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FUNCTIONAL SUPERVISED CLASSIFICATION WITH
WAVELETS

By Alain Berlinet, Gérard Biau and Laurent Rouvière
Université Montpellier II, Université Paris VI and Université Rennes II

Let X be a random variable taking values in a Hilbert space and
let Y be a random label with values in {0,1}. Given a collection of
classification rules and a learning sample of independent copies of the
pair (X, Y), it is shown how to select optimally and consistently a
classifier. As a general strategy, the learning sample observations are
first expanded on a wavelet basis and the overall infinité dimension
is reduced to a finite one via a suitable data-dependent threshold-
ing. Then, a finite-dimensional classification rule is performed on the
non-zero coefficients. Both the dimension and the classifier are auto-

matically selected by data-splitting and empirical risk minimization.
Applications of this technique to a signal discrimination problem in-
volving speech recordings and simulated data are presented.

1. Introduction.

1.1. Functional classification. The problem of classification (or pattern
récognition or discrimination) is about guessing or predicting the unknown
class of an observation. An observation is usually a collection of numerical
measurements represented by a d-dimensional vector. However, in many real-
life problems, input observations are in fact (sampled) functions rather than
standard high dimensional vectors, and this casts the classification problem
into the class of Functional Data Analysis.

The last few years hâve witnessed important new developments in both
the theory and practice of functional classification and related learning prob-
lems. Nonparametric techniques hâve been proved useful for analyzing such
functional data, and the literature is growing at a fast pace: Hastie, Buja, and
Tibshirani [24] set out the general idea of Functional Discriminant Analysis;
Kulkarni and Posner [26] study rates of convergence of fc-nearest neighbor
régression estimâtes in general spaces; Hall, Poskitt, and Presnell [23] em-
ploy a functional data-analytic method for dimension réduction based on
Principal Component Analysis and perform Quadratic Discriminant Anal-
ysis on the reduced space, so do Ramsay and Silverman [30, 31]; Ferraty
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and Vieu [18, 19] estimate nonparametrically the posterior probability of
an incoming curve in a given class; Cardot and Sarda [9] develop functional
generalized linear models; Cuevas, Febrero, and Fraiman [12] use depth no-
tions to compute robust distances between curves, whereas Rossi and Villa
[32] investigate the use of Support Vector Machines in the context of Func-
tional Data Analysis. For a large discussion and an updated list of references,
we refer the reader to the monographs of Ramsay and Silverman [30] and
Ferraty and Vieu [20].

Although standard pattern récognition techniques appear to be feasible,
the intrinsic infinite-dimensional structure of the observations makes learn-

ing suffer from the curse of dimensionality (see Abraham, Biau, and Cadre
[I] for a detailed discussion, examples and counterexamples). In practice,
before applying any learning technique to modelize real data, a preliminary
dimension réduction or model sélection step reveals crucial for appropriate
smoothing and circumvention of the dimensionality effect. As a matter of
fact, filtering is a popular dimension réduction method in signal processing
and this is the central approach we take in this paper.

Roughly, filtering reduces the infinité dimension of the data by consider-
ing only the first d coefficients of the observations expanded on an appro-

priate basis. This approach was followed by Kirby and Sirovich [25], Comon[II], Belhumeur, Hepana, and Kriegman [3], Hall, Poskitt, and Presnell [23],
or Amato, Antoniadis, and De Feis [2], among others. Given a collection of
functions to be classified, Biau, Bunea, and Wegkamp [4] propose to use first
Fourier filtering on each signal, and then perform fc-nearest neighbor classi-
fication in R . These authors study finite sample and asymptotic properties
of a data-driven procedure that selects simultaneously both the dimension
d and the optimal number of neighbors k.

The présent paper breaks with three aspects of the methodology described
by Biau, Bunea, and Wegkamp [4].

• First a change which can appear as minor but which has major practi-
cal implications is in the choice of the basis. As pointed out for example
in Amato, Antoniadis, and De Feis [2], wavelet bases offer some signif-
icant advantages over other bases. In particular, unlike the traditional
Fourier bases, wavelets are localized in both time and frequency. This
offers advantages for representing processes that hâve discontinuities
or sharp peaks.

• Second, reordering of the basis using a data-based criterion allows
efficient réduction of dimension.

• Finally the classification rule is not restricted to the nearest neighbor
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rule as in Biau, Bunea, and Wegkamp [4]. This allows to adapt the
rule to the problem under study.

Throughout the manuscript, we will adopt the point of view of automatic
pattern récognition described, to a large extent, in Devroye [15]. In this
setup, one uses a validation sequence to select the best rule from a rich
class of discrimination rules defined in terms of a training sequence. For the
clarity of the paper, ail important concepts and inequalities regarding this
classification paradigm are summarized in the next subsection. In Section
2, we outline our method, state its finite sample performance and prove

consistency of the classification rule. Section 3 offers some experimental
results both on real-life and simulated data.

1.2. Automatic pattern récognition. This section gives a brief exposition
and sets up terminology of automatic pattern récognition. For a detailed
introduction, the reader is referred to Devroye [15].

To model the automatic learning problem, we introduce a probabilistic
setting. Dénoté by T some abstract separable Hilbert space, and keep in
mind that the choice T — L2QO, 1]) (that is, the space of ail square in-
tegrable functions on [0,1]) will be a leading example throughout the pa-

per. The data consists of a sequence of n + m i.i.d. T x {0, l}-valued ran-
dom variables (Xi,Yl),..., (Xn+m, Yn+m). The X^’s are the observations,
and the Y(s are the labels1. Note that we artificially split the data into
two independent sequences, one of length n, and one of length m: we call
the n sequence the training sequence, and the m sequence the validation
sequence. A discrimination rule is a (measurable) function g : T x {T x
{0, l})n+m —> {0,1}. It classifies a new observation x G F as coming from
class g (x, (Xi, Yf),..., (Xn+m, Yn+m)). We will write g{x) for the sake of
convenience.

The probability of error of a given rule g is

F'n+m (g) = P{ff(Jf) + , (Xn+m,Yn+m)},
where (X, Y) is independent of the data sequence and is distributed as

(Xi, Yi). Although we would like Ln+m(g) to be small, we know (see e.g. De-
vroye, Gyôrfi, and Lugosi [16], Theorem 2.1, page 10), that Ln+m(g) cannot
be smaller than the Bayes probability of error

L* = inf P{s(X) ± Y}.
s:^{0,l}

1In this study we restrict our attention to binary classification. The reason is simplicity
and that the binary problem already captures many of the main features of more general
problems.

I
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In the learning process, we aim at constructing rules with probability of
error as close as possible to L*. To do this, we employ the training sequence
to design a class of data-dependent discrimination rules and we use the
validation sequence as an impartial judge in the sélection process. More
precisely, we dénoté by Dn a (possibly infinité) collection of functions g :
T x w x {0, l})n —> {0,1}, from which a particular function g is selected
by minimizing the empirical risk based upon the validation sequence:

-, n+m n+m

Ln,m{g) = — ^ min — ^
i—n+1 n i=n+1

At this point, observe that in the formulation above, for x E T,

■g(x)^g(x,(X1,Y1),...,(Xn,Yn))
and

g{x) — g{p^-> {X\, F}), * • • 5 (Xn+nrn Fn+ra)) 5

i.e., the discriminators g themselves are based upon the training sequence

only, whereas the chosen classifier g dépends on the entire data set, as the
rest of the data is used for selecting the classifiers.

Since, conditionally to the training sequence, Ln,m(g) is an unbiased es-
timate of Ln(g), we expect that Ln+m(g) is close to inf5eDn Ln(g). This is
captured in the following inequality (see Devroye, Gyôrfi, and Lugosi [16],
Lemma 8.2, page 126):

(î.i) Ln+m inf Ln(g) < 2 sup
geDn

Ln,m (g) - Ln(g)

Thus, upper bounds for sup5GDn |Ln,m(g) ~ Ln(g)\ provide us with upper
bounds for the suboptimality of g within Dn. When the class of rules Dn is
finite with cardinality bounded by Nn, upper bounds can be obtained via a
direct application of Hoeffding’s inequality:

(1.2) et sup Ln,m(9) Ln(g) < 'l°g(2Nn)
+

2m yj&m log(2Nn)
where the notation En means the expectation conditional on the training
sequence of length n. The inequality above is useless when Nn = oo. It is
here that we can apply the inequality of Vapnik and Chervonenkis [34] or
one of its modifications. We first need some more notation. For fixed training
sequence ..., (xn,yn), dénoté by Cn the collection of ail sets

Cn = {{z G T : g{x) = 1} : g G Dn},
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and define the shatter coefficient as

§cn(m) “ max Card {{aq,..., xm} fl C : C G Cn}.
(®i

Then

En<J sup g9) - Ln(g)
0€Dn

(1.3) <
81og (4SCn(2m))

m
+

(m/2) log (4SCn(2m))

For more information and improvements on these inequalities, we refer the
reader to the monograph of Devroye, Gyôrfi, and Lugosi [16], and to the
comprehensive surveys of Boucheron, Bousquet, and Lugosi [5, 6].

2. Dimension réduction for classification. The theory of wavelets
has recently undergone a rapid development with exciting implications for
nonparametric estimation. Wavelets are functions that can eut up a signal
into different frequency components with a resolution matching its scale.
Unlike the traditional Fourier bases, wavelet bases offer a degree of local-
ization in space as well as frequency. This enables development of simple
function estimâtes that respond effectively to discontinuities and spatially
varying degree of oscillations in a signal, even when the observations are
contaminated by noise. The books of Daubechies [14] and Meyer [27] give
detailed expositions of the mathematical aspects of wavelets.

As for now, to avoid useless technical notation, we will suppose that the
feature space T is equal to the Hilbert space L2QO, 1]), and we will sometimes
refer to the observations Xi as “the curves”. Extension to more general sep-
arable Hilbert spaces is easy. We recall that X2QO, 1]) can be approximated
by a multiresolution analysis, i.e., a ladder of closed subspaces

VbCFiC...Ci2([0,1])

whose union is dense in L2QO, 1]), and where each Vj is spanned by 2J
orthonormal scaling functions ÈÊm k = 0,..., 2J — 1. At each resolution level
j > 0, the orthonormal complément Wj between Vj and Vj+1 is generated
by 2J orthonormal wavelets k = 0,..., 2J — 1 obtained by translations
and dilatations of a function 'i/j (called mother wavelet):

MB = 2j/2^{2Jt - k).
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As an illustration, Figure 1 displays Daubechies’ mother wavelets with p =

1,2,4,6,8 and 10 vanishing moments (Daubechies [14]). Note that the case
p — 1 corresponds to the Haar basis (Haar [22]).

Fig 1. Mother wavelets for Daubechies' compactly supported wavelets with p vanishing mo-
ments (p = 1,2,4,6,8 and 10

Thus, the family
U {Vh,A:}fc=0,...,2Ô-1
j>0

completed by {<po,o} forms an orthonormal basis of L2Q0,1]). As a conse-
quence, any observation X in .^([0,1]) reads

oo 2J —1

(2.1) X(t) = ^2 X + #0,0W, t e [0,1],
j=0 k—0

gj,k= [ X(t)^jfc(t)dt and rj = [ X(t)c/)o,o(t)dt:Jo Jo

where
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and the consistency (2.1) is understood in L2 ([0, lj). We are now ready to
introduce our classification algorithm and discuss its consistency properties.
Using the notation of Subsection 1.2, we suppose that the data consists of
a sequence of n + m i.i.d. Z/2([0,1]) x {0, l}-valued random observations
(Xi, Yî),..., (Xn_)_m, Yn+rn). Given a multiresolution analysis of Z/2([0,1]),
each observation Xi is expressed as a sériés expansion

00 2^-1

(2.2) Xi{t) = J2 J2 + rçVo.oRÉ? * € [0, l]j
j—0 k—0

It will be convenient to reindex the sequence

{00,0, 00,0, 01,0, 01,1,02,0, 02,1,02,2, 02,3, 03,0, •••}

into {0i,02, •••}• With this scheme, equality (2.2) may be rewritten as

(2.3) Xi[t) = t € [0,1],
7=1

with the random coefficients

Xij = [ Xi(t)'i/jj(t)dt.Jo

Dénoté by Xj = (Xn,Xi2,...) the sequence of coefficients associated with
Xi. In our quest of dimension réduction, we first fix in (2.2) a maximum
(large) resolution level J (J >0, possibly fonction of n) so that

J-12^-1

xi(t) Q,fc0j,fc(O + »7Vo,oM, t G [0,1]
j=0 k=0

or equivalently, using (2.3),

2J

xiW Ë XiÔ^3 QJ t e [0, 1].
i=i

At this point, we could try to use these finite-dimensional approximations
of the observations, and let the data select optimally one of the 22 — 1
non-empty subbases of {0i,..., 02j}. By doing so, we would be faced with
catastrophic performance bounds and unreasonable computing time. To cir-
cumvent this problem, we suggest the following procedure.
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First, for each d = 1,..., 2 , we assume to be given beforehand a (pos-
sibly infinité) collection DP of rules gW : Rd x (Rd x {0, l})n {0,1}
working in M.d and using the n d-dimensional training data as input. We will
dénoté by § (d)(m) the corresponding shatter coefficients (see Subsection

1.2) and, with a slight abuse of notation, by (m) the shatter coefficient
corresponding to the collection of ail rules embedded in K2J. Ob-
serve that

2J

sci(m) <
d=l

Second, we let the n training data reorder the first 2J basis functions
{V>i, • • •, V72J} into1 yl>ji » • • • 5 ^j2j | via the scheme

n n n

(2.4)
i—1 i=1 i=1

In other words, we just let the training sample décidé by itself which basis
functions carry the most significant information.

We finish the procedure by a third sélection step: pick the effective di-
mension d <2J and a classification rule in by approximating each

The dimension d and the classifier |fvj are simultaneously selected using
the data-splitting device described in Subsection 1.2. Precisely, we choose
both d and g^ optimally by minimizing the empirical probability of error
based on the independent validation set, that is

(2.5) G argmin
d= i,...,2^,PeDid)

^ n+m

i=n+1

Note that the second step of our algorithm is somewhat related to wavelet
shrinkage, that is, certain wavelet coefficients are reduced to zéro. Wavelet
shrinkage and thresholding methods constitute a powerful way to carry out
signal analysis, especially when the underlying process has sparse wavelet
représentation. They are computationally fast and automatically adapt to
spatial and frequency inhomogeneities of the signal. A review of the advan-
tages of wavelet shrinkage appears in Donoho, Johnstone, Kerkyacharian,
and Picard [17]. In our functional classification context, the preprocessing
step (2.4) allows to shrink globally ail learning data. This point is crucial,



69

as individual shrinkages would lead to different significant bases for each
function in the data set.

Apart from being conceptually simple, this method leads to the classifier
£(x) xwith a probability of misclassification

Ln+m (ff) = p{â(x)#y|(x1,y1) , . . . , Ln+m) } 5

where, for a generic A, = (X^,..., Xjd) dénotés the first d coefficients
reordered via the scheme (2.4). The selected rule g satisfies the following
optimal inequality, whose proof is clear from (1.1) and (1.3):

Theorem 2.1.

E{Ln+m(g)}-L* <L*2j ^L* + e\ inf Ln(g^)\- L\j1 d=i,...,2J,gWenl?y J

I 2E j)/81og(4Sci(2m))~ | 1\ m yj{m/2) log (4§g(2m))
Here

@É = M P{s(X(2Ji) jé y}
s:R2j-^{0,l}

stands for the Bayes probability of error when the feature space is M2<7.

We may view the first term, L*j — L*, on the right of the inequality
as an approximation term - the price to pay for using a finite-dimensional
approximation. This term converges to zéro by Lemma 2.1 below, which is a

spécial case of Theorem 32.3, page 567 in Devroye, Gyôrfi, and Lugosi [16].

Lemma 2.1. We hâve

L\j - L* -> 0 as J -> oo.

The second term, Ejinf^^ can be handled
by standard results on classification. Let us first recall the définition of
a consistent rule: a rule g is consistent for a class of distributions V if
E{Ln{g)} —» L* as n —» oo for ail distributions (A, T) G V.

Corollary 2.1. Let V be a class of distributions. For fixed J > 0,
assume that we can pick from each D„ , n > 1, one g\ such that the
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sequence (gn ^)n>i is consistent for T>. If

lim m = oo, and, for each J, lim E logsci(2m)
m

then the automatic rule g defined in (2.5) is consistent for T> in the sense

lim lim E{Ln+m(g)} = L*.J—>oo n-*oo

Proof The proof uses Theorem 2.1, Lemma 2.1, and the upper bound

Et inf Lr
d=l,...,2J,g(d)eT>{n)

- Ig B E{£n(sf'))} - L\j.

This consistency resuit is especially valuable since few approximation re-
sults hâve been established for functional classification. Corollary 2.1 shows
that a consistent rule is selected if, for each fixed J > 0, the sequence of

<2J\
D„ ;’s contains a consistent rule, even if we do not know which functions
from Dn lead to consistency. If we are only concerned with consistency,
Corollary 2.1 reassures us that nothing is lost as long as we take m much
larger than logE{S (j) (2m)}. Often, this reduces to a very weak condition
on the size m of the validation set. Note also that it is usually possible to find
upper bounds on the random variable S (j> (2m) that dépend on n, m and J,

'-'n

but not on the actual values of the random variables (X\, Yî),..., (Xn, Yn).
In this case, the bound is distribution-free, and the problem is purely com-
binatorial: count S_(j>(2m). Examples are now presented.

Example 1: k-NN rules. In the /c-nearest neighbor rule (k-NN), a majority
vote decision is made over the labels based upon the k nearest neighbors
of x in the training set. This procedure is among the most popular non-

parametric methods used in statistical pattern récognition with over 900
research articles published on the method since 1981 alone! Dasarathy [13]
has provided a comprehensive collection of around 140 key papers.

If contains ail NN-rules (ail values of k) in dimension d, then Dn
increases with n and dépends very much on the training set. A trivial bound
in this case is

S_(d) (2m) < n

because there are only n members in D„ . Consequently,

§o^(2m) < 2Jn.
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Stone [33] proved the striking resuit that fc-NN classifiers are universally
consistent if X G M , provided k —> oo and fc/n —> 0. Therefore, we see that
our strategy leads to a consistent rule whenever J/m —> 0 and log n/m —* 0
as n —> oo. Thus, we can take m equal to a small fraction of n without
loosing consistency. Consistent classifiers can also be obtained by other local
averaging methods as long as T = K , see e.g. Devroye, Gyôrfi, and Lugôsi
[16]. On the other hand, the story is radically different in general spaces
T. Abraham, Biau, and Cadre [1] présent counterexamples indicating that
the moving window rule (Devroye, Gyôrfi, and Lugosi [16], Chapter 10) is
not consistent for general T, and they argue that restrictions on the space
T (in terms of metric covering numbers) and on the régression function
rj(x) — E{Y\X = x} cannot be given up. By adapting the arguments in
Abraham, Biau, and Cadre [1], it can be shown that the fc-NN classifier is
consistent, provided rj is continuous on the separable Hilbert space L2ÜO, 1]),
fc —> 00 and fc/n —» 0 (see Cérou and Guyader [10]).
Example 2: Binary tree classifiers. Classification trees partition Md into re-

gions, often hyperrectangles parallel to the axes. Among these, the most im-
portant are the binary classification trees, since they hâve just two children
per node and are thus easiest to manipulate and update. Many strategies
hâve been proposed for constructing the binary decision tree (in which each
internai node corresponds to a eut, and each terminal node corresponds to a
set in the partition). For examples and list of references, we refer the reader
to Devroye, Gyôrfi, and Lugosi [16], Chapter 20.

If we consider for example ail binary trees in which each internai node
corresponds to a split perpendicular to one of the axes, then

S (d) (2m) < (1 + d(n + 2m))k,
where fc is the maximum number of consecutive orthogonal cuts (or internai
nodes). Therefore,

2J

§çP(2m) < ^ (1 + d{n + 2m))k < 2J (1 + 2J(n + 2m))k.
d—l

3. Applications. In this section, we propose to illustrate the perfor-
mance of the wavelet classification algorithm presented in Section 2. The
method has been tested using:

• The six wavelets bases generated by Daubechies’ mother wavelets de-
picted in Figure 1. For p = 1,2,4,6,8,10, we dénoté by daubp the
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wavelet basis generated by the mother wavelet with p vanishing mo-
ments.

• Three collections of rules Dn performing in the finite-dimensional
space R . We will use the following acronyms:

—> W-NN when D„ consists of ail d-dimensional nearest-neighbor
classifiers.

—»■ W-QDA when consists of the Quadratic Discriminant Analy-
sis rule (Devroye, Gyôrfi, and Lugosi [16], Chapter 13) performed
in dimension d. We only considered dimensions d which do not
exceed the minimum number of training data in each group.

—» W-CART when corresponds to the classification and regres-
sion tree procedure of Breiman, Friedman, Olshen, and Stone [8].

In addition, our functional classification methodology is compared with four
alternative approaches:

• F-NN refers to the Fourier filtering approach combined with the k-NN
rule studied in Biau, Bunea, and Wegkamp [4]. In this method, the
k-NN discrimination rule is performed on the first d coefficients of a
Fourier sériés expansion of each curve. The effective dimension d and
the number of neighbors k are selected by minimizing the empirical
probability of error based on the validation sequence plus an additive
penalty term Xd/y/rn which avoids overfitting. We choose the penalty
term as suggested by the authors, namely = 0 for d < n and Xd — oo
for d > n.

• NN-Direct dénotés the fc-nearest neigbor rule directly applied to the
observations X\,..., Xn without any preliminary dimension réduction
step. As for the Fourier method described above, the optimal number
of neighbors is selected using data-splitting and empirical risk.

• MPLSR refers to the Multivariate Partial Least Square Régression for
functional classification. This approach is studied in detail in Preda
and Saporta [28] and in Preda, Saporta, and Lévéder [29]. The number
of PLS components is selected by minimizing the empirical probability
of error based on the validation sequence.

• RF corresponds to the Random Forest algorithm of Breiman [7]. A
random forest is a collection of tree predictors, where each tree is
constructed from a bootstrap sample drawn with replacement from
the training data. Instead of determining the optimal split over ail
possible splits on ail covariates, a subset of the covariates, drawn at
random, is used.
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For the free parameters of W-CART and RF, we used the default values of
the R-packages tree and randomForest (these packages are available at the
url http://lib.stat.cmu.edu/R/CRAN/). Our codes are available by request.

3.1. Speech récognition. We first tested the different methods on a speech
récognition problem. We study a part of TIMIT database which was inves-
tigated in Hastie, Buja, and Tibshirani [24]. The data are log-periodograms
corresponding to recording phonèmes of 32 ms duration. We are concerned
with the discrimination of five speech frames corresponding to five phonèmes
transcribed as follows: “sh” as in “she” (872 items), “dcl” as in “dark” (757
items), “iy” as the vowel in “she” (1163 items), “aa” as the vowel in “dark”
(695 items) and “aO” as the first vowel in “water” (1022 items). The database
is a multispeaker database. Each speaker is recorded at a 16 kHz sampling
rate and we retain only the first 256 frequencies (see Figure 2). Thus the data
consists of 4509 sériés of length 256 with known class word membership.

Fig 2. A sampie of 5 log-periodograms, one in each class.

We decided to retain 250 observations for training and 250 observations for
validation. Since the curves are sampled at 256 — 28 équidistant points, we
fix the maximum resolution level J at 8. The error rate (ER) of the elected
rule g for classifying new observations is unknown, but it can be estimated
consistently using the rest of the data (-A501,1501), • • •, (A4509,14509), via
the formula

1 4509
ER=4M9 II1=501
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Table 1 and Table 2 display the estimated error rates for the different
methods. Ail results are averaged over 100 random partitions of the data.
Figure 3 shows the boxplots of the selected dimensions for wavelet and
Fourier algorithms.

Basis
Method^""'— daubl daub2 daub4 daub6 daub8 daublO

W-NN 0.111 0.110 0.112 0.114 0.113 0.112

W-QDA 0.097 0.102 0.108 0.108 0.113 0.115
W-CART 0.112 0.130 0.162 0.159 0.163 0.185

Table 1

Estimated error rates for wavelet filtering methods.

Method ER

F-NN 0.137
NN-Direct 0.113
MPLSR 0.091

RF 0.096

Table 2

Estimated error rates for other methods.

Table 1 and Table 2 support the idea that the three methods using
wavelets perform well on the présent data and are robust with respect to
the choice of bases. The methods MPLSR and RF are compétitive proce-
dures when compared to the others, and the NN-Direct algorithm (directly
applied to the discretized fonctions, in R256) performs as well as the W-NN
algorithm. The results of the Fourier-based procedure are still acceptable.
Thus, for this data, the wavelet-based methods do not significantly outper-
form the other methods. However, the performance of the other methods
can considerably deteriorate for time/frequency inhomogeneous signais, as
illustrated in the next subsection. We note finally that Figure 3 exhibits fur-
ther evidence that our wavelet approach allows a more significant dimension
réduction than the Fourier filtering approach of Biau, Bunea, and Wegkamp

llj
3.2. A simulation study. We propose to investigate the performance of

our method in the following simulated scénario. For each i = 1,... ,n, we

generate pairs (Xi(t),Yi) via the scheme:

Xi{t) = sin^TnO/^OO + sin(F;27rt)/i_/ii)<7i(t) + £t,
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W-NN W-QDA W-CART F-NN

Fig 3. Boxplots of the selected dimensions for wavelet (W-NN, W-QDA, W-CART) and
Fourier methods (F-NN). The wavelet basis is daub4.

where

• fp,a stands for the normal density with mean fi and variance cr2;
• Fl and Ff are uniform random variables on [50,150];
• Hi is randomly uniform on [0.1,0.4];
• cr2 is randomly uniform on [0,0.005];
• the et s are mutually independent normal random variables with mean

0 and standard déviation 0.5.

The label Y{ associated to Xi is then defined, for i = 1,..., n, by

Y. = f 0 if im < 0.251

[ 1 otherwise.

Figure 4 displays six typical realizations of the X{S. We see that each curve

Xi(t), t G [0,1], is composed of two different but symmetric signais, and the
problem is thus to detect if the two signais are close (label 0) or enough
distant (label 1). Curves are sampled at 1024 — 210 équidistant points, and
we choose therefore J = 10 for the maximum resolution level.

Ail the algorithms were tested over samples of size 50 for training and 50 for
validation. The error rates (ER) were estimated on independent samples of
size 500. They are reported on Table 3 and Table 4. Ail results are averaged
over 100 répétitions.
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Fig 4. Six typical realizations of simulated curves with label 1 (left) and label 0 (right).

Basis
Method g—

daubl daub2 daub4 daub6 daub8 daublO

W-NN 0.146 0.143 0.146 0.156 0.155 0.159

W-QDA 0.078 0.082 0.085 0.082 0.085 0.084

W-CART 0.185 0.174 0.170 0.177 0.179 0.161

Table 3
Estimated error rates for wavelet filtering methods.

Table 3 and Table 4 further emphasize the good results achieved by the
wavelet classification algorithms, and their robustness with respect to the
choice of bases. We note in particular the excellent performance of W-QDA,
which achieves, on average, the best error rates, together with the RF algo-
rithm. On the other hand, we note that the choice of the method performed
on the wavelet coefficients is crucial, as W-QDA clearly outperforms W-NN
and W-CART. The rather poor results obtained by the F-NN method are
not surprising. In effect, due to the penalty term (À^ = 0 for d < n and

= oo for d > n) y this procedure retains only the first n coefficients of the
Fourier expansion. This maximal number of coefficients is definitely too low
here since frequencies of the two signais can typically approach 150 Hz. The
problem of the calibration of the penalty term is discussed in detail in Biau,
Bunea, and Wegkamp [4] and Fromont and Tuleau [21].

To illustrate the importance of the wavelet shrinkage approach, we ran
ail the wavelet methods without reordering the 2J basis functions. Table 5
summarizes the results, Figure 5 displays boxplots of the estimated error
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Method ER

F-NN 0.212
NN-Direct 0.182
MPLSR 0.483

RF 0.060

Table 4

Estimated error rates for other methods.

rates, and Figure 6 shows boxplots of the selected dimensions.

Basis
Method^""" daubl daub2 daub4 daub6 daub8 daublO

W-NN 0.170 0.189 0.185 0.193 0.192 0.190

W-QDA 0.066 0.104 0.288 0.406 0.455 0.467

W-CART 0.300 0.348 0.446 0.465 0.475 0.485

Table 5

Estimated error rates for wavelet filtering methods without reordering the basis functions.

Table 5, Figure 5 and Figure 6 illustrate the clear advantages of reordering
the data, as shown by the error rates as well as by the dimension réduction.
We note finally that the performance of the approach without basis reorder-
ing is not robust with respect to the choice of basis. In effect, the estimated
error rate of W-QDA increases from 0.06 when the method is performed with
the daubl basis to 0.467 when it is performed with the daublO basis. This
drawback can clearly be avoided by the reordering strategy, as illustrated in
Table 3. In practice, when one has no or little a priori information to sup-

port a particular choice of wavelet basis, the automatic sélection approach
discussed in the présent paper is thus préférable.
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AB, AB AB

W-NN W-QDA W-CART

Fig 5. Boxplots ofthe estimated error rates. A: wavelet filtering with reordering of the basis
fonctions; B: wavelet filtering methods without reordering ofthe basis fonctions. The wavelet
basis is daubô.

A B
W-QDA

Fig 6. Boxplots of the selected dimensions. A: wavelet filtering methods with reordering of
the basis fonctions; B: wavelet filtering methods without reordering ofthe basis fonctions. The
wavelet basis is daubô.
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