
HAL Id: hal-00459488
https://hal.science/hal-00459488

Submitted on 12 Feb 2018

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Stress based finite element methods for solving contact
problems: comparisons between various solution

methods
François Kuss, Frédéric Lebon

To cite this version:
François Kuss, Frédéric Lebon. Stress based finite element methods for solving contact problems:
comparisons between various solution methods. Advances in Engineering Software, 2009, 40 (8),
pp.697-706. �10.1016/j.advengsoft.2008.11.013�. �hal-00459488�

https://hal.science/hal-00459488
https://hal.archives-ouvertes.fr


Stress based finite element methods for solving contact 

problems: Comparisons between various solution methods

François Kuss*, Frédéric Lebon
Laboratoire de Mécanique et d’Acoustique, 31 Chemin Joseph Aiguier, F-13402 Marseille Cedex 20, France
, Friction

with nu
re usua

re. The
to sat

s have
straine
us pro
that th
Keywords: Contact

This paper deals
these problems a
is developed he
make it possible
and contact force
a non-linear, con
algorithms are th
oped here show
* Corresponding author. Tel.: +33 491164438; fax:
E-mail addresses: kuss@lma.cnrs-mrs.fr (F. K

(F. Lebon).
, Equilibrium finite elements, Augmented Lagrangian, Condensation

merical methods for solving unilateral contact problems with friction. Although
lly defined in terms of the displacement, a stress based approach to the problem
‘‘equilibrium” finite elements method is therefore used. Using these elements

isfy the local equilibrium condition a priori, but on the other hand, prescribed
to be introduced using Lagrangian multipliers. The problem obtained is therefore
d problem and the global system matrix is non-positive definite. Various solution
posed and compared. Comparisons between the classical method and that devel-
e stress formulation gives very satisfactory results in terms of the stresses.
1. Introduction

Here we present a non-classical approach for solving contact
problems with friction. These problems are usually approached
using the classical displacement based finite element method, with
which many solution methods have been proposed and proved to
be efficient. With approaches of this kind, the compatibility condi-
tions are fulfilled, but not the local equilibrium conditions. A stress
formulation for the problem, satisfying the local equilibrium condi-
tions, is proposed, first because the stresses are usually the param-
eter of interest in engineering contexts, secondly with a view to
using this approach for mesh refinement and limit analysis pur-
poses. This paper is an extended and improved version of the paper
[1] presented at the Fifth International Conference on Engineering
Computational Technology. In the second section, the classical uni-
lateral contact problem and its stress formulation are presented.

The method of discretizing the stress formulation presented in
Section 3 involves equilibrium finite elements. The element used
is described, it was found to be more suitable for contact and fric-
tion problems, since it makes it possible to impose the contact and
friction conditions both strictly and simply. Some convergence re-
sults are presented in the appendix.

In Section 3, we show how equilibrium finite elements can be
used to satisfy the local equilibrium conditions a priori, while
imposing the use of degrees of freedom which are not directly
stresses, prescribed forces and contact forces therefore have to be
+33 491164481.
uss), lebon@lma.cnrs-mrs.fr
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introduced using Lagrangian multipliers. The global system, which
is presented in Section 4, is a non-linear problem with constraints
due to the contact and friction conditions, and its matrix system is
non-positive definite due to the Lagrangian multipliers involved.
Various solvers are then presented: three based on condensation
procedures and one on the Uzawa algorithm. In Section 5, the re-
sults obtained using the classical method and that presented here
are compared. The validity of the present method is confirmed by
these comparisons: it gives better results than the classical one in
terms of the stresses. Lastly, the solvers presented here are com-
pared. Various preconditioners are first compared by applying
them to the stress discretization procedure. The computation times
and memory requirements of each of the solvers applied to various
problems are then compared.
2. The contact problem

2.1. Mechanical problem

In this section, the classical contact problem shown in Fig. 1 is
presented. We consider a deformable body X in receding contact
with a rigid foundation. The boundary C is split into three parts,
CD, CF and CC so that C ¼ �CD [ �CF [ �CC . We take u ¼ ðuiÞ to denote
the displacement field, � ¼ �ijðuÞ ¼ 1

2 ðui;j þ uj;iÞ to denote the linear-
ised strain tensor, r ¼ rijðuÞ ¼ Aijkl�klðuÞ to denote the stress tensor
and a ¼ A�1 to denote the flexibility tensor. The body is in contact
with the foundation at CC . The contact is governed by the Signorini
unilateral conditions and the quasi Coulomb’s friction law. At the
contact boundary, the displacement and the stress vector are



Fig. 1. The classical contact problem.
decomposed by introducing n, the outward normal unit vector to
C:

un ¼ uini; ut ¼ u� un � n;
rn ¼ rijninj; ðrtÞi ¼ rijnj � rnni:

ð1Þ

The body is subjected to volume forces F ¼ ðFiÞ in X and to surface
forces f ¼ ðfiÞ on CF (f could possibly be zero at a part of CF). It is
assumed that F 2 ½L2ðXÞ�d and f 2 ½L2ðCFÞ�d. The displacement is pre-
scribed on CD. The mechanical problem involving an elastic body in
contact with a rigid obstacle is classically written as follows:

Problem ðPÞ. Find u and r such that

r ¼ A�ðuÞ in X;

div r ¼ �F in X;

u ¼ u0 on CD;

r � n ¼ f on CF ;

un 6 0; rn 6 0; unrn ¼ 0 on CC ;

jrtj 6 �lrn on CC and
jrt j < �lrn ) ut ¼ 0;

jrt j ¼ �lrn ) 9k P 0; ut ¼ �krt;

(

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð2Þ

where l is the friction coefficient. Classically, this problem is trea-
ted using a kinematically admissible formulation, written in terms
of the displacements. Many studies have been carried out on these
lines (for further details, see [2]). We adopt a statically admissible
formulation of the problem presented above.
Fig. 2. The Hsieh–Clough–Tocher (HCT) element.
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2.2. Dual (stress) formulation

First, we define the statically admissible sets:

H ¼ fr ¼ ðrijÞ;rij ¼ rji 2 L2ðXÞg;
HF;f ¼ fr 2 H;rij;j þ Fi ¼ 0 in X;rijnj ¼ fi on CFg;
RðsÞ ¼ fr 2 HF;f ;rn 6 0; jrt j 6 �lsn on CCg

ð3Þ

to ensure the symmetry of the stress tensor, the local equilibrium
conditions and the contact and friction conditions.

The variational formulation presented in [3] which is written in
terms of the stresses and is known as the dual formulation, is used
here:

Problem ðPsÞ. Find a stress field r : X! H such that

r 2 RðrÞ;
bðr; s� rÞP lðs� rÞ 8s 2 RðrÞ

�
ð4Þ

with bðr; sÞ ¼
R

X A�1r � sdx and lðsÞ ¼
R

CD
u0s � nds.

3. Discretization of stress formulations

3.1. Discrete formulation

In this part, which deals with the discretization of the dual
problem, the problem is reduced to that of the complementary en-
ergy for the sake of simplification. The problem is then expressed
without any contact or friction; it is discretized using the equilib-
rium finite elements method introduced by Fraeijs de Veubeke in
[4] and recently used by Kempeneers et al. in [5]. The elementary
stress field has to satisfy local equilibrium conditions; for this pur-
pose, the stress field is obtained from an Airy stress function. This
type of element has been used in some numerical cases: by Zave-
lani-Rossi [6] in a study on plane structures in the case of plasticity
and cracks, by Wieckowski and et al. [7] in the elastoplastic analy-
sis of plane structures, and by Bisegna and et al. [8,9] to solve the
Signorini and Coulomb problem in the case of a plane elastic struc-
ture. In the last part, we describe how the prescribed and contact
forces are accounted in this system.

The problem presented above can be written starting with the
complementary energy and solved using a relaxation algorithm.
We then write the complementary energy functional p as follows:

p ¼ 1
2

bðs; sÞ � lðsÞ: ð5Þ

The discretization of the problem leads to transforming the func-
tional p into a sum of elementary functionals:

p ¼
XN

e¼1

pe with : pe ¼
1
2

bðse; seÞ � lðseÞ and

bðre; seÞ ¼
Z

Xe

ae
ijklr

e
ijs

e
kl dxe

lðseÞ ¼
Z

CDe

se
ijnju0i dse if the element edge 2 CD

ð6Þ

In each element, one has to satisfy the local equilibrium condition,
to satisfy the continuity of the stress vector between two neigh-
bouring elements K and K 0 in order to satisfy the local equilibrium
condition on the whole structure, and to introduce the external
(prescribed or contact) forces if the edge of the element is in CF

or CC . These conditions can be written respectively as follows:

div
!

se þ F ¼~0 in K; ð7Þ

se~n ¼ se0~n if CK ¼ CK 0 ; ð8Þ



se~n ¼~f if CK 2 CF ; ð9Þ

se~n ¼ ~fC if CK 2 CC : ð10Þ
3.2. Elementary stress field

In order to reduce the computational cost, the elementary stress
field interpolation is constructed in such a way that it fulfills the
condition (7) a priori. The stress field in an element K is defined
by the curl of an Airy stress function ðUe ¼ Ueðx; yÞÞ, such that:

se
ab ¼ eacebdU

eðx; yÞ;cd þ dabw)
se

xx ¼ Ueðx; yÞ;yy þ w;

se
yy ¼ Ueðx; yÞ;xx þ w;

se
xy ¼ �Ueðx; yÞ;xy:

8><
>: ð11Þ

With w such that Fi ¼ �w;i, where Fi denotes the volume forces in
the direction i. For the sake of simplicity, the problem will be writ-
ten with no volume forces in the following part of the paper.

The Airy stress function is interpolated on an element by:

Ue ¼ ½Yeðx; yÞ�½/e�; ð12Þ

where /e are the degrees of freedom. The stress field is then linked
to the degrees of freedom by differentiating the Airy stress function:

½se� ¼
se

xx

se
yy

se
xy

0
B@

1
CA ¼ ½Be�½/e�: ð13Þ

Using Airy stress functions also makes it possible to meet condition
(8) very simply. This condition requires the stress vector to be con-
tinuous across elements. Since the stress vector is completely de-
fined on one edge by the value of the Airy stress function and
that of its first derivatives, C1 regular finite elements were used to
ensure the continuity of the stress vector, by performing nodal de-
grees of freedom assembly.

Here, the triangular composite Hsieh–Clough–Tocher (HCT)
(Fig. 2) element is used. This element is built using three Airy sub-
functions which allow to define three linear stress fields on each
sub-element. The elementary stress field is therefore linear in parts
and defined by 12 degrees of freedom. it can be shown that using
this element also simplifies the procedure used to impose the con-
tact and friction conditions, since the stress vector is linear on the
edges of the element.

3.3. Contact and prescribed forces

At this point, conditions (9) and (10) have not yet been imposed.
Since the degrees of freedom are not forces, this cannot be done di-
rectly; the stress vector is obtained by projecting the stress field
onto an element edge:

TðMðsÞ; nÞ
!

¼ ½n�½BeðsÞ�½/e�; ð14Þ

where s is the coordinate of a point M on the edge and ½n� is the pro-
jection matrix associated with the outward normal vector ~n of the
edge:

½n� ¼
l 0 m
0 m l

� �
with ~n ¼

l
m

���� in ðx;yÞ: ð15Þ

We then introduce the force vector ½Te�. To completely define the
stress vector on one edge, one has to apply its value at different
points on an element edge, the number of which depends on the de-
gree of the stress interpolation function. In the case of HCT, since
both components are linear, four values are required.

These values are then placed on the force vector ½Te�, which can
be directly related to the degrees of freedom by the force interpo-
lation matrix ½Ce�:
3

½Te� ¼ ½Ce�½/e�: ð16Þ

Conditions (9) and (10) are then directly imposed by introduc-
ing the vector ½Fe� (respectively ½Fe

C �), which gives the discrete val-
ues of the external forces f prescribed on the element edges
(contact and friction forces fC , respectively):

½Fe� ¼ ½Ce
F �½/

e�; ð17Þ
½Fe

C � ¼ ½C
e
C �½/

e�: ð18Þ

The external forces are then prescribed by fixing the values of ½Fe�.

3.4. Elementary problem

The integral lðseÞ is discretized as follows:

lðseÞ ¼
Z

CDe

ð½se�½n�ÞT ½u�dse ¼ ½/e�T
Z

CDe

½Ce�T ½N�T ½u�dse; ð19Þ

where ½N� is the displacement interpolation matrix and ½u� the nodal
displacements. Using Gauss integration formulas, we obtain:

lðseÞ ¼ ½/e�T ½qe�: ð20Þ

The flexibility matrix ½Se� is obtained by Gauss integration and the
elementary functional becomes:

pe ¼
1
2
½/e�T ½Se�½/e� � ½/e�T ½qe�; ð21Þ

½Fe
F � ¼ ½C

e
F �½/

e� if CK 2 CF ; ð22Þ
½Fe

C � ¼ ½C
e
C �½/

e� if CK 2 CC : ð23Þ
4. Global system and solution

Having defined the elementary system, the global system is
now obtained directly by assembly and written:

p ¼ 1
2
½/�T ½S�½/� � ½/�T ½q�; ð24Þ

½CF �½/� ¼ ½F�onCF ; ð25Þ
½CC �½/� ¼ ½FC �onCC : ð26Þ

The last two conditions are included using Lagrangian multipliers.
We obtain the following augmented complementary energy
functional:

p� ¼ 1
2
½/�T ½S�½/� � ½/�T ½q� þ ½k�ð½CF �½/� � ½F�Þ þ ½k0�ð½CC �½/�

� ½FC �Þ: ð27Þ

Cancelling the first variation of this functional with respect to the
variables /, k, k0, and FC gives the global matrix system:

S CT
F CT

C 0
CF 0 0 0
CC 0 0 �I

0 0 �I 0

2
6664

3
7775 �

/

k

k0

FC

2
6664

3
7775 ¼

q

F

0
0

2
6664
3
7775: ð28Þ

At this point, the contact and friction conditions have to be applied.
In the primal case, when dealing with displacements, the matrix is
positive definite and the system can be solved using relaxation
algorithms. Here the matrix is not positive definite. We therefore
compared two ways of solving this system: by using a Gauss–Seidel
algorithm to solve a smaller condensed system, which can be ob-
tained using various condensation strategies, and by solving the
problem, given by the augmented Lagrangian formulation, using
the Uzawa algorithm.

The size and structure of each matrix contribute importantly to
the efficiency and the memory requirements of the method. Let n/

be the number of degrees of freedom used for the discretization



procedure, and nf be the number of prescribed forces (which usu-
ally amount to less than 20% of n/ in many contact problems) and
nC be the number of contact forces (which usually amount to less
than 10% of n/ in many contact problems). Table 1 summarises
the characteristics of each matrix and gives storage schemes that
can possibly be used.

4.1. Condensation on the contact boundary

The goal of the condensation procedure is to obtain the reduced
(condensed) system:

½D�½FC � ¼ ½G� ð29Þ

to be solved with a relaxation algorithm. This condensed system can
be obtained using various methods: the ‘‘blind condensation” meth-
od, or condensation using either the SYMMLQ solver or a three-step
solver.

4.1.1. Blind condensation
The first method of obtaining this system consists in applying

the basic idea of condensation, starting with system (28) and tak-
ing the first three groups of unknowns as the internal unknowns /i.
The symbolic system to be reduced is therefore:

M11 M12

M21 0

� �
�

/i

FC

� �
¼

Ui

0

� �
: ð30Þ

By solving:

/i ¼ M�1
11 Ui �M�1

11 M12FC ð31Þ

the following condensed system is obtained:

M21M�1
11 M12FC ¼ M21M�1

11 Ui denoted ½D�½FC � ¼ ½G�; ð32Þ

where

M11 ¼
S CT

F CT
C

CF 0 0
CC 0 0

2
64

3
75: ð33Þ

Since the computational cost of inversing M11 could be very high,
(31) can be solved using a linear solver: M11 is factorised once
and /i is obtained by ð1þ nCÞ triangular matrix multiplications.
Since the matrix M11 is not positive definite and cannot be stored
using an efficient storage scheme, the first method is very costly
and it has not been used here.

4.1.2. SYMMLQ condensation
Since the slowness of the above condensation strategy is due to

the inefficiency of the direct solvers applied to non-positive defi-
nite matrices, the SYMMLQ iterative method was used to solve
the previous ð1þ nCÞ systems. The SYMMLQ method has been pre-
sented in [12]: it is a conjugate gradient like method for solving
symmetric indefinite linear systems. It solves the projected system
and keeps the residual vectors orthogonal to all the previous ones.
The efficiency of this algorithm depends heavily on the choice of
the preconditioner. An efficient diagonal block preconditioner is
used in [13]. Let us simplify the notation of (33) as follows:
Table 1
Main characteristics of matrices.

Matrix Size Storage

S n/ by n/ Symmetric (skyline or sparse)
CF nf by n/ Sparse
CC nC by n/ Sparse

4

M11 ¼
S CT

C 0

" #
: ð34Þ

The preconditioner matrix P is the block diagonal matrix:

P ¼
S� 0
0 �T

� �
; ð35Þ

where S� is an approximation for S. Various preconditioners were
tested in this study: incomplete Cholesky factorizations of S, the
SSOR preconditioner and, since the SYMMLQ solver is used
ð1þ nCÞ times during the condensation process, complete Cholesky
factorization of S was also tested. The second block preconditioner
used here is such that T ¼ CS��1CT .

4.1.3. Three-step condensation
An efficient condensation method was developed to be able to

take the structure of each matrix into account. Note that in what
follows, the brackets will be omitted from the matrices to simplify
the notations. The matricial system (28) can be written as a system
of four equations as follows:

S/þ CT
F kþ CT

Ck0 ¼ q;

CF/ ¼ F;

CC/ ¼ FC ;

Ik0 ¼ 0:

8>>><
>>>:

ð36Þ

The condensation procedure involves three main steps:

Step 1: Evaluating / so that:
/ ¼ S�1q� S�1CT
Fk� S�1CT

Ck0 ð37Þ

can be achieved in two ways:

� Using a direct solver: S is factorized once by performing LDLT

factorization with skyline storage and the products S�1q,
S�1CT

F and S�1CT
C are obtained by ð1þ nf þ nCÞ system resolu-

tions. The costliest part of this step is therefore carried out
only once.

� Using a conjugate gradient (CG) algorithm: an efficient pre-
conditioner is computed once and used to quickly obtain
the products given above as the result of the ð1þ nf þ nCÞ
system resolutions.
/ is then introduced into lines 2 and 3 of (36).

Step 2: The system then becomes:8

CF S�1q� CFS�1CT

F k� CFS�1CT
Ck0 ¼ F;

CCS�1q� CCS�1CT
F k� CCS�1CT

Ck0 ¼ FC ;

Ik0 ¼ 0:

><
>: ð38Þ

k is obtained by performing ð1þ nCÞ resolutions of a full
and symmetric nf by nf matrix. Here again, the matrix is
factorised only once.
Step 3: k is then introduced into line 2 of (38) and k0 is obtained
in the same way (by performing ð1þ nCÞ resolutions of a
full and symmetric nC by nC matrix). Lastly, k0 is intro-
duced into the last line of (38) and the condensed system
is obtained. Note that the last two steps involve full and
symmetric matrices, but since nf and nC are small in
comparison with n/, their factorization is not too costly.

4.1.4. Preconditioners
Since the efficiency of iterative methods depends strongly on

the preconditioning procedure, the following preconditioners have
been used to accelerate both the SYMMLQ and CG methods.



4.1.5. Incomplete Cholesky factorization
When direct solvers are used, the symmetric positive definite

matrix S is decomposed into a lower and an upper matrix so that:

S ¼ LLT : ð39Þ

The aim of incomplete Cholesky factorization is to find an approxi-
mation for L named L�. The classical incomplete Cholesky factorisa-
tion strategies are reviewed in [14]. We keep only the most
important terms of L in L�. For this purpose, two methods are used:

� The drop tolerance factorization strategy:The term L�ði; jÞ is kept
only if: L�ði; jÞP 10�c �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L�ði; iÞ � L�ðj; jÞ

p
.

� The filling level factorization strategy:The largest nfl � ni terms in
line i of L� are kept, where ni is the size of line i of L and nfl is a
parameter on which the filling level of L� depends.

With both methods, two strategies can be used, and the least
important terms of L� can be removed during the factorization pro-
cedure or removed after performing the full Cholesky factorization
procedure. The former strategy is usually used in order to mini-
mise the computational cost of L� and the memory requirements,
but this sometimes makes it necessary to add small diagonal terms
d to S. Since the preconditioner is used many times in the conden-
sation process, the second strategy can be a useful means of max-
imizing the efficiency of the preconditioner, although the
computational cost of the preconditioner will be greater in this
case.

In order to compare those two strategies, the first one was ap-
plied to the filling level factorization strategy, and the second
one to the drop tolerance factorization strategy.

4.1.6. SSOR preconditioner
The matrix S is decomposed so that:

S ¼ D� E� ET ; ð40Þ
Fig. 3. The Gauss–Seidel algorithm.

5

where D is the diagonal of S and �E is its lower triangular part. The
preconditioner S� is defined by:

S� ¼ 1
xð2�xÞ ðD�xEÞD�1ðD�xEÞT ; ð41Þ

where x is the relaxation parameter, which is taken to range be-
tween 0 and 2.

4.2. Condensed system solver

The condensed system obtained using one of the above conden-
sation methods is solved using a Gauss–Seidel algorithm, and it
makes it possible to apply contact and friction conditions through-
out the iterations. This algorithm is presented in Fig. 3. The global
resolution time used by this algorithm usually amount to less than
1%. The effects of ordering FC and that of the value of the friction
coefficient on the convergence of the algorithm are not very large
and are not presented here, since they do not significantly affect
the overall computation time. It is assumed that the convergence
has been obtained by defining the indicator of convergence ik

C at
step k:

ik
C ¼ sup

i
0;
kFk

CðiÞ � Fk�1
C ðiÞk

kFk
CðiÞk

( )
with Fk

CðiÞ–0 ð42Þ

to determine at what point no further changes in the contact forces
vector occur. The limit value of ik

C has been taken to be 10�5, which
is the usual choice with algorithms of this kind [15].

4.3. Augmented Lagrangian formulation

Another method of solving (27) consists in transforming this
equation to obtain an augmented Lagrangian formulation. The
functional then becomes:

pa� ¼
1
2

/T S/� /T qþ kðCF/� FÞ þ k0ðCC/� FCÞ þ
r
2
ðCF/� FÞ2

þ r
2
ðCC/� FCÞ2 with FC 2 RðFCÞ; ð43Þ

where r is the penalty parameter. Cancelling the first variation of
this functional in comparison with the variables /, k, k0 and FC gives
the system:

~S/ ¼ ~U

with : ~S ¼ Sþ rCT
F CF þ rCT

CCC

and : ~U ¼ q� kCF � k0CC þ rCT
F F þ rCT

CFC

CF/� F ¼ 0
CC/� FC ¼ 0
k0 � rðCC/� FCÞ ¼ 0withFC 2 RðFCÞ

8>>>>>>>>><
>>>>>>>>>:

ð44Þ

In order to apply the contact and friction conditions, the Uzawa
algorithm presented in Fig. 4 was used, where q is the Uzawa’s step.
Note that the augmented Lagrangian formulation was used to im-
prove the convergence rate of the Uzawa algorithm. Since many
iterations are usually required to obtain convergence, the first step
in this algorithm is performed using a direct skyline solver. The fac-
torization of ~S, which is the costliest operation, is thus performed
only once and the factorised matrix is used at each step in the algo-
rithm. The convergence indicator was defined such that:

ik
C ¼ supikrkðiÞk ð45Þ

with

rk ¼ CC/k � Fkþ1
C þ CF/

k � F ð46Þ

the limit value of iC was taken to be 10�3 MPa, which is an appropri-
ate value with the examples treated here.



Fig. 4. The Uzawa algorithm.

Fig. 6. Comparison between the relative errors obtained using dual and primal
methods.
5. Numerical results

The algorithms presented here have been implemented in the
computer code LMGC90 (http://www.lmgc.univ-montp2.fr/~du-
bois/LMGC90/) and tested on the case of the steel tooth presented
in Fig. 5, with displacements ux ¼ 0 cm and uy ¼ �0:01 cm pre-
scribed on its left edge, which is in contact with a rigid foundation
where l ¼ 0:2.

We first compare the accuracy of the results obtained using the
method presented here and those obtained using the classical dis-
placement based method, and we then compare the efficiency of
each of the solvers tested.

5.1. Validity of the method

In order to check the validity of the present dual method, we
compare the stress fields obtained using this method with the
stress fields obtained using the classical displacement based finite
element method on various homogeneous meshes.

For this purpose, we compute the relative error e, defined as:

e ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiR
Xðr� rref ÞA�1ðr� rref ÞdXR

X rref A
�1rref dX

vuut ; ð47Þ

where rref is the reference solution’s stress field, which is computed
using the classical displacement finite element method on a refer-
ence refined mesh.
Fig. 5. First example: contact between a tooth and a rigid foundation.
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Here, all the displacement based finite element solutions are
obtained using the computer code LMGC90, which is based on
the NSCD solver [16], with linear triangular elements.

The relative error e is computed by performing numerical inte-
gration on the Gauss points of the reference mesh. The evolution of
the error is shown in Fig. 6 in the case of the present method
(named DUAL) and the displacement based method (named PRI-
MAL) with various homogeneous meshes.

These results clearly show that both methods converge towards
the same reference solution. Comparisons on the relative error ob-
tained with the DUAL and PRIMAL methods with an equivalent
number of degrees of freedom show that the present method gives
more accurate results in terms of the stresses in the case of the
example tested.

5.2. Comparisons between numerical methods

5.2.1. Descriptions of benchmarking examples and algorithms
parameters

In this section, we test the present methods of resolution on the
examples given in Figs. 5 (Mesh0 to Mesh3) and 7 (Mesh4 to
Mesh7) with the various sizes presented in Table 2. This second
Fig. 7. An example with four teeth.



Table 2
Sizes of the examples tested.

Name n/ nf nC Name n/ nf nC

Mesh0 761 96 38 Mesh4 8360 392 200
Mesh1 1973 144 80 Mesh5 19128 588 480
Mesh2 3105 176 120 Mesh6 26538 708 576
Mesh3 6287 232 160 Mesh7 50483 920 640
example is similar to the first one, but involves four separated con-
tact boundaries and different ratios n/

nf
and n/

nC
when not particularly

refined meshes are used. All the meshes were previously renum-
bered using the Cuthill McKee algorithm (see [17]) and the matri-
ces were equilibrated using diagonal equilibration method to
improve the convergence rates and the accuracy.

The following methods were then compared:

� The SYMMLQ condensation strategy.
� The three-step condensation method using two different

approaches at the first level of condensation: a skyline LDLT sol-
ver and a conjugate gradient solver. These two methods will be
named 3STEPD and 3STEPCG below.

� Solving the augmented Lagrangian formulation using the Uzawa
algorithm.

With the CG and SYMMLQ methods, the following approxima-
tions S� of S were tested as preconditioners:

� The drop tolerance incomplete Cholesky factorization (DTIC)
procedure with the tolerance parameter c 2 ½3; 6�.

� The filling level incomplete Cholesky factorization (FLIC) proce-
dure with the filling level factor nfl 2 ½1; 5�.

� The SSOR preconditioner (SS) with the relaxation parameter
x 2�0; 2½.

� Exact Cholesky factorization of S (SKY).

When DTIC, FLIC and SSOR preconditioners were used, the
upper and lower parts of these preconditioners were stored using
sparse line storage schemes. Both parts were stored in order to
accelerate the matrix vector products. When the exact Cholesky
factorization procedure was used, both the upper and lower parts
were stored for the same reason and a skyline storage line scheme
was used. When using the skyline LDLT solver, both the lower (�E)
and upper (�ET ) parts of S were stored using a skyline storage line
Table 3
Results obtained using various preconditioners when the SYMMLQ method was applied to

Name Parameter Tprec (s) Tcond (s) Ttotal (s) Full si

DTIC2 2 5.92 258.66 258.72 12647
DTIC3 3 6.61 91.50 91.56 12647
DTIC4 4 9.73 58.54 58.60 12647
DTIC5 5 13.45 43.50 43.56 12647
DTIC6 6 15.52 41.10 41.16 12647
FLIC1 1 5.99 546.54 546.60 12647
FLIC2 2 5.98 292.95 293.01 12647
FLIC3 3 13.11 258.99 259.05 12647
FLIC4 4 19.23 285.38 285.44 12647
FLIC5 5 24.65 315.80 315.86 12647
SKY 6.91 14.50 14.56 12647
SS02 0.2 2.46 1571.28 1571.34 12647
SS04 0.4 2.61 1258.93 1258.99 12647
SS06 0.6 2.64 1081.68 1081.74 12647
SS08 0.8 2.62 975.84 975.90 12647
SS10 1 2.60 921.31 921.37 12647
SS12 1.2 2.65 926.26 926.32 12647
SS14 1.4 2.70 984.78 984.84 12647
SS16 1.6 2.78 1136.87 1136.93 12647
SS18 1.8 2.88 1457.94 1458.00 12647
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scheme. Since the computation of line i of L does not require the
ði� 1Þ lines of S, matrices L and LT can be stored in �E and �ET ,
respectively.

To use Uzawa’s algorithm, one has to choose the parameters q
and r defined in Section 4.3. Since the parameter r defines the
importance of the product matrices CT

F CF and CT
CCC in comparison

with S, matrices CF and CC have been multiplied by factors pF

and pC so that:

pF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meanðSÞ

p
meanðCFÞ

;

pC ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
meanðSÞ

p
meanðCCÞ

:

ð48Þ

This makes it possible to give any r the same weight in all the exam-
ples tested. On the other hand, since we had no rules for choosing q
and r, we tested various combinations of these two parameters in
½1; 20; 40; 60; 80; 100; 200; 300� in each case and took the best sets
for the subsequent comparisons.

These computations were performed on an Intel P4 1.7 Ghz
computer with 1 Gb RAM memory in order to assess the perfor-
mances on a medium-range computer.

5.2.2. Influence of the preconditioner
Before comparing these methods, we analyzed the influence of

preconditioners on the SYMMLQ and 3STEPCG methods. Since sim-
ilar behaviour was found to occur in each case and with both meth-
ods, we focused on results obtained with the SYMMLQ method on
the Mesh3 example given in Table 3. This table gives the name of
each preconditioner, the value of the parameter (c with DTIC, nfl

with FLIC and x with SSOR), the time taken to compute the pre-
conditioner matrix, the time required to perform the condensation,
the time required to complete the entire resolution (condensation
and Gauss–Seidel methods), the size that would be used by the
lower part of the full Cholesky factorization preconditioner, the
size of the lower part of the preconditioner, and the maximum
RAM memory used.

First, if we look at the DTIC, it can be seen that DTIC3 gives a
good compromise between memory requirements and speed, and
that DTIC6 gives the best results, since it is similar, in terms of size,
to the full Cholesky factorization. It is worth noting that the RAM
value of DTIC6 is greater than the one of SKY because that the sky-
line storage scheme is lighter than the sparse storage scheme,
when dealing with the same number of components.
case of Mesh3 (6287 dof).

ze (nb terms) Lprec size (nb terms) Maxmem (Mb) d

05 171548 31.84
05 353749 36.66
05 655518 43.58
05 1005769 51.59
05 1204640 56.14
05 80018 29.74 3:5� 10�2

05 159908 31.64 5� 10�3

05 239097 33.31 5� 10�3

05 317324 35.85 5� 10�3

05 393895 37.60 5� 10�3

05 1264705 47.87
05 80018 30.67
05 80018 30.67
05 80018 30.67
05 80018 30.67
05 80018 30.67
05 80018 30.67
05 80018 30.67
05 80018 30.66
05 80018 30.66



The last column gives the value d added to the diagonal of S
when the FLIC preconditioner was used. This procedure involves
adding Dd to the diagonal when the algorithm fails to compute
the preconditioner and the computation has to be restarted. The
times given in Table 3 take these restarts into account and
Dd ¼ 0:005. It can be seen that the strategy which consists in
taking the ði� 1Þ first lines of L� to compute the ith line usually in-
volves restarts and therefore does not make for any computational
time savings.

The optimum parameter x used for the SSOR preconditioner
was 1 in all the cases tested here. This preconditioner gives a good
approximation for S, but it is less efficient than the incomplete
Cholesky preconditioner when working on problems of this kind.

The SKY preconditioner stored on a skyline scheme eventually
gave the best results. First since choosing the exact factorization
procedure for S gives an excellent approximation of P, the block
preconditioner; the SYMMLQ algorithm converges in 1 or 2 itera-
tions with this preconditioner. Secondly, the skyline storage
scheme plays an important role: to confirm this point, the DTIC
preconditioner was tested with a threshold value c ¼ 10�21; this
preconditioner therefore gives very similar results to those ob-
tained with the full Cholesky preconditioner. But due to the sparse
storage scheme involved, the SYMMLQ method takes longer with
the DTIC preconditioner than with the SKY preconditioner.

5.2.3. Comparisons between algorithms
In the previous section, efficient preconditioners were selected

in order to reduce the number of methods compared. In this part,
we use only the DTIC and SKY preconditioners with iterative meth-
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ods. The results obtained with the following methods on all the
examples are compared in Figs. 8 and 9:

� The SYMMLQ condensation method with the DTIC3, DTIC6 and
SKY preconditioners, which was named SDTIC3, SDTIC6 and
SSKY, respectively.

� The 3STEP condensation method with the direct LDLT and the
conjugate gradient solver, using the DTIC3 and DTIC6 precondi-
tioners, which was named 3STEPD, 3STEPCG3 and 3STEPCG6,
respectively.

� The solution of the augmented Lagrangian formulation using the
Uzawa algorithm, which was named ALM.
The computational times are summarized in Fig. 8.
The memory requirements of all the methods tested here are

summarized in Fig. 9.
First, by comparing SDTIC3 with 3STEPCG3 and SDTIC6 with

3STEPCG6, it can be seen that the SYMMLQ method and the 3STEP-
CG method are both equivalent when equivalent preconditioners
are used, but these four strategies are less efficient than the others.
As a general rule, iterative methods can only be as efficient as the
3STEPD and ALM methods when highly efficient preconditioners
are used, as in the case of the SSKY strategy. But these methods in-
volve the storage of both the global matrix and the preconditioner;
they therefore require a greater amount of memory than the
3STEPD and ALM methods.

The 3STEPD and ALM methods therefore seem to be the most
efficient of these methods. In all the examples tested, these two
methods required similar computational times, although the ALM
method was found to be slightly faster.
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The main advantage of the ALM method is that it requires very
little memory, whereas the 3STEPD methods involve the storage of
intermediate matrices at each of the condensation steps. This
drawback of the 3STEPD method could be overcome using an
appropriate file storage strategy.

The main advantage of the 3STEPD method is its robustness,
since unlike the ALM method, it is not parameter dependent. The
computation times are therefore predictable, since they depend
mainly on the profile of the flexibility matrix. On the other hand,
this method can easily be parallelized.
6. Conclusion

In this paper, an adapted version of the equilibrium finite ele-
ment method is presented for solving contact and friction prob-
lems. With the element presented, the interpolated stress fulfills
the equilibrium conditions a priori.

The use of equilibrium finite elements requires the prescribed
and contact forces to be introduced into the matrix system using
Lagrangian multipliers. The matrix system is thus non-positive def-
inite and the global system is non-linear and constrained. Various
solution algorithms based on condensation and on an augmented
Lagrangian formulation have been proposed to solve this particular
system.

The validity of the equilibrium finite element method was con-
firmed in the case of various examples. Results obtained in the case
of a tooth using both the classical displacement based finite ele-
ment method and that proposed here were compared in the last
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section. The finite element method presented here gives more
accurate results in terms of the stresses than the classical one. This
can be explained by the fact that the contact and friction condi-
tions are directly imposed on the stress field in the case of the pres-
ent method.

Lastly, all the numerical methods developed so far for solving
the global system were compared. Two of these methods turned
out to be particularly efficient. The first one, which is based on
the use of a suitable condensation strategy and of direct solvers,
is very robust but needs some memory management. The second
method, which is based on the Uzawa algorithm applied to an
augmented Lagrangian formulation requires little memory, but
some difficult parameters have to be determined to make it
efficient.
Appendix A. Some convergence results

In this paragraph, some convergence results obtained using the
finite elements method in a simplified framework are presented.
We introduce the space

W ¼ Hðdiv; XÞ ¼ fs 2 H; div s 2 ½L2ðXÞ�2g: ð49Þ

To simplify the problem, the domain X is assumed to be polygonal.
We take T h to denote a triangulation of X such that X ¼ [T2Th

T . Th

is assumed to be regular, so that all the angles of the element T 2 Th

are bounded far from zero and there exists a positive constant a
such that the length of any side of any T 2 Th is at least ah, where
h is the characteristic length of the elements.



In a general framework, spaces Wh and Vh are chosen so that:

if s 2Wh and ðdiv s; vhÞ ¼ 0 8vh 2 Vh then div s
¼ 0 in X: ð50Þ

In addition, we assume that it is possible to construct an interpola-
tion operator ph : W !Wh fulfilling:

ðdiv phrvhÞ ¼ ðdiv r;vhÞ 8vh 2 Vh: ð51Þ

An element is defined in keeping with the above hypothesis. For all
T 2 Th, the following finite dimensional space of piecewise linear
stress tensors is defined:

WT � Hðdiv ; TÞ ð52Þ

and we write

Wh ¼ fs 2 Ŵh; div s 2 ½L2ðXÞ�2g; ð53Þ

where

Ŵh ¼ fs 2 H; s=T 2WT 8T 2 Thg: ð54Þ

We now adopt some restrictive hypotheses. F (the weight, for
example) is assumed to be constant and f (the linear force distribu-
tion) to be linear. Here we take the case of Tresca friction: in prob-
lems ðPsÞ and ðP�dÞ, the sets RðrÞ and R�ðrnÞ are replaced by the sets
RðbÞ and R�ðbnÞ, respectively, where b and bn are given. b (resp. bn)
are assumed to be concave or piecewise linear. Using a classical re-
sult obtained by Ciarlet [10], one can obtain.

Elasticity: there exists a constant C independent of h such that:

kr� rhkW 6 Chkrk: ð55Þ

Tresca ðPsÞ there exists a constant C independent of h such that:

kr� rhkW 6 Ch1=2krk2: ð56Þ

Tresca ðP�dÞ there exists a constant C independent of h such that:

kr� rhk�1=2;C2
6 Ch1=2krk2: ð57Þ

These results are proved in [11].
Comment: In the case of the Signorini–Coulomb problem, the

hypotheses adopted in theorem (7.1) are generally not satisfied.
It is therefore necessary to use external approximations [10]. This
problem still remains to be solved.

A.1. Accuracy of the Block preconditioner

In this section, we explain why the Block preconditioner pre-
sented in Section 4.1.2 is very accurate when the full Cholesky fac-
torization method is used as the first block of the preconditioner.
Let us first recall the condensation principle. To obtain expression
(31), one has to solve a series of systems:

M11
~Ui ¼ Uiand

M11X ¼ M12 treated by nC operations :

do i ¼ 1 to nC :

M11Xð:; iÞ ¼ M12ð:; iÞ ðwhere Xð:; iÞ denotes the column i of XÞ
enddo

ð58Þ

These ð1þ nCÞ systems can be solved using the SYMMLQ method
with the block preconditioner (35). When the full Cholesky factor-
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ization procedure is used as the first block of the preconditioner,
one of the nC systems solved by applying the preconditioner (35) is:

S 0
0 �T

� �
X1ð:; iÞ
X2ð:; iÞ

� �
¼

M1
12ð:; iÞ

M2
12ð:; iÞ

" #
; ð59Þ

which is equivalent to:

SX1ð:; iÞ ¼ M1
12ð:; iÞ;

�CS�1CT X2ð:; iÞ ¼ M2
12ð:; iÞ:

(
ð60Þ

The exact system is:

S CT

CT 0

" #
X1ð:; iÞ
X2ð:; iÞ

� �
¼

M1
12ð:; iÞ

M2
12ð:; iÞ

" #
; ð61Þ

which is equivalent to:

SX1ð:; iÞ ¼ M1
12ð:; iÞ � CT X2ð:; iÞ;

�CS�1CT X2ð:; iÞ ¼ M2
12ð:; iÞ:

(
ð62Þ

Note that this could be a two-step condensation strategy.
With this choice of preconditioner, systems (60) and (62) can be

seen to be very similar; the SYMMLQ method therefore converges
after only one or two iterations when this preconditioner is used.
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