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Abstract
We present new ®-entropy inequalities for diffusion semigroups under the curvature-dimension
criterion. They include the isoperimetric function of the Gaussian measure. Applications to the long
time behaviour of solutions to Fokker-Planck equations are given.

Keywords: Functional inequalities, logarithmic Sobolev inequality, Poincaré inequality, ®-entropies,
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1 Introduction

We consider a Markov semigroup (P;)¢>0 on R", acting on functions on R"” by P, f () = [pn f(y) pe(, dy)
for z in R™. The kernels p;(z, dy) are probability measures on R" for all z and ¢ > 0, called transition

OP,
kernels. We assume that the Markov infinitesimal generator L = a—tt‘ o is given by
=

- 0 f - of
Lf(z) = Z Dz’j(ﬁﬂ)m(ﬂ?) - Zaz(iﬂ)a—mi(ﬁﬂ)
i,7=1 =1

where D(x) = (D;j(x))1<ij<n is a symmetric n X n matrix, nonnegative in the sense of quadratic
forms on R™ and with smooth coefficients, and where the a;,1 < i < n, are smooth. Such a semigroup
or generator is called a diffusion, and we refer to Refs. [, [, [I3] for backgrounds on them.

If 1 is a Borel probability measure on R™ and f a p-integrable map on R™ we let pu(f) =
Jzn [ () p(dz). If, moreover, ® is a convex map on an interval I of R and f an [-valued map with f

and ®(f) p-integrable, we let

Enty, (f) = u(®(f)) - 2(u(f))
be the ®-entropy of f under p (see Ref. [[[0] for instance). Two fundamental examples are ®(z) = =
on R, for which Ent;{;(f) is the variance of f, and ®(x) = zInz on |0, +o0[, for which Enti)(f) is the
Boltzmann entropy of f. By Jensen’s inequality, Ent;{j( f) is always nonnegative and, if ® is strictly
convex, it is positive unless f is a constant, equal to p(f). The semigroup (Py)¢>0 is said p-ergodic if
P, f tends to u(f) as t tends to infinity in L?(u), for all f.

In Section [ we shall derive bounds on Entg)( f) and Ent%( f)(x) which will measure the conver-
gence of Py f to p(f) in the ergodic setting. This is motivated by the study of the long time behaviour
of solutions to Fokker-Planck equations, which will be discussed in Section [

Some results of this note with their proofs are detailled in Ref. [f].
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2 Phi-entropy inequalities

Bounds on Ent%( f) and assumptions on L will be given in terms of the carré du champ and T's
operators associated to L, defined by

O(f.0) = 5 (L(f9) = F Lo~ gLf), Ta(f) = 5 (L) 207, L)).

If p is a real number, we say that the semigroup (Py);>0 satisfies the CD(p, 00) curvature-dimension
(or Bakry-Emery) criterion (see Ref. [f]) if

La(f) > pI(f)

for all functions f, where I'(f) = T'(f, f).
The carré du champ is explicitely given by

I'(f,9)(x) =< Vf(z), D(x) Vg(z) > .

Expressing I'y is more complex in the general case but, for instance, if D is constant, then L satisfies
the C'D(p, 00) criterion if and only if

(Ja(z)D + (Ja(z)D)*) > pD (1)

DO | —

for all z, as quadratic forms on R™, where Ja is the Jacobian matrix of a and M* denotes the
transposed matrix of a matrix M (see Ref. [B, H]) .

Poincaré and logarithmic Sobolev inequalities for the semigroup (P;);>o are known to be implied
by the CD(p,0) criterion. More generally, and following Ref. [, fi, [[0], let p > 0 and ® be a C*
strictly convex function on an interval I of R such that —1/®" is convex. If (Py);>0 is p-ergodic and
satisfies the C'D(p, 00) criterion, then p satisfies the ®-entropy inequality

1
Ent,,(f) < 52 n(@"(HT(f)) 2)
for all I-valued functions f.
The main instances of such ®’s are the maps # + 22 on R and x ~ xInx on |0, 400 or more
generally, for 1 <p <2

p_ .
& == >0 ifpe€ll, 2
d _J] »o-1n * ’ 3
() {mlnx, x>0 ifp=1. (3)

For this ®, with p in |1, 2] the ®-entropy inequality (B) becomes

wg?) — pg*?y _ 2
p—1 PP

w(I'(9)) (4)

. . . 2)—pu(g?/
for all positive functions g. For given g the map p — W

p > 0,p # 1. Moreover its limit for p — 1 is Ent, (92), so that the so-called Beckner inequalities ()
for p in |1, 2] give a natural monotone interpolation between the weaker Poincaré inequality (for p = 2),
and the stronger logarithmic Sobolev inequality (for p — 1).

is nonincreasing with respect to



Long time behaviour of the semigroup

The ®-entropy inequalities provide estimates on the long time behaviour of the associated diffusion
semigroups. Indeed, let (Pg);>0 be such a semigroup, ergodic for the measure p. If @ is a C? function
on an interval I, then

%Entﬁ’(Pt f) = —u(@"(Pef)T(Pyf)) ()

for all £ > 0 and all I-valued functions f. As a consequence, if C is a positive number, then the
semigroup converges in ®-entropy with exponential rate:

Ent?(Pf) < ¢ “Ent®(f) (6)

for all £ > 0 and all I-valued functions f, if and only if the measure u satisfies the ®-entropy inequality
for all I-valued functions f,

Ent?(f) < Cu(@"(f)T(f). ()
2.1 Refined P-entropy inequalities
We now give and study improvements of (B) for the ®, maps given by (f):

Theorem 1 ([[A] )/ Let p € R and p €]1,2[. Then the following assertions are equivalent, with
(1—e2t)/p and (e** —1)/p replaced by 2t if p = 0:

(1) the semigroup (P)i>0 satisfies the CD(p,00) criterion;

(it) (Py)i>0 satisfies the refined local ®p-entropy inequality

1 Pt<fp>>%1] P

P,(f7) - Pt(f)”< P, (/721(/))

(p—1)? P(f)P p

for all positive t and all positive functions f;

(1it) (Py)i>0 satisfies the reverse refined local ®p-entropy inequality

L |py(m) - Pt(f)p<Pt(f ,,))51 > €l ((Ptf )I;féPtf)pQF(Ptf)

(p—1)? Py (f)P p o \Pe(f?

for all positive t and all positive functions f.

If, moreover, p > 0 and the measure u is ergodic for the semigroup (Py)i>0, then p satisfies the refined
®,,-entropy inequality

2 2-1

for all positive maps g.

The bound () has been obtained in Ref. [§] for the generator L defined by Lf = div(DVf)— <
DVV,V f> with D(z) a scalar matrix and for the ergodic measure . = =", and under the corre-
sponding C'D(p, c0) criterion.

It improves on the Beckner inequality () since

2) — y(g2/P)p 2 2 4
11(g )p_uig i 2(p1_)1)2 [M(gz) _ (g <Mélg(§/p))p>p } (©)



(9*)—p(g*/P)P
sy Mg pﬁlg
with values Ent,, (92) at p =1 and Var,(g) at p = 2. Similarly, for the larger functional introduced

in (), the map

We have noticed that for all g the map p is continuous and nonincreasing on ]0, +00|,

P Ty £ oE [M(QQ) — u(g*P)P (ﬁ?g(zg;))p) %_1}

is nonincreasing on |1, +oo] (see [fl, Prop. 11]). Moreover its value is Var,(g) at p = 2 and it tends to
Ent M(gQ) as p — 1, hence providing a new monotone interpolation between Poincaré and logarithmic
Sobolev inequalities.

The pointwise C'D(p, c0) criterion can be replaced by the integral criterion
2-p 2-p
u(gﬂfl Fz(g)) > pu(g*’*1 F(Q))

for all positive functions g, and one can still get the refined ®,-entropy inequality (), even in the case
of non-reversible semigroups (see [, Prop. 14]).

Remark 2 For p = 0, and following Ref. [B], the convergence of Pyf towards u(f) can be measured
on H(t) = Entz)(Ptf) as

!/
H (1) < IH(O)I’
1+ ot

where o = %]H/(O)]/H(O). This illustrates the improvement offered by ) instead of (H), which
does not give here any convergence rate.

t>0

2.2 The case of the Gaussian isoperimetry function

Let F' be the distribution function of the one-dimensional standard Gaussian measure. The map
U = F' o F~1, which is the isoperimetry function of the Gaussian distribution, satisfies " = —1/U
on the set [0, 1], so that the map ® = —U is convex with —1/®" also convex on [0, 1].

Theorem 3 Let p be a real number. Then the following three assertions are equivalent, with (1 — e_QPt) /p
and (ert — 1) /p replaced by 2t if p = 0:

(1) the semigroup (P)i>0 satisfies the CD(p,00) criterion;

(i1) the semigroup (Py)i>0 satisfies the local ®-entropy inequality

q) 1 1—e 2t

for all positive t and all [0, 1]-valued functions f;

(P.f) Pt@"(f)r(f)))

(111) the semigroup (Py)i>0 satisfies the reverse local ®-entropy inequality
e2rt — 1
2p

1

for all positive t and all [0, 1]-valued functions f.

‘1>”(Ptf)21“(Ptf))>

If, moreover, p > 0 and the measure p is ergodic for the semigroup (Pg)¢>0, then p satisfies the
O-entropy inequality for all [0, 1]-valued functions f:

" (u(f))

2D @ e

Ent;{;(f) < mlog (1 +



The proof is based on [, Lemma 4]. For ® = —/ it improves on the general ®-entropy inequal-
ity (B) since log(1l + x) < x. Links with the isoperimetric bounds of Ref. [§] for instance will be
addressed elsewhere.

3 Long time behaviour for Fokker-Planck equations

Let us consider the linear Fokker-Planck equation

0
S = div[D(@) (Vur + u(VV (@) + F@))], ¢ 0,z €R" )
where D(z) is a positive symmetric n X n matrix and F satisfies
div(e”" DF) = 0. (11)

It is one of the purposes of Refs. [B] and [[] to rigorously study the asymptotic behaviour of solutions
to ([I()-([lT]). Let us formally rephrase the argument.
Assume that the Markov diffusion generator L defined by

Lf =div(DVf)— < D(VV — F),Vf > (12)

satisfies the C'D(p, 00) criterion with p > 0, that is ([l) if D is constant, etc.

Then the semigroup (P);>0 associated to L is u-ergodic with du = e~V /Zdx where Z is a nor-
malization constant. Moreover, a ®-entropy inequality ([) holds with C' = 1/(2p) by (), so that
the semigroup converges to p according to (ff). However, under (L), the solution to ([L4) for the
initial datum wug is given by u; = e~V Py(e" up). Then we can deduce the convergence of the solution
u; towards the stationary state e™"

semigroup, in the form

(up to a constant) from the convergence estimate (f]) for the

Ent? (zf—tv) < e*QPtEnt§<1i—ﬂ,), t>0. (13)
e e

In fact such a result holds for the general Fokker-Planck equation

% = div[D(z)(Vus + wa(x))], t>0,z€R" (14)

where again D(x) is a positive symmetric n x n matrix and a(z) € R"™. Its generator is the dual (for
the Lebesgue measure) of the generator

Lf=div(DVf)— < Da,Vf >. (15)

Assume that the semigroup associated to L is ergodic and that its invariant probability measure u
satisfies a ®-entropy inequality () with a constant C' > 0: this holds for instance if L satisfies the
CD(1/(2C),00) criterion.

In this setting when a(z) is not a gradient, the invariant measure p is not explicit. Moreover the
relation uy = eV Pt(evuo) between the solution of ([4) and the semigroup associated to L does not
hold, so that the asymptotic behaviour ([[J) for solutions to ([[4) can not be proved by using ().
However, this relation can be replaced by the following argument, for which the ergodic measure is
only assumed to have a positive density us, with respect to the Lebesgue measure.

Let u be a solution of ([[4) with initial datum wugy. Then, by [0, Lemma 7],

%Entg)(ﬂ) :/¢/(E)L*Utd$:/L[(bl(i)]ﬂd/j/: _/q)//(ﬂ)f‘(&)du.

Uoco Uoco Uoo "4 Uoco Uoo Uoo

Then a ®-Entropy inequality ([{) for x implies the exponential convergence:



Theorem 4 With the above notation, assume that a ®-entropy inequality (@) holds for u and with
a constant C. Then all solutions u = (ut)i>o to the Fokker-Planck equation ([[4) converge to us in
®-entropy, with

Ent? <ﬂ> < et/CEnt;?(ﬂ), t>0.

Uoo ) Uoo
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