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amage modeling of quasi-brittle interfaces such as the mortar/brick interfaces
. For this purpose, a model is developed based on a bulk model presented by
ino, which takes the damage to the mortar joint into account. A quasi-fragile

s introduced using an asymptotic technique. This model memorizes some of
anical characteristics of the interface, such as the thickness, elastic coefficients,
ess, and the damage variable. Numerical simulations are performed using the
ware: academic cases involving traction and shear loads are presented.
1. Introduction

The modeling of interfaces between solids in structure assem-
blies is of great importance in mechanical technology. These inter-
faces contribute crucially to the strength of many structures. It is
therefore necessary to develop rather fine models. One of the main
problems arising here is that of developing a unified theory to
model interfaces, since the contact is often unique from a tribolog-
ical point of view, i.e. the model depends on the materials in con-
tact. Another problem is due to the smallness of the interface as
well as its low rigidity. A large class of models has been developed
in previous studies to describe the behavior of interfaces (see [20]
and the references therein). Many studies based on the use of
asymptotic techniques have focused on the behavior of interfaces
(see for example [8,16,10,13,14,12] and the references therein).
The aim of these techniques is to take microscopic details into ac-
count in the interface model. In the present study, we are espe-
cially interested in defining the behavior of quasi-brittle
interfaces. A new model is presented for simulating the damage
occurring in interfaces of this kind, using an asymptotic technique.
This modeling procedure takes into account mechanical processes
responsible for rupture, such as the unilateral contact and friction
on the microscopic scale and the normal and tangential damage.
The model was implemented in a finite element software and
tested successfully on some academic examples.
ssou), lebon@lma.cnrs-mrs.fr
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This paper consists of four parts. In the first part, previous
experimental results are recalled. The second part is devoted to
the modeling of quasi-brittle interfaces; the modeling procedure
is decomposed into three steps. In the third part, the numerical
implementation in a finite element software is presented; two
algorithms are described in detail. The fourth part gives the numer-
ical results obtained in the case of two examples.
2. Characterization of interfaces: comments on experimental
results

In a former study, we attempted to characterize the local behav-
ior of the interface between full and hollow bricks and mortar
joints, which constitutes a typical quasi-brittle interface (see
[4,5]). The results obtained are summarized below.

The experimental device used [2,3] was designed for studying on
the local scale the shearing behavior of a simple assembly of two
(Fig. 1) and three (Fig. 2) full or hollow bricks ð210� 50 mmÞwhich
are connected by a mortar joint 10 mm thick. The samples are sub-
jected to a monotonously increasing load up to rupture.

We observed the occurrence of the following behavior (see also
Fig. 3):

� rigid elastic behavior up to the rupture, followed by friction
sliding;

� the behavior of full bricks is fragile after the limit strength has
been reached;

� the behavior of hollow bricks is quasi-fragile after the limit
strength has been reached;
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Fig. 1. Experimental device with two bricks.

brick
brick

brick

m
ortar

m
ortar

Fig. 2. Experimental device with three bricks.
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Fig. 3. (Dimensionless) Typical behavior of the mortar/brick interface (full and
hollow bricks).
� wide dispersion of the data in the case of hollow brick samples,
due mainly to the non-uniform distribution of the mortar spikes
and local defects in the components of the bricks;

� two and three bricks samples show similar behavior. The choice
of the basic cell therefore has no effect on the local scale.
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3. Model description

3.1. General considerations and notations

The model described in this section is an extension of the bulk
model introduced by Gambarotta and Lagomarsino [6], which
takes the damage of the mortar joint into account. The interface
modeling procedure (Fig. 4) used consists of three steps:

� We consider a macroscopic bulk model for quasi-fragile
materials.

� We assume the structure to consist of three phases: material 1
(brick for example), material 2 (mortar for example) and a thin
interphase between the two materials, formed by the material
described in the first step.

� Since the interphase is thin, we obtain an interface model by
performing an asymptotic analysis [7,15], where the thickness
of the interface tends to zero.

The model obtained memorizes some of the geometrical and
mechanical characteristics of the interphase such as its thickness,
elastic coefficients, normal and tangential stress, and the damage
variable.

For the sake of simplification, we consider a structure occupying
an open bounded set X of R2, with a smooth boundary @X. The two-
dimensional space is referred to the orthonormal frame ðO; x1; x2Þ.

3.2. First step: bulk model

In this section, the bulk model introduced by Gambarotta and
Lagomarsino [6] is briefly described. This model is dedicated to
masonry structures: the masonry is taken to be a ‘‘material” show-
ing non-linear damage behavior. The macroscopic behavior is
determined by applying an averaging process based on micro-
scopic considerations. As classically done, the strain tensor is
decomposed into linear and non-linear (anelastic) parts:

e ¼ ee þ ean ð1Þ

with

r ¼ Kee and ean ¼ Srr ð2Þ

where K denotes the elastic rigidity tensors. At a local level (on a
Representative Elementary Volume, Fig. 5), the stress vector is
decomposed into normal rn and tangential s parts and the normal
and tangential components of ean are expressed by (3):

ean
n ¼ haHðrnÞrn

ean
t ¼ kaðs� f Þ

�
ð3Þ

where f ¼ s if s 2 I ¼� � lrn;þlrn½ and f ¼ �lrn if s R I (Fig. 6). H
is the Heaviside function of the unilateral response of the joint and
a is the damage variable. h and k are positive coefficients denoting
the opening and the sliding compliances of the mortar joint, and l
is the internal friction coefficient.

We can write

ean
t ¼ kavIðsÞðs� lrnÞ ð4Þ

where vI is the characteristic function of the set I, complementary
set of I, such that:

– If s R I, vIðsÞ ¼ 1, there is tangential damage.
– If s 2 I, vIðsÞ ¼ 0, there is no tangential damage.

Sr is therefore given locally in matrix form by:

Sr ¼
haHðrnÞ 0
�kavIðsÞl kavIðsÞ

� �
ð5Þ
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Fig. 7. Evolution of RðaÞ.
The damage variable a is governed by a yield condition:

UðaÞ < 0 no evolution of the damage
UðaÞ ¼ 0 evolution of the damage

�
ð6Þ

where

UðaÞ ¼ Y � RðaÞ

Y ¼ 1
2

hHðrnÞr2
n þ

1
2

kvIðsÞðs� lrnÞ2 ðenergy release rateÞ
ð7Þ
3

R, the material toughness, is defined by (see Fig. 7):

RðaÞ ¼
R0a if 0 6 a 6 1
R0
a if a P 1

(
ð8Þ

The parameter R0 is a material coefficient of toughness.

3.3. Second step: the interphase

In this section, the structure is taken to consist of two materials
separated by a thin interphase which is a ‘‘mixture” of the other
two materials. The interphase is assumed to be parallel to the x1-
axis and the thickness, which is assumed to be constant, is denoted
by e. In what follows, the constitutive equations are those given in
the previous section, i.e. the interface consists of a quasi-brittle
material. We assume the elastic part to be isotropic and taking
the external normal vector x2, the constitutive equation is

r ¼ ðId þ KSrÞ�1Ke ¼ Kre ð9Þ

Id is the identity tensor of order two.



Introducing the Lame’s coefficients k and G, we can write:

Kr ¼

kþ 2G� k2haH
1þðkþ2GÞhaH k� kðkþ2GÞhaH

1þðkþ2GÞhaH 0

k
1þðkþ2GÞhaH

kþ2G
1þðkþ2GÞhaH 0

� �lkGkavI
ð1þðkþ2GÞhaHÞð1þGkavIÞ

� �lðkþ2GÞGkavI
ð1þðkþ2GÞhaHÞð1þGkavIÞ

G
1þGkavI

0BBBB@
1CCCCA
ð10Þ
3.4. Third step: asymptotic expansions

3.4.1. General considerations
The idea of using matched asymptotic expansions [1,19] is to

find two expansions of the displacement ue and of the stress re

in powers of e, that is, an external one in the bodies and an internal
in the joint, and to connect these two expansions in order to obtain
the same limit. In what follows, we have addressed a two-dimen-
sional problem in order to simplify the computations. The relations
obtained in the internal expansions will be expressed using values
occurring in the external expansions.

3.4.2. External expansions
The external expansion is a classical expansion in powers of e:

ueðx1; x2Þ ¼ u0 þ eu1 þ � � � þ enun þ � � �

eijðueÞðx1; x2Þ ¼ e0
ij þ ee1

ij þ � � � þ enen
ij þ � � �

el
ij ¼

1
2

@ul
i

@xj
þ
@ul

j

@xi

!

re
ijðx1; x2Þ ¼ r0

ij þ er1
ij þ � � � þ enrn

ij þ � � �

ð11Þ

un ¼ unðx1; x2Þ, en
ij ¼ en

ijðx1; x2Þ and rn
ij ¼ rn

ijðx1; x2Þ are the coefficients
of the expansions.

3.4.3. Internal expansions
In the internal expansion, we perform a blow-up of the second

variable. Let us denote y2 ¼ x2
e . The internal expansion gives:

ueðx1; x2Þ ¼ v0 þ ev1 þ � � � þ envn þ � � �

eijðueÞðx1; y2Þ ¼ e�1e�1
ij þ e0

ij þ ee1
ij þ � � � þ enen

ij þ � � �

el
11 ¼

@v l
1

@x1

el
22 ¼

@v lþ1
2

@y2

el
12 ¼

1
2

@v l
2

@x1
þ @v lþ1

1

@y2

� �
re

ijðx1; x2Þ ¼ e�1s�1
ij þ s0

ij þ es1
ij þ � � � þ ensn

ij þ � � �

re
ij;j ¼

X1
l¼�2

el @sl
i1

@x1
þ @s

lþ1
i2

@y2

!
:

ð12Þ

We use the convention v l ¼ 0 if l < 0; sl ¼ 0 if l < �1: ð13Þ

vn ¼ vnðx1; y2Þ and sn
ij ¼ sn

ijðx1; y2Þ are the coefficients of the
expansions.

3.4.4. Continuity conditions
The third step in the method consists in connecting of the two

expansions. We choose some intermediate lines defined by
x2 ¼ �het , 0 < t < 1, h 2�0;þ1½. When e tends to zero, x2 tends to
0� and y2 ¼ x2=e tends to �1. The principle of the method [1,19]
consists in assuming that the two expansions give the same
asymptotic limits, that is
4

ðiÞ v0ðx1;�1Þ ¼ u0ðx1;0
�Þ

ðiiÞ s�1ðx1;�1Þ ¼ 0

ðiiiÞ s0ðx1;�1Þ ¼ r0ðx1;0
�Þ

ð14Þ
3.4.5. Interface behavior
Using this asymptotic approach (which is similar to that used in

[15] in a different context), by injecting the asymptotic expansions
into the constitutive equations and in the equilibrium equations,
we deduce expressions linking the stress vector to the jump in
the displacement denoted by ½u�:

s�1
ij ¼ 0

v0
j ðx1;�jy2jÞ ¼ u0

j ðx1; 0
�Þ

s0
i2ðx1;�jy2jÞ ¼ r0

i2ðx1;0Þ
ð15Þ

We obtain

s0
22 ¼ lim

e!0

kþ 2G
1þ ðkþ 2GÞhaH

@v0
2

@y2

s0
12 ¼ lim

e!0

�lðkþ 2GÞGkavI

ð1þ ðkþ 2GÞhaHÞð1þ GkavIÞ
@v0

2

@y2

þ lim
e!0

G
1þ GkavI

@v0
1

@y2

ð16Þ

Thus, by integration, the Asymptotic Gambarotta–Lagomarsino (A-
GL) model is written in terms of the following system of normal
and tangential components:

rn ¼ CN
1þCN

�haHðrnÞ
½uN�

s ¼ �CN CT l�kavI
ð1þCN

�haHðrnÞÞð1þCT
�kavIÞ
½uN� þ CT

1þCT
�kavI
½uT �

8<: ð17Þ

where

CN ¼ lim
e!0
ðkþ 2GÞ=e

CT ¼ lim
e!0

G=e

�h ¼ lim
e!0

he

�k ¼ lim
e!0

ke

ð18Þ

The resulting matrix is not diagonal: a non-symmetric coupling
term appears between the normal compliance term CN and the tan-
gential compliance term CT . It is worth noting that in this general
expression, expressions obtained under traction conditions when
f ¼ 0 are combined with those obtained under compression when
f ¼ s and when the friction threshold is reached with f ¼ �lrn.

The damage is governed by the following yield condition:

UðaÞ ¼ Y � RðaÞ 6 0 ð19Þ

with

Y ¼ 1
2

�hHðrnÞr2
n þ 1

2
�kvIðsÞðs��lrnÞ2

RðaÞ ¼ lim
e!0

Re ¼
R0a if 0 < a < 1
R0
a if a > 1

(8>><>>: ð20Þ

Comment: The asymptotic expansion technique is formal from a
mathematical point of view. However, in former works, it is shown
rigorously (by variational methods) [12] or numerically [14], that
the results obtained using this technique, are relevant.
4. Numerical modeling

In this part, we describe the numerical modeling procedure used
for our asymptotic scheme. The finite element method is used to
perform the spatial discretization. Here we present the condensed
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Fig. 9. Example of free and contact nodes.
spatial discretization system obtained, the damage condition intro-
duced into the model, and two algorithms for solving it.

4.1. Spatial discretization

Let us briefly recall the weak formulation of a standard elastic
problem, having the following form:Z

X
AeðuÞ � eðvÞdX�

Z
Cs

C½u� � ½v�dC ¼
Z

X
f v dXþ

Z
X

s � v dC ð21Þ

where f and s denote the volume and the surface forces, respec-
tively, Cs is part of the boundary @X. A is the fourth order elasticity
tensor, and C is the non-symmetric stiffness matrix and depends on
the damage with:

C ¼
CxxðaÞ 0
CyxðaÞ CyyðaÞ

� �
ð22Þ

Writing the displacement jump ½u� ¼ Nd½u�, the discretization of the
surface term is obtained as follows:Z

Cs

C½u� � ½v �dC ¼
X
seg

Z
seg

d½v�NtCNd½u�dx

¼
X
seg

Z
seg

d½v�eVd½u�dx ð23Þ

A linear interpolation is performed (cf. Fig. 8a), taking x to denote
the abscissa associated with the segment of length h. Vel is the order
4 elementary matrix associated with the length of the segment h,

Vel ¼
Z h

0

eV dx ¼
Z h

0
NtCN dx ð24Þ

After proceeding assembling the matrix, we then obtain the linear
system where K and V are the rigidity matrix and the matrix asso-
ciated with the damage interface, respectively.

Kdu� Vd½u� ¼ F for a given a ð25Þ
4.2. The condensed damage problem

The first step in the process consists in condensing the mechan-
ical problem (25) on the contact surfaces (between the two solids)
as follows:

Kll Klc

Kcl Kcc

� �
ul

uc

� �
þ

0 0
0 Vcc

� � ½ul�
½uc�

� �
¼

Fl

Fc

� �
ð26Þ

Hence

½Kcc � KclK
�1
ll Klc�uc þ Vcc½uc� ¼ Fc � KclK

�1
ll Fl ð27Þ

Accuc þ eAcc½uc� ¼ ~Fc with ui ¼ fuNi;uTigt ð28Þ

The indexes c and l correspond here to the contact nodes and the
free nodes (see Fig. 9). The rigidity matrix is then decomposed into
two terms:
Fig. 8. (a) Displacement jump; (b) quadrangular element at the interface.
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– The first one is constant: it is the bulk matrix Acc .
– The second one depends on the damage interface: it is the

non-symmetric matrix eAcc , with the same order as Acc .

4.2.1. Choice of quadrangular elements
Here it is proposed to deal with the damage phenomena occur-

ring at the interface between two solids. Taking a to denote the
contact node of body 1, we find its associated quadrangle (cf.
Fig. 8b). This element is formed by the neighboring node b and
the two opposite nodes on the body 2, c and d. For the spatial dis-
cretization, we therefore introduced a virtual connectivity via
these quadrangles, in order to define the damage occurring at the
interface, which is given by the surface term (23).

4.2.2. Two types of contact
Two types of contact are studied: a ‘‘deformable” contact

between two deformable bodies (Fig. 10a) and a ‘‘rigid” contact be-
tween a deformable body and a rigid body (Fig. 10b).

The condensed matrix Acc therefore has a diagonal matrix form
consisting of blocks:

Acc ¼
A1

cc 0
0 A2

cc

 !
A1

cc and A2
cc in relation to body 1 and body 2,

respectively. The condensed damage matrix eAcc is deduced by
globally assembling the (8 � 8) matrix J:

J ¼ Vel �Vel

�Vel Vel

� �
is obtained on each quadrangle from the

(4 � 4) elementary matrix Vel associated with the same
quadrangle.

4.3. The damage condition

In this section, we explain how the damage condition (19) is
handled in keeping with the previous damage value (making the
distinction between a < 1 and a > 1), under pure traction or pure
sliding or a combination of traction/sliding conditions. We intro-
duce two new notations:
N ¼ CN
�h and hT ¼ CT

�k
h
Fig. 10. Types of contact: (a) deformable; (b) rigid.



Table 1
Different degrees of polynomials and the corresponding method used.

a Case number HðrnÞ vIðsÞ Polynomials degree Resolution method

a < 1 a 1 0 3 Analytical
a < 1 b 0 1 3 Analytical
a < 1 c 1 1 5 Newton

a > 1 d 1 0 2 Analytical
a > 1 e 0 1 2 Analytical
a > 1 f 1 1 4 Analytical
Based on (20) and (17), the general expression for the damage con-
dition can be written:

UðaÞ ¼ 1
2

�hHðrnÞ
CN

1þ hNHðrnÞa
½uN�

� �2

þ 1
2

�kvIðsÞ
CT

1þ hTvIðsÞa
½uT �

�
� �lCN

ð1þ hNHðrnÞaÞð1þ hTvIðsÞaÞ
½uN �

�2

� RðaÞ 6 0 ð29Þ

In order to satisfy (29), we must find the roots a of UðaÞ. For this
purpose:

– If UðaÞ is negative, there is no damage and the value obtained at
the previous time step is kept.

– If UðaÞ is positive, the damage evolves and we must solve the
equation UðaÞ ¼ 0, that is, we have to find the roots of a polyno-
mial equation. The degree of this polynomial differs depending
on the values of HðrnÞ and vIðsÞ. This is summarized in Table
1, along with the method used to solve the problem.

Cases a and d correspond to pure traction, b and e to pure sliding
and, c and f to combined traction and sliding conditions.

4.4. Algorithms

Two incremental algorithms were used to solve the A-PL
asymptotic model [17].

� The first algorithm is an implicit one with a double convergence
condition: a polynomial and a fixed point method are used
simultaneously to satisfy the equilibrium equation and to con-
firm that the damage variable a belongs to the validity domain
UðaÞ, by solving the linear non-symmetric system (28) before-
hand, thus updating the condensed interface matrix eAcc . At each
iteration, the systems are solved using the Gauss method,
whereas the damage conditions are obtained using the ‘‘polyno-
mial method”. It is difficult to make sure that this algorithm con-
verges because of the small validity domain and because the
updated matrix changes at each iteration by one time increment.

� The second algorithm is a simpler one: it gives explicit solution
with an unique verification that the damage variable belongs to
the validity domain. The linear system is then solved; eAcc is
therefore estimated once at each time increment.

4.4.1. Implicit algorithm
Note that the first superscript refers to the time step and the

second refers to the non-linear iteration number.
a0 is given. Looking for ai at the time step Dti, we obtain

ai;0 ¼ ai�1. At the iteration n ¼ nþ 1, we perform the following
steps:

� Constructing the elementary rigidity matrix Vel with each
quadrangle.

� Constructing of the condensed matrix eAccðai;nÞ.
� Solving the linear system (Gauss): ðAcc þ eAccðai;nÞÞUi;n ¼ Fc:
6

� Estimating the displacement jump ½ui;n�:
� Estimating the stress ri;n ¼ Ki;n ½ui;n� with Ki;n given by (17).
� Estimating Y .
� Estimating Rðai;nÞ
� Testing Uðai;nÞ ¼ Y � Rðai;nÞ:

– If negative, then the previous value ai;n is kept.
– If positive, then find the roots ai;n of the polynomial Uðai;nÞ

using the polynomial method.

Iterate the fixed point while jUðai;nÞj > 10�4.

4.4.2. Explicit algorithm
First time step:

� a0 ¼ 0 and ½u0� ¼ 0.
� Constructing the elementary rigidity matrix Vel in the case of

each quadrangle.
� Estimating Y and Rða0Þ.
� Since the jump ½u0� is known, we can look for a1, the solution of:

Uða1Þ ¼ Y � Rða1Þ ¼ 0) Therefore, we must find a1 ¼ 0.
� Constructing the condensed matrix eAccða0Þ.
� System solving ðAcc þ eAccða1ÞÞU1 ¼ F1

c ) Deducing the displace-
ment jump ½u1�.

Time step i + 1 with i � 2:

� ½ui� is known.
� Constructing the elementary rigidity matrix Vel in the case of

each quadrangle.
� Estimating Y and RðaiÞ.
� Looking for aiþ1, the solution of the polynomial

Uðaiþ1Þ ¼ Y � Rðaiþ1Þ.
� Constructing the condensed matrix eAccðaiÞ.
� Solving the system ðAcc þ eAccðaiþ1ÞÞUiþ1 ¼ Fiþ1

c ) Deducing the
displacement jump ½uiþ1�.

Comment: For both algorithms, the convergence is not rigor-
ously proved. In practice, the explicit algorithm seems always con-
vergent but requires small time step, whereas the implicit
algorithm can fail in some cases.

4.4.3. Implementation
The two algorithms used to solve the A-GL model have been

integrated into the Gyptis 2D software [9,11,18]. Gyptis, which
was developed at the LMA, is based on the finite element method
and can be used to solve various quasi-static and dynamic mechan-
ical problems involving contact and friction.

5. Numerical results

5.1. An academic test: the wrenching of a piece

Let us study an academic wrenching test on a single rectangular
piece. The piece is bonded at the bottom. The top is subjected to



Fig. 11. Wrenching test.
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Fig. 12. Number of the four contact elements.
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Fig. 14. Normal displacement jump evolution in the case of traction test (for the
four nodes).
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Fig. 15. Damage evolution in the case of three values of R0 (traction test).
vertical forces. Details of this test are presented in Fig. 11. A verti-
cal force equal to 25 kN is applied gradually. For the sake of sym-
metry, the structure is embedded on its right lateral edge. The
(academic) coefficients are E ¼ 9500 MPa, m ¼ 0:13, CN ¼ CT ¼
5000 kN cm�3; l ¼ 0:3 (see [3]), �h ¼ �k ¼ 0:04 kN�1 cm3, and R0 ¼
10 kN cm�1 (see [6]).

In this case, the numerical simulations are performed using the
explicit algorithm and assuming the existence of a ‘‘rigid” contact
interface. There are four contact elements. The number of the
nodes are given in Fig. 12 and used in Figs. 13, 14, 17 and 18.
The damage evolution of each component of the small wall is
studied during the time simulation. Fig. 13 shows the increase
in the damage during the loading time and its propagation one
element after another. The damage can be seen to begin on the left
of the contact zone and to propagate into the interface up to
rupture.

Fig. 14 shows the evolution of the jump in the normal displace-
ment depending on the loading conditions. We can see complete
rupture of the structure occurs.
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Fig. 13. Damage evolution in the case of traction test (for the four nodes).
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Fig. 15 shows that the evolution of the damage depends
strongly on the value of R0. As can be expected, the complete rup-
ture of the structure is reached very quickly here at a small value of
this coefficient.

5.2. Second test: shear test on an assembly

The structure tested here is the same as the previous one, but
the loading is applied on the right and left parts. Details of this test
are presented in Fig. 16. A force equal to 20 kN is gradually applied.
The mesh is the same as in the previous test.

Due to the geometry and the loading conditions, the behavior of
the contact zone is highly complex. The evolution of the damage
along the contact zone is shown in Fig. 17. As we can see, the evo-
lution is strongly non-linear. In particular, the damage increases
strongly in a intermediate zone which is subjected to shear and
traction loads together. Note that the tangential displacement
has a linear evolution during the first phase and a non-linear evo-
lution, which results in rupture, in the second phase, as was to be
expected (see Fig. 18).



Fig. 16. Shear test.

Fig. 17. Damage evolution in the case of shear test (for the four nodes).

Fig. 18. Evolution of the tangential displacement (shear test).
6. Conclusion

Previous experimental data shown that the behavior of an inter-
face between mortar and bricks is elastic up to rupture, and that
the rupture is fragile in the case of full bricks and quasi-fragile in
that of hollow bricks. In this paper, we have presented a model
for studying quasi-brittle interfaces of this kind. The model is
based on the study by Gambarotta and Lagomarsino [6] on ma-
sonry bricks. An asymptotic analysis was performed to obtain an
interface model depending on six parameters, which relates the
8

displacement jump non-linearly to the stress vector along the
interface. The stiffness of this link depends on a damage variable,
and the damage is governed by an evolution equation. Two numer-
ical algorithms were studied. The model was implemented in the
Gyptis software, and academic tests were performed to test the
robustness of the algorithms. In this paper, only academic exam-
ples are presented, the results seem qualitatively in agreement
with experimental data (see Fig. 3 and [4,2]).

In future studies, we intend to identify the parameters involved
in the model (stiffness, damage parameters, internal friction) and it
would be very interesting to provide some more complicated
examples dealing with real masonry structures (for example, as
done previously in [5]).
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