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1. Introduction

From an industrial point of view, understanding and modelling interface in structures is crucial. In a large number of
assembled structures, interfaces play an essential role in their mechanical behavior. It explains why interface modelling is
not recent, in fact it is considered that the first studies are due to Amontons [3] and Coulomb [7]. At least two different ap-
proaches are used to study mechanically these interfaces. In the first one (phenomenological), the thickness of the interface
is zero and the mechanical properties are obtained from physical considerations. There exists a large class of such models
(see for examples [17,30,15,4,10,2,6,16,5,11,25,14,26,27]). The second one (deductive), consists in starting with a small
thickness (less than 1 mm in glue-bonding processes), imposing mechanical properties to the interface and studying asymp-
totically the problem when the thickness tends to zero. We adopt the second approach in this paper and also consider that
the interface is soft.

The analysis of soft adhesive bonded joints between two deformable bodies involves problems with several parameters.
At least two of these parameters are essential:

� the thickness of the joint, which is small with respect to those of the deformable bodies,
� the stiffness of the joint, which is lower than that of the bodies.

In previous studies (see for example [1,32,18,22–24,28,20,12,33,19,34]), the bonding of two three-dimensional solids un-
der linear elastic, finite strains and viscoelastic conditions by an adhesive layer has been handled by performing asymptotic
analyses, i.e. by assuming the thickness and the stiffness of the joint to tend to zero. With this approach, the layer is replaced
).
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by a mechanical constraint. The layer no longer exists from the geometrical point of view, but is replaced by a constraint
taking the asymptotic behavior of the parameters into account. From the numerical point of view, this theory is crucial be-
cause of the large number of degrees of freedom and the ill-conditioned real problem which it is very hard to solve even in
linear cases. However, it is of great importance to obtain conditions on the parameters whenever it is possible to replace the
real problem by the limit one.

When the adhesive is linearly elastostatic, the local form of the limit problem is subject to a transmission condition link-
ing the stress vector to the displacement jump occurring at the interface. The structure of the contact law is similar in this
case to that of the original constitutive equation, but the strain tensor is replaced by the tensorial product of the displace-
ment jump multiplied by the unit normal vector.

In this paper, this theory is extended to static frictional contact conditions (Signorini and pseudo-Coulomb laws) between
the layer and the deformable bodies. The new conditions of transmission are regularized frictional contact (compliance)
laws. The multivalued nature of the problem can thus disappear and some classical laws are justified. The results obtained
using this approach can usually be interpreted as rheological models, i.e. as a sequence between springs and stops or skid-
ding blocks.

The paper is organized as follows. The notation used is defined and the mechanical problem is presented in Section 2. The
theory of pseudo-friction is outlined, and formal results obtained by performing asymptotic expansions are presented along
with the numerical results in Section 3. The numerical implementation of the laws obtained above is carried out in Section 4.

2. The mechanical problem

Let us consider a body occupying an open bounded set X of IR3 with a smooth boundary @X, where the three-dimensional
space is referred to the orthonormal frame ðO; x1; x2; x3Þ. This set X is assumed to have a non-empty intersection S with the
plane fx3 ¼ 0g. Let e > 0 be a parameter tending to zero, and
Be ¼ x ¼ ðx1; x2; x3Þ 2 X such that jx3j <
e
2

n o
;

Xe ¼ x ¼ ðx1; x2; x3Þ 2 X such that jx3j >
e
2

n o
;

Xe
� ¼ x ¼ ðx1; x2; x3Þ 2 X such that � x3 >

e
2

n o
;

Se
� ¼ x ¼ ðx1; x2; x3Þ 2 X such that� x3 ¼

e
2

n o
;

X� ¼ fx ¼ ðx1; x2; x3Þ 2 X such that� x3 > 0g;

S ¼ fx ¼ ðx1; x2; x3Þ 2 X such that x3 ¼ 0g;

X0 ¼ Xþ [X�:

ð1Þ
Be and Xe are actually the domains occupied by the adhesive and the adherents, respectively (see Fig. 1). The structure is
subjected to body force density u and to surface force density g on part C1 of the boundary, whereas it is clamped on the
remaining part C0 of the boundary. The two bodies and the joint are assumed to be linearly elastic. We take re and ue to
denote the stress tensor and the displacement field, respectively, and under the small perturbation hypothesis, the strain
tensor is
ekhðueÞ ¼ 1
2

@ue
i

@xj
þ
@ue

j

@xi

� �
: ð2Þ
SΒε

 ε / 2

− ε / 2

Ω

ε

ε
+

g

Γ0

Sε

Sε

Γ1

+

Ω-

-

Fig. 1. Geometry of the problem.
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We take aijkl to denote the elasticity coefficients of the adherents and k and l to stand for the Lamé’s coefficients of the glue.
We have therefore to solve the following problem:

Problem 1
ðPeÞ

Find ðue;reÞ such that :

re
ij;j ¼ �ui in X

re
ij ¼ aijkhekhðueÞ in Xe

re
ij ¼ kekkðueÞdij þ 2leijðueÞ in Be

ue ¼ 0 on C0

ren ¼ g on C1

þinterface laws on Se
�

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:
where n denotes the external unit normal vector to X and interface laws between the bodies and the joint (Signorini’s law
and Coulomb’s law) are defined as follows.

For a given function h : X # IR3, we define the restrictions on h on the adherents by h�e and on the glue by hm
e . We also

define the following jumps of h
½h�þe :¼ hþe x1; x2;
e
2

� �þ� �
� hm

e x1; x2;
e
2

� ��� �
; ð3Þ

½h��e :¼ h�e x1; x2; �
e
2

� ��� �
� hm

e x1; x2; �
e
2

� �þ� �
: ð4Þ
We denote
sht
�
Ne :¼ �½h��e e3; ð5Þ

sht
�
Te :¼ ½h��e ��sht�Nee3; ð6Þ

re�
N :¼ �ðree3Þ�e e3; ð7Þ

re�
T :¼ �ree3 ��re�

N e3: ð8Þ
In Section 3, we assume the contact to involve dry friction conditions between the bodies and the thin layer. The Signorini’s
law of unilateral contact and the Coulomb’s law of dry friction are written in the case of monotonous quasi-static loading
(Figs. 2 and 3) as:
N

0

σ

u
N

Fig. 2. Unilateral contact.
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Fig. 3. Dry friction.
½ree3��e ¼ 0;
re�

N 6 0;

suet
�
Ne 6 0;

re�
N suet

�
Ne ¼ 0;

jre�
T j 6 f jre�

N j;
If jre�

T j < f jre�
N j then suet

�
Te ¼ 0;

If jre�
T j ¼ f jre�

N j then suet
�
Te ¼ �frT ; with f P 0;

ð9Þ
where f is the friction coefficient.

3. Frictional contact

3.1. Asymptotic expansions

3.1.1. General considerations
The idea underlying matched asymptotic expansions [9,31] is to find two expansions of the displacement ue and the stress

re in powers of e, i.e. an external expansion in the case of the bodies and an internal one that for the joint, and to connect
these two expansions in order to obtain the same limit. In what follows, we deal with a two-dimensional problem in order to
simplify the computations. The relations obtained in the internal expansions we will be expressed using values occurring in
the external expansions.

3.1.2. External expansions
The external expansion is a classical expansion in powers of e
ueðx1; x2Þ ¼ u0ðx1; x2Þ þ eu1ðx1; x2Þ þ � � � ;
eijðueÞðx1; x2Þ ¼ e0

ij þ ee1
ij þ � � � ;

el
ij ¼

1
2

@ul
i

@xj
þ
@ul

j

@xi

!
;

re
ijðx1; x2Þ ¼ r0

ijðx1; x2Þ þ er1
ijðx1; x2Þ þ � � �

ð10Þ
3.1.3. Internal expansions
In the internal expansions, we perform a blow-up of the second variable. Let y2 ¼ x2

e . The internal expansion gives
4



ueðx1; x2Þ ¼ v0ðx1; y2Þ þ ev1ðx1; y2Þ þ � � � ;
eijðueÞðx1; y2Þ ¼ e�1e�1

ij þ e0
ij þ ee1

ij þ � � � ;

el
11 ¼

@v l
1

@x1
;

el
22 ¼

@v lþ1
2

@y2
;

el
12 ¼

1
2

@v l
2

@x1
þ @v lþ1

1

@y2

� �
;

re
ijðx1; y2Þ ¼ e�1s�1

ij ðx1; y2Þ þ s0
ijðx1; y2Þ þ es1

ijðx1; y2Þ þ � � � ;

re
ij;j ¼

X1
l¼�2

el @sl
i1

@x1
þ @s

lþ1
i2

@y2

!
:

ð11Þ
We use the convention
v l ¼ 0; l < 0; sl ¼ 0; l < �1: ð12Þ
3.1.4. Continuity conditions
The third step in this method consists in connecting the two expansions. We chose some intermediate lines defined by

x2 ¼ �fet , 0 < t < 1, f 2�0;þ1½. When e tends to zero, x2 tends to 0� and y2 ¼ x2=e tends to �1. The principle of the method
[9,31] consists in assuming that the two expansions give both the same asymptotic limits, that is
ðiÞ v0ðx1;�1Þ ¼ u0ðx1;0
�Þ;

ðiiÞ s�1ðx1;�1Þ ¼ 0;

ðiiiÞ s0ðx1;�1Þ ¼ r0ðx1; 0
�Þ:

ð13Þ
3.1.5. Notations
We introduce some new notations. For a given function h : X0 # Rd ¼ 1;2 we define the restrictions on h to X� by h� and

we also define the following jump of h on S as
shtðx1Þ :¼ hþðx1; 0
þÞ � h�ðx1;0

�Þ: ð14Þ
We define C� ¼ f�y2 P 1=2g and Cm ¼ fjy2j 6 1=2g. For a given function hðx1; :Þ : IR2
#IRd; _¼1;2, we define the restrictions

on h to C� by h� and those to Cm by hm. We also define the following jumps of h
½h�þ1=2ðx1Þ :¼ hþ x1;
1
2

� �þ� �
� hm x1;

1
2

� ��� �
; ð15Þ

½h��1=2ðx1Þ :¼ h� x1; �
1
2

� ��� �
� hm x1; �

1
2

� �þ� �
: ð16Þ
We also write
sht
�
N1=2 :¼ �½h��1=2e2; ð17Þ

sht
�
T1=2 :¼ ½h��1=2 ��sht�N1=2e2; ð18Þ
For a symmetric tensor s we define
s�1=2
N :¼ �ðsðx1;�1=2Þe2Þe2; ð19Þ

s�1=2
T :¼ �sðx1;�1=2Þe2 ��s�1=2

N e2: ð20Þ
3.1.6. Elasticity in the thin layer
Given the constitutive equations in the thin layer, we have
e�1s�1
ij þ s0

ij þ es1
ij þ � � � ¼ kðe�1e�1

kk þ e0
kk þ ee1

kk þ � � �Þdij þ 2lðe�1e�1
ij þ e0

ij þ ee1
ij þ � � �Þ: ð21Þ
The identification of the various orders depends on the behavior of the Lamé coefficients k and l with respect to e. We obtain
nine cases corresponding to the values of the limits �k and �l of the ratios k

e and l
e:

(a) �k ¼ �l ¼ 0, s�1
ij ¼ 0, s0

ij ¼ 0.
(b) �k ¼ 0, 0 < �l <1, s�1

ij ¼ 0, s0
ij ¼ 2�le�1

ij .
(c) 0 < �k <1, �l ¼ 0, s�1

ij ¼ 0, s0
ij ¼ �ke�1

kk dij.
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(d) 0 < �k <1, 0 < �l <1, s�1
ij ¼ 0, s0

ij ¼ �ke�1
kk dij þ 2�le�1

ij ,
(e) �k ¼ 1, �l ¼ 0, e�1

kk ¼ 0, s0
ij ¼ 0.

(f) �k ¼ 1, 0 < �l <1, e�1
kk ¼ 0, s0

ij ¼ 2�le�1
ij .

(g) �k ¼ 0, �l ¼ 1, e�1
ij ¼ 0, e0

ij ¼ 0.
(h) 0 < �k <1, �l ¼ 1, e�1

ij ¼ 0, e0
ij ¼ 0.

(i) �k ¼ 1, �l ¼ 1, e�1
ij ¼ 0, e0

ij ¼ 0.

3.1.7. Contact and friction laws
Using the usual notations, we will show in what follows that s�1

N ¼ 0 and s�1
T ¼ 0. In view of the contact and friction laws

given by (6), the following conditions are written on the terms of order zero in the asymptotic expansions:
ss0t
�
N1=2 ¼ 0;

ðs0Þ�1=2
N 6 0;

sv0t
�
N1=2 6 0;

ðs0Þ�1=2
N sv0t

�
N1=2 ¼ 0;

jðs0Þ�1=2
T j 6 f jðs0Þ�1=2

N j;

If jðs0Þ�1=2
T j < f jðs0Þ�1=2

N j then sv0t
�
T1=2 ¼ 0;

If jðs0Þ�1=2
T j ¼ f jðs0Þ�1=2

N j then sv0t
�
T1=2 ¼ �fðs0Þ�1=2

T ; with f P 0:

ð22Þ
3.1.8. Equilibrium
In this paragraph, we consider the equilibrium equation at different orders. We obtain:
Order-2
@s�1
i2

@y2
¼ 0: ð23Þ
Hence, from (13ii), we get
s�1
i2 ðx1; y2Þ ¼ s�1

i2 ðx1;�1Þ ¼ 0: ð24Þ
From (8), the elasticity law in the bodies gives
s�1
i2 ðx1; y2Þ ¼ ai2j2

@v0
j

@y2
; s�1

11 ðx1; y2Þ ¼ a11j1
@v0

j

@y2
: ð25Þ
Hence, from (24), we have
@v0
j

@y2
¼ 0; v0

j ðx1; y2Þ ¼ v0
j ðx1Þ; jy2j >

1
2
: ð26Þ
From Eqs. (23) and (24), s�1
ij ¼ 0 in the bodies, and, due to the matched conditions
v0
j ðx1;�jy2jÞ ¼ u0

j ðx1;0
�Þ: ð27Þ
Order-1
In cases where (a)–(d) s�1

1j is equal to zero, we obtain
@s0
i2

@y2
¼ 0: ð28Þ
Using the connecting conditions (13iii), we have
s0
i2ðx1;�jy2jÞ ¼ r0

i2ðx1;0Þ: ð29Þ
In cases (e) and (f), we have
@s0
22

@y2
¼ 0 ð30Þ
and, therefore,
s0
22ðx1;�jy2jÞ ¼ r0

22ðx1;0Þ: ð31Þ
6



In the thin layer, we obtain nine cases corresponding to the behavior of the coefficients. Let K1 ¼ KT ¼ �l and K2 ¼ KN ¼
�kþ 2�l. fþ is the positive part of a function f.

(a) �k ¼ �l ¼ 0.In this case, s0
ij ¼ 0. Because of the continuity conditions, we obtain
r0ðx1;0Þ ¼ 0; ð32Þ
(b) �k ¼ 0, 0 < �l <1. In this case, s0
11 ¼ 0; s0

12 ¼ �l @v0
1

@y2
; s0

22 ¼ 2�l @v0
2

@y2
.

By integrating and due taking continuity conditions into account, we obtain
r0
12ðx1; 0Þ ¼ �l v0

1 x1;
1
2

�� �
� v0

1 x1;�
1
2

þ� �� �
;

r0
22ðx1; 0Þ ¼ 2�l v0

2 x1;
1
2

�� �
� v0

2 x1;�
1
2

þ� �� �
:

ð33Þ
First we examine the normal components.
The contact law on surfaces Se

� gives
v0
2 x1;

1
2

þ� �
� v0

2 x1;
1
2

�� �
P 0;

v0
2 x1;�

1
2

�� �
� v0

2 x1;�
1
2

þ� �
P 0:

ð34Þ
If r0
22ðx1;0Þ ¼ 0 ðr0

N ¼ 0Þ then (33) and (34) give
v0
2 x1;

1
2

�� �
� v0

2 x1;�
1
2

þ� �
¼ 0;

v0
2 x1;

1
2

þ� �
� v0

2 x1;�
1
2

�� �
P 0;

ð35Þ
which can be written
su0tN 6 0: ð36Þ
If r0
22ðx1;0Þ < 0 ðr0

N < 0Þ then the contact law and (33) give
v0
2 x1;

1
2

þ� �
� v0

2 x1;
1
2

�� �
¼ 0;

v0
2 x1;�

1
2

�� �
� v0

2 x1;�
1
2

þ� �
¼ 0;

r0
22ðx1; 0Þ ¼ 2�l v0

2 x1;
1
2

þ� �
� v0

2 x1;�
1
2

�� �� �
;

ð37Þ
which can be written
r0
Nðx1;0Þ ¼ �2�l u0� �� �

N : ð38Þ
We then examine the tangential components.
If jr0

12j < f jr0
22jðjr0

T j < f jr0
NjÞ then the friction law and (33) give
v0
1 x1;

1
2

þ� �
� v0

1 x1;
1
2

�� �
¼ 0;

v0
1 x1;�

1
2

�� �
� v0

1 x1;�
1
2

þ� �
¼ 0;

r0
12ðx1; 0Þ ¼ �l v0

1 x1;
1
2

þ� �
� v0

1 x1;�
1
2

�� �� �
;

ð39Þ
which can be written
r0
Tðx1;0Þ ¼ ��l u0� �� �

T : ð40Þ
7



If jr0
12j ¼ f jr0

22j ðjr0
T j ¼ f jr0

NjÞ then the friction law and (24) give
v0
1 x1;

1
2

þ� �
� v0

1 x1;
1
2

�� �
¼ f1r0

12ðx1;0Þ;

v0
1 x1;�

1
2

�� �
� v0

1 x1;�
1
2

þ� �
¼ f2r0

12ðx1;0Þ;

v0
1 x1;

1
2

þ� �
� v0

1 x1;�
1
2

�� �
¼ 1

�l
þ f1 þ f2

� �
r0

12ðx1;0Þ;

ð41Þ
which can be written
u0� �� �
T ¼ �

1
�l
þ f

� �
r0

Tðx1;0Þ: ð42Þ
To summarize, we obtain
r0
N ¼ �2�lsu0t

þ
N ;

jr0
T j 6 f jr0

Nj;
If jr0

T j < f jr0
Nj then r0

T ¼ ��lsu0tT ;

If jr0
T j ¼ f jr0

Nj then su0tT ¼ �fr0
T ; f P 0:

ð43Þ
(c) 0 < �k <1, �l ¼ 0:
In this case s0

11 ¼ s0
22 ¼ �k

@v0
2

@y2
, s0

12 ¼ 0. For the normal part, we proceed as in (b), by replacing 2�l by �k. The tangential part
corresponds to (a). We obtain
r0
N ¼ ��ksu0t

þ
N ;

r0
T ¼ 0:

ð44Þ
(d) 0 < �k <1, 0 < �l <1.

In this case, s0
11 ¼ �k

@v0
2

@y2
, s0

i2 ¼ Ki
@v0

i
@y2

. Here, we again proceed as in (b). We obtain
r0
N ¼ �ð�kþ 2�lÞsu0t

þ
N ;

jr0
T j 6 f jr0

Nj;
If jr0

T j < f jr0
Nj then r0

T ¼ ��lsu0tT ;

If jr0
T j ¼ f jr0

Nj then su0
t T ¼ �fr0

T ; f P 0:

ð45Þ
(e) �k ¼ 1, �l ¼ 0.

We have @v0
2

@y2
¼ 0; s0

12 ¼ 0. For the normal tangential part, we proceed as in (a). The normal part becomes
v0
2 x1;

1
2

�� �
¼ v0

2 x1;�
1
2

þ� �
: ð46Þ

If r0
22 < 0 ðrN < 0Þ then

v0
2 x1;

1
2

þ� �
¼ v0

2 x1;�
1
2

�� �
;

su0tN ¼ 0:
ð47Þ

If r0
22 ¼ 0 ðrN ¼ 0Þ, we have

v0
2 x1;

1
2

þ� �
� v0

2 x1;�
1
2

�� �
P 0;

su0tN 6 0:
ð48Þ

To summarize, we have

su0tN 6 0;r0
N 6 0; su0tNr

0
N ¼ 0;

r0
T ¼ 0:

ð49Þ
(f) �k ¼ 1, 0 < �l <1.

We have @v0
2

@y2
¼ 0; s0

12 ¼ �l @v0
1

@y2
. The treatment of the tangential part is similar to (b) and the treatment of the normal part

is similar to (e). To summarize, we obtain
8



su0tN 6 0; r0
N 6 0; su0tNr

0
N ¼ 0;

jr0
T j 6 f jr0

Nj;
If jr0

T j < f jr0
Nj then r0

T ¼ ��lsu0tT ;

If jr0
T j ¼ f jr0

Nj then su0tT ¼ �fr0
T ; f P 0:

ð50Þ
The three last cases call for special treatment.
(g)(h)(i) �l ¼ 1.
@v0

i
In these cases, we have
@y2
¼ 0. We proceed as in (e) on the normal and tangential parts. This gives
v0
i x1;

1
2

�� �
¼ v0

i x1;�
1
2

þ� �
: ð51Þ
Here, we proceed as in the previous cases.

If r0
22 < 0 ðrN < 0Þ, then
v0
2 x1;

1
2

þ� �
¼ v0

2 x1;�
1
2

�� �
;

and thus su0tN ¼ 0:
ð52Þ
If r0
22 ¼ 0 ðrN ¼ 0Þ, as in the previous paragraph,
v0
2 x1;

1
2

þ� �
� v0

2 x1;�
1
2

�� �
P 0;

thus su0tN 6 0:
ð53Þ
If jr0
12j < f jr0

22j ðjr0
T j < f jr0

NjÞ, then we have
v0
1 x1;

1
2

þ� �
� v0

1 x1;
1
2

�� �
¼ 0;

v0
1 x1;�

1
2

�� �
� v0

1 x1;�
1
2

þ� �
¼ 0;

and hence su0tT ¼ 0:

ð54Þ
If jr0
12j ¼ f jr0

22j ðjr0
T j ¼ f jr0

NjÞ, then the friction law and (24) gives
v0
1 x1;

1
2

þ� �
� v0

1 x1;
1
2

�� �
¼ f1r0

12ðx1;0Þ;

v0
1 x1;�

1
2

�� �
� v0

1 x1;�
1
2

þ� �
¼ f2r0

12ðx1; 0Þ;

v0
1 x1;

1
2

þ� �
� v0

1 x1;�
1
2

�� �
¼ ðf1 þ f2Þr0

12ðx1;0Þ;

su0tT ¼ �fr0
Tðx1;0Þ:

ð55Þ
Therefore,
su0tN 6 0; r0
N 6 0; su0tNr

0
N ¼ 0;

jr0
T j 6 f jr0

Nj;
If jr0

T j < f jr0
Nj then su0tT ¼ 0;

If jr0
T j ¼ f jr0

Nj then su0tT ¼ �fr0
T ; f P 0:

ð56Þ
The nine cases are summarized in Table 1.

3.2. Numerical results

In this part, we proceed as previous studies [28,20]. The example of a dovetail assembly (Figs. 4 and 5) is treated [29]. The
aim of this numerical study is to confirm that the numerical results are coherent with the theory (validation) and to deter-
mine the thickness of the layer at which the limit interface law can be taken to be valid (quantification). The initial problem
is therefore solved numerically in the case of a thin layer with decreasing thickness and stiffness values, as done by Ould-
Khaoua et al. [28]. A relaxation procedure is used for this purpose, as in previous studies [13,29].

The numerical results obtained are then compared with the theoretical results. In order to simplify the computations, the
Lamé’s coefficients of the joint are assumed to be given by
9



Table 1
Interface laws with frictional contact (with 1: jrT j < f jrN j, 2: jrT j ¼ f jrN j).

l=e! 0 sutN 6 0; rN 6 0, sutNrN ¼ 0; rT ¼ 0 rN ¼ ��k sut
þ
N , rT ¼ 0 rN ¼ 0, rT ¼ 0

l=e! �l sutN 6 0; rN 6 0, sutNrN ¼ 0, jrT j 6 f jrN j,
if 1) rT ¼ ��l sutT , if 2) sutT ¼ �frT

rN ¼ �ð�kþ 2�lÞ sut
þ
N , jrT j 6 f jrN j,

if 1) rT ¼ ��l sutT , if 2) sutT ¼ �frT

rN ¼ �2�l sut
þ
N , jrT j 6 f jrN j, if 1) rT ¼ ��l

suÞtT , if 2) sutT ¼ �frT

l=e!1 sutN 6 0; rN 6 0, sutNrN ¼ 0, jrT j 6 f jrN j,
if 1) sutT ¼ 0, if 2) sutT ¼ �frT

sutN 6 0; rN 6 0, sutNrN ¼ 0, jrT j 6 f jrN j,
if 1) sutT ¼ 0, if 2) sutT ¼ �frT

sutN 6 0; rN 6 0, sutNrN ¼ 0, jrT j 6 f jrN j,
if 1) sutT ¼ 0, if 2) sutT ¼ �frT

k=e!1 k=e! �k k=e! 0

b = 65 mm

f = 40 mm

a = 87 mm

c = 43 mm

d = 148 mm

e = 72 mm

g = 103 mm

a b

c

d

e f

g

S

A

CD

ε

ε

S
ε

th
in

 la
ye

r
B

E

+
-

Fig. 4. The dovetail assembly.

Fig. 5. Mesh of the structure.
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Table 2
The nine cases.

Case (e) c ¼ 0:5, d ¼ 1:5 Case (c) c ¼ 1, d ¼ 1:5 Case (a) c ¼ 1:5, d ¼ 1:5
Case (f) c ¼ 0:5, d ¼ 1 Case (d) c ¼ 1, d ¼ 1 Case (b) c ¼ 1:5, d ¼ 1
Case (i) c ¼ 0:5, d ¼ 0:5 Case (h) c ¼ 1, d ¼ 0:5 Case (g) c ¼ 1:5, d ¼ 0:5

80.0 90.0 100.0
X

170.0

180.0

190.0

200.0

210.0

220.0

 σ
 N

or
m

al
 / 

[U
N

]

 ε=0.01

 ε=0.005

 ε=0.001

 ε=0.0005

 ε=0.0001

Theoretical

Implemented

Fig. 6. Ratio between normal stress and normal displacement (case b).

80.0 90.0
X

87.0

88.0

89.0

90.0

91.0

 σ
 T

an
ge

nt
ia

l /
[U

T
]

 ε=0.01

 ε=0.005

 ε=0.001

 ε=0.0005

 ε=0.0001

Theoretical

Implemented

Fig. 7. Ratio between tangential stress and tangential displacement (case d).
ke ¼ eck; c P 0;
le ¼ edl; 0 6 d < 2:

�

The problem is solved with decreasing values of e,
1� 10�2; 5� 10�3; 1� 10�3; 5� 10�4; 1� 10�4:
In order to simplify the procedure, the notations given in Table 2 are used.
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0 uN

KN

Fig. 8. Interpretation of the normal part of the limit law.

0 uT

KT
-μσ

N

Fig. 9. Interpretation of the tangential part of the limit law.
In order to analyze the results obtained, the displacement fields (uN , uT ) and the stress vector (rN , rT ) were computed on
S�e in the case of the initial problem (and on S in that of the limit problem) in the nine cases studied. The theoretical and
numerical curves of the stick and sliding nodes are then compared. The friction problem is solved by means of a fixed point
algorithm coupled with a relaxation procedure [29]. Similar results were obtained (see Figs. 6 and 7). As can be seen from
these figures, the limit law can be taken to be valid for at thin layer thickness up to 10�3 mm. This value is suitable for a large
class of problems (for example in glue-bonding processes).

3.3. Predictive nature of the model

In this section, we focus on a particular characteristic of the model, its predictive nature which depends on the mechan-
ical and geometrical parameters of the glue and the adherents. The model presented in the previous paragraphs involves four
parameters: the thickness of the glue e, the stiffness coefficients of the glue k and l and the friction coefficient f.

We observe in Table 1, that the various cases depend both on the limits of k=e and of l=e. We stress the fact that the nine
laws that appear in Table 1 depend only on the relative values of the parameters. If mathematically, these limits are perfectly
defined, mechanically, in a non academic problem, they are a priori unknown. The engineer only knows (or has the possi-
bility of knowing) the thickness and the stiffness of the glue. The limits are approximated in a satisfactory way by the ratio
between the stiffness and the thickness. In other words, in Table 1, the value of �k and �l can be replaced by k=e and l=e,
respectively. But these approximations are never equal to zero or to infinity. So when shall we consider that these limit val-
ues are obtained? Simply by comparison to a reference value. For example in the case of isotropic adherents, the reference
values, would be km=L or lm=L, where km and lm are the stiffness coefficients and L the characteristic length of the adherents
(chosen equal to 1 in the numerical applications), with k� km, l� lm and e� L, which expresses the fact that the interface
is both soft and thin.

More precisely, when

� k=e and l=e are very small by comparison to the reference value, i.e. the glue is relatively more soft than thin, �k and �l shall
be taken equal to zero;

� k=e and l=e are very large by comparison to the reference value, i.e. the glue is relatively more thin than soft, �k and �l shall
be taken equal to infinity;

� k=e and l=e are finite by comparison to the reference value, i.e. the glue is as thin as soft, �k and �l shall be taken equal to k=e
and l=e, respectively.

Numerically, we can observe that ‘‘very small” corresponds to less than 3% of the reference value and that ‘‘very large”
corresponds to more than 30 times the reference value. The ‘‘finite case” corresponds to the range between these two ex-
treme values.

3.4. Rheological interpretation

Based on the mechanical model obtained above, this model can be interpreted in rheological terms. The normal part of the
model (contact law) can be interpreted as the sequence between a spring with stiffness KN and a stop (Fig. 8). Elastic behav-
ior is classically modeled using spring and unilateral contact using a stop. At the limit, the behavior of the thin layer is con-
served: the spring corresponds to the elastic part of the model, and the stop corresponds to the non-linear part. In fact, at the
limit, the elasticity-unilateral contact sequence becomes a spring-stop sequence. This result is quite general. As an example,
an interface consisting of two thin layers with different stiffnesses will become a sequence of two springs with different
rigidities. On similar lines, the tangential part of the present model can be regarded as a sequence between a spring corre-
sponding to the elasticity of the thin layer and a skidding block corresponding to the friction on the surface between the
adherents and the adhesive (Fig. 9).
12



4. Numerical implementation

In what follows, we will adopt the two-dimensional context, focusing on the contact between a deformable solid A occu-
pying X and a rigid body. In this case,

Problem 2
ðPÞ

Find ðu;rÞ such that :

rij;j ¼ �ui in X

rij ¼ aijkhekhðuÞ in X

u ¼ 0 on C0

rn ¼ g on C1

rN 6 0 on S

rN ¼ �KNuþN on S

jrT j 6 f jrNj on S

If jrT j < f jrN j then rT ¼ �KT uT

If jrT j ¼ f jrN j then uT ¼ �frT with f P 0

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:
The contact laws are shown in Figs. 10 and 11. In lines with [8], the above problem is equivalent to:

Problem 3. Find q, the fixed point of the application q! f jrNðuðqÞÞj, where u ¼ uðqÞ is the solution of
Find u 2 V such that :

JðuÞ 6 JðvÞ; 8v 2 V ;

�

Fig. 11. Contact law: tangential component (the dotted line corresponds to an infinite value of KT ).

Fig. 10. Contact law: normal component (the dotted line corresponds to an infinite value of KN).
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with
JðvÞ ¼ 1
2

Z
X

aeðvÞeðvÞ dx�
Z

X
u � u dxþ

Z
C1

g � u dlþ
Z

S
/ðvNÞ dsþ

Z
S

wðvTÞ ds:
where / is given by
/ðvNÞ ¼
KN

2
ðvþNÞ

2
:

and w is given by
wðvTÞ ¼
1
2

KT :ðvTÞ2 þ q jvT j �
q
KT

� �þ
:

Problem 3 is discretized using a finite element method formulated in terms of the displacements. We usually adopt P1 finite
elements (triangles with three nodes and six degrees of freedom) or Q1 finite elements (quadrangles with four nodes and
eight degrees of freedom). We have to minimize a functional still denoted J for v in R2NP such that
JðvÞ ¼ 1
2

vT Av þ 1
2
ðPvÞT BðPvÞ � vT L:
The following notations are used:

NP: total number of nodes,
NC: number of contact nodes,
IN: indices of normal components of contact nodes,
IT : indices of tangential components of contact nodes,
A: stiffness matrix associated with volume terms with coefficient aij,
B: stiffness matrix to the surface terms with coefficient bij,
P: projection from R2NP to R2NC ,
L: generalized loading vector with coefficients Li.
4.1. Relaxation method with constraints

The relaxation method [13] consists in finding the solution to Problem 2 by solving a sequence of minimization problems
in R2NP
Find u
nþ1

2
i such that 8v 2 R2NP;

Jðunþ1
1 ; . . . ;unþ1

i�1 ; u
nþ1

2
i ;un

iþ1; . . . ;un
2NPÞ 6 Jðunþ1

1 ; . . . ;unþ1
i�1 ;v ;un

iþ1; . . . ;un
2NPÞ;

8<
:

x is taken to denote the relaxation coefficient.
First we deal with the normal components.

� i 2 IN

The algorithm is written
u
nþ1

2
i ¼ 1

d
nþ1

2
ii

Li �
Pi�1

j¼1
dnþ1

ij unþ1
j �

P2NP

j¼iþ1
dn

iju
n
j

!

with

dn
ij ¼

aij þ cðun
j Þbij if j 2 IN

aij þ gðun
j Þbij if j 2 IT

aij otherwise

8>><
>>:

cðuÞ ¼
0 if u 6 0

1 if u > 0

(

and gðuÞ ¼
0 if juj > q

KT

1 if juj 6 q
KT

(

unþ1
i ¼ ð1�xÞun

i þxu
nþ1

2
i

8>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>:
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As regards the tangential components, we have

� i 2 IT

First we take the fixed point problem qlþ1
i ¼ f jrNðuðql

iÞÞj and write
Table 3
Behavio

Stiffnes

ð1Þ �l ¼
ð2Þ �l ¼
ð3Þ �l ¼
ð4Þ �l ¼
ð5Þ �l ¼
ð6Þ �l ¼
u
nþ1

2
i ¼ 1

d
nþ1

2
ii

ðLi �
Pi�1

j¼1
dnþ1

ij unþ1
j �

P2NP

j¼iþ1
dn

iju
n
j � hðunþ1

2
i Þ:ql

iÞ

with

hðuÞ ¼
�1 if u < �q

KT

1 if u > q
KT

0 if juj 6 q
KT

8>><
>>:

unþ1
i ¼ ð1�xÞun

i þxu
nþ1

2
i

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:
4.2. Comments

This algorithm is accelerated by means of a diagonal procedure consisting partly in partially solving the problem with a
given ql [29]. Another means of improvement consists in applying condensation method to the contact nodes in order to
shorten the procedure [21]. The above algorithm can easily be extended to the contact between several deformable bodies.

4.3. Testing the validity of the algorithm: compression of a bar

In this paragraph the algorithm is tested and its validity is confirmed. We used a benchmark test developed by the group
working on ‘‘Validation of computer codes” at the French Research Group ‘‘Large Deformations and Damage” [29].

Here we adopt the context of plane strains and take the case of a long bar with a square section (Fig. 12) and Lame’s coef-
ficients k ¼ 45 GPa and l ¼ 54 GPa.
r of the interface for some stiffness.

s Gap AB Sliding jrT j ¼ f jrN j BC Stick jrT j < f jrN j CD

5:4� 10þ8; �k ¼ 4:5� 10þ8 3 nodes 16 nodes 13 nodes

5:4� 10þ2; �k ¼ 4:5� 10þ8 3 nodes 14 nodes 15 nodes

5:4� 10þ2; �k ¼ 4:5� 10þ2 3 nodes 13 nodes 16 nodes

5:4� 10�2; �k ¼ 4:5� 10þ8 0 nodes 00 nodes 32 nodes

5:4� 10�2; �k ¼ 4:5� 10þ2 0 nodes 00 nodes 32 nodes

5:4� 10�2; �k ¼ 4:5� 10�2 0 nodes 00 nodes 32 nodes

EG

DA B C

40 mmF1

F2

Fig. 12. The problem of the long bar.
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0.0 10.0 20.0 30.0 40.0
X

−0.00060

−0.00040

−0.00020

0.00000

U
N

KT=54.1E+02, KN=153.1E+02

KT=54.1E+04, KN=153.1E+04

Raous et al.

Fig. 13. Normal displacement with respect to X.

0.0 10.0 20.0 30.0 40.0
X

−0.010

0.000

0.010

0.020

0.030

U
T

KT=54.1E+00, KN = 153.1E+00

KT=54.1E+04, KN = 153.1E+04

Raous et al.

Fig. 14. Tangential displacement with respect to X.
The contact zone (interface law) corresponds to the part AD with a friction coefficient equal to f ¼ 1. u1 ¼ 0 on DE and
u1 ¼ u2 ¼ 0 at point D. The loading F1 ¼ 10 daN=mm2 is imposed on AG and F2 ¼ �5 daN=mm2 on GE. Using the finite ele-
ment method, the contact zone is discretized by 32 nodes. The changes in contact status are given in Table 3 at different
values of �l and �k.

If we compare the results obtained with those published in [29] (Signorini–Coulomb laws) it can be seen that at
�k ¼ 4:510þ8 and �l ¼ 5:410þ8 (first line in Table 3), the present results are similar to those obtained by Raous et al. [29]. These
coefficients, which are very large (i.e. ‘‘equal” to infinity), correspond to the limit case (Signorini–Coulomb). The decrease in
the values of �l (lines 1, 2 and 4) corresponds to the increase in the stick zone (13, 15 and 32 nodes). Note that for this exam-
ple and for cases presented in Fig. 13, that the normal displacements are not changed a lot by the variations of KN and KT . In
particular, the penetration is negligible. However, as observed on Fig. 14, for this problem the variations of coefficients
strongly affect the tangential displacements. A low value of the coefficient KT reflects an increase in the tangential displace-
ment. The nodes slide without reaching the value of Coulomb’s sliding limit (Fig. 14). Note that numerical tests have shown
the robustness of this algorithms [33].
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5. Conclusion

A method is presented here for modeling a soft thin elastic layer under unilateral contact and dry friction conditions,
using asymptotic expansions. Nine contact laws of the compliance kind are obtained and their validity is confirmed. There
laws depend on the ratio between the stiffness and thickness parameters of the adhesive. The nine cases are obtained by a
comparison with a reference value associated to the rigidity and the geometry of the adherents. These laws were imple-
mented in a Finite Element software program. An academical example was introduced, validated and compared with clas-
sical tests [29]. The relaxation algorithm developed for dealing with these laws shows the efficiency and the robustness of
this method in these classical tests.

This study should lead to many developments. It would be of interest to extend the results to account for the residual
stress and to an adhesive which having a similar rigidity to those of the adherents.
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