-3-540-76336-9_28�. �hal-
00459643�

https://hal.science/hal-00459643v1
https://hal.archives-ouvertes.fr

REGAL: a library to randomly and exhaustively

generate automata

Frédérique Bassino, Julien David, and Cyril Nicaud

Institut Gaspard Monge, UMR CNRS 8049
Université de Marne-la-Vallée, 77454 Marne-la-Vallée Cedex 2, France

{bassino,jdavid01,nicaud}@univ-mlv.fr

Description of the library REGAL

The C++ library REGAL 1 is devoted to the random and exhaustive genera-
tion of finite deterministic automata. The random generation of automata can
be used for example to test properties of automata, to experimentally study av-
erage complexities of algorithms dealing with automata or to compare different
implementations of the same algorithm. The exhaustive generation allows one
to check conjectures on small automata.

The algorithms implanted are due to Bassino and Nicaud, the reader can
refer to [1] for the description and the proofs of the algorithms used. The uni-
form generation, based on Boltzmann samplers, of deterministic and accessible
automata runs in average time O(n3/2) where n is the number of states of the
generated automata.

REGAL works with generics automata. To interface it with another software
platform, the user has to define some basic methods (adding a state or a tran-
sition for example). REGAL also defines an implementation of automata that can
be used directly.

To generate automata, either randomly or exhaustively, a generator object
has to be instancied with the following parameters: the type of the states, the
type of the alphabet, the class of the output automaton, the number of states
of the output automaton and the alphabet.

The exhaustive generator provides methods to compute the first automaton,
to go to the next automaton, and to test whether the last automaton is reached.

To randomly and equally likely generate automata of a given size, one has
to initialize a random generator and then use the method random() as shown in
the example below.

DFAAutomaton<int,char> ∗ result; //Result DFA
Alphabet<char> alpha; //Create an alphabet
alpha. insert (’a ’); alpha. insert (’b ’);
RandomDFAGenerator<int,char,DFAAutomaton<int,char>> rg(50 ,alpha);
for(int counter=0; counter<10000; counter++) a=rg−>random();

Fig. 1. Random generation of 10000 DFA with 50 states on A = {a, b}

1 available at: http://igm.univ-mlv.fr/˜jdavid01/regal.php

Experimental results

Using the exhaustive generator, we computed the exact number of minimal au-
tomata on a two-letters alphabet, for small values of n.

Number of states 2 3 4 5 6 7
Minimal automata 24 1 028 56 014 3 705 306 286 717 796 25 493 886 852

Using the random generator, the proportion of minimal automata amongst de-
terministic and accessible ones can be estimated. The tests in the following array
are made with 20 000 automata of each size.

Size 50 100 500 1 000 2 000 3 000 5 000
Minimal automata 84.77% 85.06% 85.32% 85.09% 85.42% 85.64% 85.32%

On a two-letters alphabet we tested how the size of a random automaton is
reduced by minimization. The following array summarizes the results obtained
on 4 000 automata of size 10 000:

Reduction of the size 0 1 2 3
Proportion of automata 85.26% 13.83% 0.89% 0.02%

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 1000 2000 3000 4000 5000

T
im

e
(s

ec
)

Size of Automata

Hopcroft with Stack
Hopcroft with Queue

Moore

Fig. 2. Time complexities of Moore’s
and Hopcroft’s algorithms

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 6

 0 1000 2000 3000 4000 5000

N
um

be
r

of
 it

er
at

io
ns

Size of automata

Standard Deviation

Fig. 3. Number of iterations in the main
loop of Moore’s algorithm

In Fig.2 the mean time of execution of Moore’s and Hopcroft’s algorithms
has been measured on an Intel 2.8 Ghz. We used 10 000 automata of each size
to compute the mean value. Two different implementations have been tested for
Hopcroft’s algorithm: either with a stack or with a queue.

In Fig.3 the mean number of partitions refinements in Moore’s algorithm is
analysed. Its very slow growth could explain why this algorithm seems efficient
in the average (its worst case complexity of O(n2) is reached for n refinements).

Reference

1. F. Bassino, C. Nicaud, Enumeration and random generation of accessible
automata, Theoret. Comput. Sci., to appear.
Available at http://www-igm.univ-mlv.fr/˜bassino/publi.html

