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Contribution to the modelling of interfaces
in masonry construction
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The aim of this study was to model the mechanical behavior of interfaces in masonry structures. In the
first part, the characteristics of the materials and interfaces involved are determined experimentally. In
the second part, a model based on the adhesion intensity is developed. This model can be used to describe
the interfaces between mortar and full or hollow bricks and to describe the damage occuring in the mor-
tar. The mechanical behavior predicted by this model is compared with previously obtained experimental
data. The model is then tested in the case of some classical masonry structures (small walls, diagonal

compression tests).
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1. Introduction

The seismic vulnerability of masonry buildings is known to de-
pend strongly on their resistance to shear forces. When out-of-
plane failure is prevented by using suitable devices, the structural
reliability can be predicted and appropriate strengthening tech-
niques adopted on the basis of the known in-plane shear behavior.
It is therefore of great interest to model and test the shear re-
sponses of building components subjected to horizontal cyclic
loading conditions [1,2]; these responses are usually characterized
by a peak load, loss of rigidity and energy dissipation [3]. Some
models have been previously presented in the literature, in which
the wall is taken to be a single structural element characterized by
a non-linear response when exposed to shear forces [4]. In this
context, some information can be obtained about the lateral
strength, using continuous models for a medium with no tensile
strength [5] or using the low rupture approach [6]. Since masonry
is a composite structure, however, failure of these structures will
depend on the properties of the materials (mortar, bricks, etc.),
as well as on the characteristics of the bonding between the
various components. Many modelling studies have been carried
out on masonry interfaces. Gambarotta and Lagomarsino [7], for
instance, developed a damage model predicting the responses of
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brick walls subjected to cyclic loads. The main advantage of this
model is that it deals with the mechanical behavior of each compo-
nent of the masonry as well as the interface. A “fragile behavior”
law has been used for bricks and a specific law for mortar, which
depends on the decohesion and sliding properties. The latter law
was established on the basis of two internal variables accounting
for the sliding with friction and damage in mortar joints. Raous,
Cangémi and Cocou [8] have developed a model, called the RCCM
model, predicting the evolution of damage at the interface between
two initially bonded deformable bodies. These authors addressed
the transition problem from the adhesive state to a friction state
(in the tangential plane of the interface) and to a unilateral contact
state (in the normal direction with respect to the interface). This
model will be adopted here.

The first part of this paper deals with the experimental charac-
terization of the materials (bricks and mortar) and the brick/mor-
tar interface. It is proposed first to characterize the masonry
materials involved. We will then describe experimental studies
on the shear behavior of masonry on the local scale, in the case
of two different assemblies composed of two and three full/hollow
bricks. The results of an experimental campaign are presented and
discussed.

The second part of this paper deals with the numerical model-
ling. The mechanical modelling approach (and in particular the
RCCM model adopted) is first presented. The numerical procedure
used is then described. Lastly, some numerical examples are given
and compared with the experimental data.



2. Experimental results

2.1. Characterization of materials

2.1.1. Mortar

The mortar used in this experimental study was a ready-to-use
mortar based on sand and cement supplied by the firm Weber and
Broutin. The elastic modulus (4000 MPa) and the Poisson’s ratio
(0.3), which are used in the numerical study, are given in [9].

2.1.2. Bricks

The fired earth bricks used for the present experimental tests
were either full or hollow. The dimensions of each brick was

Table 1
Loading rate.

Predicted strength (N/mm?)

Loading rate (N/mm?)/s

<10 0.05
From 11 to 20 0.15
From 21 to 40 0.3
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210 mm (length) x 100 mm (width) x 50 mm (height). Ten holes
in the bricks 25 x 25 mm? in size were arranged in two rows. A
compression test based on standard NF EN 772-1 [10] was carried
out on series of three full/hollow bricks in order to determine the
compression strength, the elastic modulus and the Poisson’s coef-
ficient of the masonry units. The load was imposed up to failure
in two steps: the load was gradually increased as shown in Table
1; half-way to the maximum pressure, the load was increased in
order to reach the maximum pressure within 1 min.

The normal compression load was applied to the upper face of
the bricks and gauges were glued to the bricks in the transversal
and longitudinal directions (unidirectional compression tests). An
extensometric sensor was also fixed to the bricks. The elastic mod-
ulus was determined from the strain-stress curve at 30% of the fi-
nal load.

Full and hollow bricks were used. Three tests are carried out on
each kind of brick. The curves giving the longitudinal deformation
with respect to the normal stress and the transversal deformation
with respect to the normal stress are shown in Figs. 1 and 2.

The quantitative data obtained on the above mechanical param-
eters are summarize in Tables 2 and 3.

The experimental results obtained were similar to the mean va-
lue recorded by the two gauges. The dispersion of the results was
very small.
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Fig. 1. Compression test on full bricks: elastic modulus and Poisson’s coefficient.
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Fig. 2. Compression test on hollow bricks: elastic modulus and Poisson’s coefficient.

2.2. Mechanical behavior of small assemblages under shear loading
conditions

In order to determine the influence of the unit volume, two
kinds of prism were tested. Those of the first kind were composed
of two bricks, and those of the second kind were composed of three
bricks. With each kind of prism, both full and hollow bricks were
tested. The aim of this study was to determine the shear behavior
and the failure mode at the brick/mortar interface.

Prisms were prepared in line with standard NF EN 1052-3 [11].
The samples were subjected to a monotonously increasing load un-
til damage occurred. The loading conditions were monitored dur-
ing the test. The maximum strength reached during the test is
called the rupture strength.

In order to establish a shear behavior law, curves giving the
shear stress with respect to the relative displacement were plotted.
The qualitative results obtained are presented and discussed below.

From the quantitative point of view, Fig. 3 (respectively 4)
shows the displacements recorded with respect to the shear load.
It is worth noting that the results were highly dispersed in the case
of both two-brick and three-brick assemblages. This dispersion can
reach 500% of the failure threshold in the case of three-hollow-
brick structures. These differences can be explained by the rupture
modes. In the case of hollow brick assemblages, these differences
are amplified by the presence of mortar spikes in the brick at the
mortar/brick interface (Fig. 4).

We can differentiate here between the following two kinds of
rupture:

Table 2 Table 3
Mechanical properties of full bricks. Mechanical properties of hollow bricks.
Nb Compression strength Elastic modulus Poisson’s Nb Compression strength Elastic modulus Poisson’s
(MPa) (MPa) coefficient (MPa) (MPa) coefficient
1 11.7 9439 0.13 1 44 5934 0.14
2 10.2 10447 0.14 2 4.4 6737 0.14
3 133 8429 0.13 3 4.6 5505 0.12
Mean 11.7 9438 0.13 Mean 4.46 6059 0.13
value value
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Fig. 4. Shear test on two hollow-brick prisms.

Fig. 5. Rupture mode in a specimen.

Fig. 6. Rupture mode in a specimen.

e rupture occurring along the mortar/brick interface (see Fig. 5),
e rupture beginning along the interface and crossing through the
mortar layer (see Fig. 6).

The two kinds of rupture can be combined in a single assem-
blage as shown in Fig. 7.

With all the specimens tested, the results of the tests show that
the mechanical behavior of the unit volumes is very stiff in the
elastic domain. The order of magnitude of the displacement was
only a few microns. The breaking stress point differed, depending
on the kind of bricks (full or hollow).

When the maximum stress level was reached, we noted that the
behavior of the full-brick specimens was fragile, contrary to the
hollow-brick specimens, which were characterized by a (quasi-
fragile) softening behavior and by a sliding movement between
the adjacent bricks. This behavioral difference can be explained
in the case of hollow bricks by the presence of spikes of mortar
at the brick/mortar interface.

With identical assemblies consisting of the same materials un-
der very similar conditions, the rupture stress point showed con-



Fig. 7. Rupture mode in specimen.
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siderable dispersion, resulting in completely different rupture
modes from one assembly to another: along the interface, crossing
through the mortar or in the bricks themselves. These differences

will be explained by analyzing the responses of the masonry spec-
imens on the local scale, taking several external factors (such as
human interventions) and internal factors into account, without
checking the results experimentally. These local effects will pre-
sumably disappear if the masonry is analyzed on other more real-
istic scales.

Comparisons between the results obtained on couplets and trip-
lets of full and hollow bricks showed that the magnitude of the
stress failure point and that of the displacements were similar in
both cases. It can therefore be concluded that couplets and triplets
of specimens consisting of full and hollow bricks show similar
behavior under shear stress loading conditions.

3. Numerical modelling

These experimental results on mortar, bricks and small assem-
blages show that the behavior of these components is character-
ized by non linearities. These results will be subsequently used
to perform numerical computations.

In the structures studied here, rigid elastic behavior was ob-
served up to failure point, followed by friction sliding behavior.

Since couplet and triplet samples were found to show similar
behavior, the choice of basic unit will have no effect on the global
scale. In the subsequent modelling study, only the interface will
therefore be of importance, and not the basic components used.

The results obtained here on full/hollow brick samples show
considerable dispersion, mainly due to the local failure modes
(along the interface and across the mortar), and in the case of hol-
low bricks, to the non uniform distribution of the mortar spikes.
The rupture process occurring across the mortar can be accounted
for either by a motar damage model (see for example [12]) or by a
cohesive zone model.

Having identified some of the factors on which the rupture of
the masonry depends on the local scale and having characterized
the mechanical properties of the materials and the corresponding
constitutive equations, it is now proposed to model the interfaces
involved in the framework of the laws mentioned in the
Introduction.

3.1. Theoretical mechanical problems

To model the mortar/brick interfaces, we adopted the adhesion
model known as the RCCM model [8,13] (Raous-Cangémi-Cocou-
Monerie). As a matter of fact, with this interface model, it is possible
to combine unilateral contact conditions (non penetration between
the mortar and the brick), with friction and adhesion between two
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deformable solids. For further details of the RCCM model, the reader
is referred to [8,13]. The local constitutive equations required for
this model are deduced from thermodynamic considerations and

Shear Stress (MPa)

based on a material surface hypothesis about the contact zone.
The basic idea underlying this model is to introduce a new state var-
iable describing the contact state. This adhesion intensity variable,
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denoted g, was initially introduced by Frémond [14]. This variable
gives the relative proportion of the active links between two bodies
in contact. This variable is chosen so that

Y
adh "2" adh "1"
Brick Brick
t Mortar
b H | =

Fig. 12. Full-brick triplets: (a) mesh with cohesive mortar and (b) mortar/mortar
and mortar/brick adhesion.

p =1, totaladhesion
0 < p <1, partialadhesion
B =0, noadhesion

We are working in the framework of the contact between two
deformable solids. The contact can be defined by a punctate corre-
spondence between two surfaces in contact I"! and I'? of the do-
mains Q' and ©? of R? (d =2,3), respectively. At the initial time
t = to, we assume that I'c = I'' = I'2. The relative displacement be-
tween two points located on the two surfaces in contact is denoted
by [u] with [u] =u' — u?. Let R be the density of the contact forces.
We take n' and n? to denote the external unit normal vectors to
the boundaries of the two domains. The decomposition into normal
and tangential parts is written:

[u] = [un]n® + [ur] with [uy] = [u] - n!
R:RNTI] + Rr with Ry =R-n!

(1)
(2)

The state variables used for the thermodynamic description of this
model are the strain tensor (e;), the displacement jump [u] and the
intensity of adhesion . Here we use the same notation as the pre-
vious authors [8,13]: b is taken to denote the adhesion viscosity
coefficient, w to denote the Dupré energy, i to denote the friction
coefficient and Cy (resp. Cr) to denote the initial normal (resp. tan-
gential) stiffness of the interface. In what follows, f denotes the rate
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of the function f. The constitutive equations for the interface are
based on state laws and complementarity laws:

3.1.1. Unilateral contact with adhesion

Ry —CI\J[UI\J]ﬂ2 > 0; [uy] = 0; (Ry —CN[UN]ﬂZ)[UN] =0 3)

3.1.2. Friction with adhesion

IRy — Crlur]B*|| < uIRy — Cn[un]f?|

[Rr — Crlur] || < u|Ry — Cn[un]f?| = [tir] =0
[Rr — Crlur] || = ulRy — Cn[un)f?| = 37 > 0,
[tir] = A(Rr — Cr[ur]$?)

(4)
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3.1.3. Evolution of the intensity of adhesion

bjp = —(w — (Cufur] + Cr|ur]?)p)” if f[0,1]

. 5
b = —(w— (Cnlur]® + Crlur] By~ if p=1 )

Note that if there is no adhesion (8= 0), this model involves the
classical Signorini-Coulomb problem.

3.2. Numerical processing

The numerical problem was solved using the open computer
code LMGC90 (http://www.lmgc.univ-montp2.fr/dubois/LMGC90/).
This code is a numerical platform dedicated to the modelling and
simulation of dynamic multibody problems. Various finite ele-
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ments have been implemented in this code [15] and various stud-
ies using this code have been published (these studies deal with di-
verse themes such as granular material, historical monument
structures, biomaterials, etc.). These problems of this kind are usu-
ally approached using 0-methods and the non-smooth contact
dynamics (NSCD) method [16-18]. Due to the contact conditions,
a fairly small time-step is chosen and the problem is condensed
in the local frame associated with the contact nodes. The local
problem is solved using a non-linear Gauss-Seidel method.

The interface is governed by the RCCM law presented above.
Contact between bodies is defined by contact nodes. Contact nodes
are located between two nodes in the mesh of an element in contact
at distances of 0.2 and 0.8 along each segment in contact (Fig. 8).

In what follows, the bodies (bricks and mortar) are modelled
using Q4 quadrangular finite elements. The numerical tests are
performed with a constant time-step equal to At=0.5 x 103
The computations require 2000 increments in order to reach values
resembling the experimental data, and 0 (in the time integration
method) is fixed and taken to be equal to 0.55.

3.3. Mechanical behavior of small assemblages under shear loading
conditions

In this section, numerical simulations carried out with LMGC90
are presented. In particular, this study deals with the various
assemblages (triplets and couplets consisting of full or hollow
bricks) studied above in Section 2.2.

We will also cite other examples studied in the literature, such
as the RILEM diagonal compression test, etc. It is attempted to
model the same conditions as those pertaining in the experimental
tests in terms of the geometries, mechanical characteristics,

boundary conditions and loading conditions. The problems are
treated under quasi-static conditions. The plane strain hypothesis
is adopted here. As a matter of fact, the in-plane strains can be as-
sumed to be negligible with respect to the plane strains.

For the sake of simplicity, the parameters used for the compu-
tations are: u=0.2, b~ 0, w=0.9]J/mm? Coefficients Cy and Cr,
the normal and tangential stiffness of the interface, will be deter-
mined in the following sections. These parameters will be obtained
by comparing the experimental and numerical data.

The mechanical characteristics of the materials are as follows:

e Mortar: Young's modulus 4000 MPa, Poisson’s ratio 0.3.
e Full bricks: Young’s modulus 9439 MPa, Poisson’s ratio 0.13.
e Hollow bricks: Young’s modulus 6058 MPa, Poisson’s ratio 0.13.

3.3.1. Full-brick triplets

The experimental data used here were those presented in Sec-
tion 2. In the first part of this study, we noted the occurrence of
two kinds of fracture processes, where

(1) the fracture occurs along the interface,
(2) the fracture begins along the interface and propagates into
the mortar.

3.3.1.1. Fracture along the interface. The mesh consists of 130 Q4 fi-
nite elements. For the sake of symmetry, only the half-structure is
studied here. The loading on the upper part ranges from 0 to 53 kN.
The first step consists in determining the stiffness values of the
interface, Cy and Cr. Due to the shear loading, Cy = Cr can be as-



sumed. Various results on pairs of Cy and Cr are presented in Fig. 9.
The global behavior can be seen to depend strongly on Cy and Cr.
The rigidity of the assembly depends mainly on the interface stiff-
ness. Since the problem is highly non linear, even small perturba-
tions in the stiffness coefficients can greatly affect the numerical
responses.

The results shown in Fig. 10, which were obtained in tests num-
bers 1 and 4, are most encouraging, since the general shape of the
curves is similar to that of the experimental curves. This confirms
that the model accounts accurately for the mechanical behavior of
the interface. This is also confirmed by the rupture modes obtained
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numerically (see Fig. 11). The variations in the shear stresses oy,
show that the stress concentration develops in the regions contain-
ing the discontinuities, or more specifically, at the level of the
interface.

3.3.1.2. Cracks developing into the mortar. We now take the case
where the interface and the mortar are fractured together. The re-
sults of the tests performed in this case are not as satisfactory as
the previous ones. In the experimental part of this study, we noted
that the cracks started to develop at the brick/mortar interfaces but
continued into the mortar itself. It is therefore proposed to intro-
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Fig. 18. Shear stress in hollow-brick triplets at steps 1, 53, 191 and 196.
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Fig. 19. Small wall modelling.

duce the damage to the mortar using a cohesive zone model. The
mortar is split into sub-bodies. Each sub-body is meshed using a
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quadrangular mesh with Q4 finite elements (Fig. 12). The contact
between sub-bodies is governed by the RCCM model. We take
adhl1 and adh2 to denote the law of adherence at the mortar/mor-
tar and the brick/mortar interface, respectively (Fig. 12).

It can be seen from Fig. 13 that the behavior of the structure is
sensitive to changes in the stiffness coefficients.

The numerical results are in good agreement with the experi-
mental data from the qualitative point of view. They show the deg-
radation of the rigidity induced by the propagation of the crack
into the mortar in the two experimental tests 2 and 3 (Fig. 14).
The model predicted the similar occurrence of cracks in the mortar
joint to those observed in practice (Fig. 15).

3.3.2. Hollow-brick assemblages

In the case of hollow-brick structures, the experimental data
show that the behavior of the material at the interface is quite dif-
ferent between the hollow parts of the brick and the full parts. At
the level of the hollow parts, spikes of mortar penetrate into the
voids of the brick. It is therefore necessary to distinguish between
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Fig. 20. Small wall: changes in the structure.
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two zones: the zone (adhl) corresponding to the mortar/brick approach has not yet been attempted. The changes with time in
interface as in the case of full-brick structures and the second zone the shear stress and in the deformed structure are shown in Fig. 18.
(adh2) corresponding to the spikes. Fig. 16 shows these two zones.
By suitably choosing the stiffness coefficients, this strategy 3.3.3. Other examples

makes it possible to approach the experimental results, as can be 3.3.3.1. A small assembly. In this section, we deal with an example
seen from Fig. 17. However, it is necessary to find several coeffi- available in the literature [19], that of a small structure consisting
cients, which reduces the efficiency of the method. This situation of seven bricks (Fig. 19). Because of the symmetry, only the half-
could possibly be improved by averaging the two zones, but this structure is included here in the computations. A containment load
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Fig. 21. Diagonal compression: dimensions (H = 840 mm, L = 870 mm) and mesh.
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Fig. 22. Diagonal compression: changes in the structure at steps 1, 347, 370 and 401.
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is first applied to the vertical left face, and a vertical load is then
applied to the central brick. The characteristics used in the numer-
ical test are as follows:

u=0.2,

b~0,

w=0.9 ]/mm?,
Cy=Cr=4 x 105 N/mm®.

The evolution of the shear stress and the deformed structure
from the initial position to rupture are given in Fig. 20.

The behavior of this assemblage is a fragile behavior. Two
phases were observed:

o the first phase continues until the crack is very stiff,
o the second phase corresponds to the sliding between brick and
the neighbouring brick.

This finding is in agreement with the experimental data. The
containment load induces a slight softening. This example was
the first attempt to deal with more complex and realistic structures.

3.3.3.2. Diagonal compression of a small wall. This section deals with
the numerical modelling of a diagonal compression test performed

0.162
-0.0956
=0.353

-0.611

-0.869

=113

on a wall (see Fig. 21). The wall under investigation is embedded at
one corner and a uniform load is applied to the opposite corner.
The load is evolutive until the rupture of the wall occurs. The
dimensions of the wall were chosen in line with the RILEM recom-
mendations [20] on tests of this kind. The shape of the wall was ta-
ken to be almost square. In the numerical modelling procedure, we
simulated the boundary conditions, loading and geometry as de-
scribed by Gabor [19,21]. The structure is composed of full bricks
measuring 210 x 50 mm?, and the mortar is 10 mm thick. The wall
measures 870 x 840 mm? (see Fig. 21). The mechanical character-
istics [19] are as follows: Young’s modulus 16.7 GPa (brick) and
1.028 GPa (mortar); Poisson’s ratio 0.15 (brick) and 0.125 (mortar)
[19]. The structure is discretized using quadrangular elements
(Q4). The wall is split into 217 parts (bricks and mortar), corre-
sponding to a total number of 868 finite elements (see Fig. 21).
The RCCM adhesion model was introduced at the mortar/bricks
interface. In order to model the rupture process in the mortar,
the mortar is decomposed into substructures and the RCCM adhe-
sion model was introduced along with other mechanical coeffi-
cients at the mortar/mortar interface (cohesive zone model). The
two adhesion laws are denoted adhl and adh2. The mortar was
modelled in this way because of the rupture modes observed in
the wall: a crack propagates diagonally along the wall. However,
the bodies composing the mortar have other characteristics, which
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Fig. 23. Mixed loading: behavior of the structure.
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usually have larger values than those of the mortar/brick interface.
These values are as follows:
Mortar/brick interface p=0.2,w=0.9]/mm? Cy=10°N/mm>
Cr=10°N/mm?,
Mortar/mortar interface g =02,w=0.9]/mm? Cy=30 x 10°N/
mm?, Cr=30 x 105 N/mm®.

A very small coefficient b was adopted.

The numerical results obtained in the case of this example show
the propagation of a crack along the compressed diagonal. The
fracture is due to the shear stress concentration occurring along
the diagonal (Fig. 22). From the qualitative point of view, these re-
sults match those obtained experimentally in [19], even with a
rather coarse discretization step.

3.3.4. Mixed loading: superimposition of compression and shear on a
small wall

In this section, the structure presented in the previous section is
subjected to another kind of loading. The test is carried out in two
steps: a vertical load of 120 kN is first applied to the upper part of
the structure and a horizontal punctual force of 65 kN is then ap-
plied at the upper left corner of the structure.

Rupture modes occurring along the diagonal were obtained as
shown in Fig. 23. This example confirms that this method is appli-
cable to complex structures.

4. Conclusion

The adhesion model presented in Section 3.2 was successfully
used in this study to simulate the experimental tests described in
Section 2, which provided the coefficients required to model the
interface: stiffness parameters, viscosity coefficient, Dupré’s en-
ergy and friction coefficient. The model is sensitive to these charac-
teristics but the results obtained are in line with the experimental
data.

The two kinds of rupture modes observed experimentally were
described using two different adhesive characteristics. It was thus
possible to model the fracture process occurring along the interface
as well as that involving the mortar.

Structures composed of hollow bricks can also be modelled in
this way using two adhesive characteristics. In particular, the mod-
el was used here to study the fracture process occurring along the
interface of a small structure consisting of three hollow bricks. Fur-
ther studies are now required on the fracture processes crossing
the mortar in structures of this kind.

The present method was also tested on more complex struc-
tures presented in the literature. The results obtained show
that it is possible with this model to accurately describe the
behavior of structures of this kind. In particular, the cracking of

14

the mortar in a small wall structure was accurately predicted by
the model.

It is now proposed to study more complex structures such as
modern masonry buildings. Another project consists in developing
models of other kinds accounting for other processes, such as the
crack processes occurring on the microscopic scales.
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