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Abstract  

Background 

This paper deals with the preprocessing of protein sequences for supervised 

classification. Motif extraction is one way to address that task. It has been largely 

used to encode biological sequences into feature vectors to enable using well-known 

machine-learning classifiers which require this format. However, designing a suitable 

feature space, for a set of proteins, is not a trivial task. For this purpose, we propose a 

novel encoding method that uses amino-acid substitution matrices to define similarity 

between motifs during the extraction step. 

Results 

In order to demonstrate the efficiency of such approach, we compare several encoding 

methods using some machine learning classifiers. The experimental results showed 

that our encoding method outperforms other ones in terms of classification accuracy 

and number of generated attributes. We also compared the classifiers in term of 

accuracy. Results indicated that SVM generally outperforms the other classifiers with 

any encoding method. We showed that SVM, coupled with our encoding method, can 

be an efficient protein classification system. In addition, we studied the effect of the 

substitution matrices variation on the quality of our method and hence on the 

classification quality. We noticed that our method enables good classification 

accuracies with all the substitution matrices and that the variances of the obtained 

accuracies using various substitution matrices are slight. However, the number of 

generated features varies from a substitution matrix to another. Furthermore, the use 

of already published datasets allowed us to carry out a comparison with several 

related works. The outcomes of this comparison confirm the efficiency of our 

encoding method to represent protein sequences in classification tasks.  
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Background  
Analysis and interpretation of biological sequence data is a fundamental task in 

bioinformatics. Classification and prediction techniques are one way to deal with such 

task [1]. In fact, biologists are often interested in identifying the family to which a 

lately sequenced protein belongs [2]. This makes it possible to study the evolution of 

this protein and to discover its biological functions. Furthermore, the study and the 

prediction of oligomeric proteins (quaternary structures) are very useful in biology 

and medicine for many reasons [3]. Indeed, they often intervene in terms of bio-

macromolecules functional evolution, reparation of misfolds and defects [4,5]. They 

are also involved in many important biological processes such as chromosome 

replication, signal transduction, folding pathway and metabolism [6]. Biologists also 

seek, for instance, to identify active sites in proteins and enzymes [7], to classify parts 

of DNA sequences into coding or non-coding zones or to determine the function of 

the nucleic sequences such as the identification of the promoter sites and the junction 

sites [8,9,10]. 

Alignment is the main technique used by biologists to look for homology among 

sequences, and hence to classify new sequences into already known families/classes. 

Since relevant information is represented by strings of characters, this technique 

generally doesn’t enable the use of well-known classification techniques such as 

decision trees (DT), naïve bayes (NB), support vector machines (SVM) and nearest 

neighbour (NN) which have proved to be very efficient in real data mining tasks [11]. 

In fact, those classifiers rely on data described in a relational format. 

Meanwhile, different studies have been devoted to motif extraction in biological 

sequences [12,13,14,15,16,17]. Motifs extraction methods are generally based on the 

assumption that the significant regions are better preserved during the evolution 
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because of their importance in terms of structure and/or function of the molecule [13], 

and thus that they appear more frequently than it is expected.  

In [14], authors have shown that motif extraction methods can efficiently contribute to 

the use of machine learning algorithms for the classification of biological sequences. 

In this case, the classification obeys the knowledge discovery in data (KDD) process 

and hence comprises three major steps: 

1. Preprocessing consists of extracting motifs from a set of sequences. These 

motifs will be used as attributes/features to construct a binary table where each 

row corresponds to sequence. The presence or the absence of an attribute in a 

sequence is respectively denoted by 1 or 0. This binary table is called a 

learning context. It represents the result of the preprocessing step and the new 

sequence encoding format (figure 1).  

2. In the mining step, a classifier is applied to the learning context to generate a 

classification model. 

3. The latter model is used to classify other sequences in the post-processing 

step. These sequences are also encoded into a relational format using the same 

features as for the learning context i.e., test context. 

In a previous work [18], we proposed a new method to encode protein sequences. It 

extends an existing method, termed Discriminative Descriptors (DD) [14], by taking 

into account the fact that some amino acids have similar properties and thus can be 

substituted by each other while changing neither the structure nor the function of the 

protein [19]. Hence, there might be several motifs that could be replaced by a single 

motif. We used amino acids substitution matrices to define such similarity; our 

encoding method is termed Discriminative Descriptors with Substitution Matrix 

(DDSM). Preliminary experiments conducted with C4.5 decision tree have shown 
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promising results [18]. This manuscript presents a detailed experimental comparison 

(in terms of classification accuracy and number of attributes) between several 

encoding methods using various kinds of classifiers (C4.5 decision tree, NB, SVM 

and NN) as well as the standard approach based on alignment using Blast [20]. 

Methods 

Some existing feature construction methods 

The following is a presentation of five existing methods of features construction: the 

N-Grams (NG), the Active Motifs (AM), the Amino Acid Composition (AAC), the 

Functional Domain Composition (FDC) and the Discriminative Descriptors (DD). 

After this, we re-describe our approach which consists of modifying the DD method 

by the use of a substitution matrix (DDSM) [18]. 

N-Grams 

The simplest approach is that of the N-Grams, known also as N-Words or length N 

fenestration [21]. The motifs to be built have a predefined length. The N-gram is a 

subsequence composed of N characters, extracted from a larger sequence.  For a given 

sequence, the set of the N-grams which can be generated is obtained by sliding a 

window of N characters on the whole sequence. This movement is carried out 

character by character. With each movement a subsequence of N characters is 

extracted. This process is repeated for all the analyzed sequences. Then, only the 

distinct N-grams are kept. 

Active Motifs 

This method allows extracting the commonly occurring motifs whose lengths are 

longer than a specified length, called Active Motifs, in a set of biological sequences. 

The activity of a motif is the number of matching sequences given an allowed number 

of mutations [22].  The motif extraction is based on the construction of a Generalized 
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Suffix Tree (GST) which is an extension of the suffix tree [23] and is dedicated to 

represent a set of n sequences indexed each one by i = 1..n. 

Amino Acid Composition 

According to the classic definition of this method, the feature set consists of 20 

components, representing the 20 native amino acids in proteins. The amino acid 

composition refers to the occurrence frequency of each of these 20 components in a 

given protein. Since the information in the primary sequence is greatly reduced by 

considering the amino acid composition alone, other considerations have been taken 

into account within several studies such as the sequence-order correlation factors i.e., 

new features were added to the 20 original which yielded several AAC variants 

[24,25,26,27,28]. 

Functional Domain Composition 

Biological databases, such as PFAM [29] and ASTRAL, contain large collections of 

multiple sequence alignments and Hidden Markov Model (HMM) profiles covering 

many common protein domains and families [29]. Functional domains are determined 

using computational means, especially HMM profiles, combined with biologist 

knowledge and other databases information. Since they allow variable length gaps 

between several components, where each component is a simple motif [15,16], 

functional domains can be considered as structured motifs. But they are more reliable 

since they obey the expert assessment. 

Descriminative Descriptors 

Given a set of n sequences, assigned to P  families/classes F1, F2 .., FP , this method 

consists of building substrings called Discriminative Descriptors DD which allow to 

discriminate a family Fi from other families Fj, with i = 1..P and i ≠ j [14].  

This method is based on an adaptation of the Karp, Miller and Rosenberg (KMR) 

algorithm [30]. This algorithm identifies the repeats in character strings, trees or 



 - 7 - 

tables. The extracted repeats are then filtered in order to keep only the discriminative 

and minimal ones. 

A substring X is considered to be discriminative between the family Fi and the other 

families Fj, with i = 1..P, j = 1..P and i ≠ j if :  

1. α≥
i

i

Fofsequencesofnumbertotal

appearsXwhereFofsequencesofnumber
 

2. β≤
j

j

Fofsequencesofnumbertotal

appearsXwhereFofsequencesofnumber
 

where α and β are user-specified thresholds between 0 and 1. 

Proposed method: Discriminative Descriptors with Substitution Matrix 

In the case of protein, the Discriminative Descriptors method neglects the fact that 

some amino acids have similar properties and that they can be therefore substituted by 

each other while changing neither the structure nor the function of the protein [19]. 

Indeed, we can find several motifs in the set of the attributes generated by the DD 

method, which are similar and can derive all from a single motif.  In the same way, 

during the construction of the context (binary table), we are likely to lose information 

when we denote by 0 the absence of a motif while another one, that can replace it, 

already exists [18]. 

As mentioned, the similarity between motifs is based on the similarity between the 

amino acids which constitute them. Indeed, there are various degrees of similarity 

between amino acids. Since there are 20 amino acids, the mutations between them are 

scored by a 20x20 matrix called a substitution matrix [19,21,31]. 

Terminology 

Let M be a set of n motifs, denoted each one by M[p], p = 1.. n. M can be divided 

into m clusters. Each cluster contains a main motif M* and probably other motifs 

which can be substituted by M*. The main motif is the one which has the highest 
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probability of mutating to another in its cluster. For a motif M of k amino acids, this 

probability, noted Pm(M), is based on the probability Pi (i = 1.. k) that each amino 

acid M[i] of the motif M does not mutate to any other amino acid. We have: 

Pm = 1 - ∏
=

k

i 1

Pi 

Pi is calculated based on the substitution matrix according to the following formula: 

Pi
 
= S(M[i], M[i]) /∑

=

20

1j

S
+
(M[i], AAj) 

S(x, y) is the substitution score of the amino acid y by the amino acid x as it appears in 

the substitution matrix. S
+
(x, y) indicates a positive substitution score. AAj is the 

amino acid of index j among the 20 amino acids. 

For our purposes, a motif M substitutes a motif M’ if: 

1. M and M’ have the same length k, 

2. S(M[i], M’[i]) >= 0 , i = 1.. k, 

3. SP(M, M’) >= T, where T is a user-specified threshold such that 0 <= T <= 1. 

We denote by SP(M, M’) the substitution probability of the motif  M’ by the motif M 

having the same length k. It measures the possibility that M mutates to M’: 

SP(M, M’) = Sm (M, M’) / Sm (M, M) 

Sm (X, Y) is the substitution score of the motif Y by the motif X. It is computed 

according to the following formula: 

Sm (X, Y) =∑
=

k

i 1

S(X[i], Y[i]) 

It is clear, according to any substitution matrix, that there is only one best motif which 

can substitute a motif M. It is obviously itself, since the amino acids which constitute 

it are better substituted by themselves. This proves that the substitution probability of 
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a motif by another one, if they satisfy the substitution conditions, will be between 0 

and 1. 

Methodology 

The encoding method is composed to two parts.  First, the number of extracted motifs 

will obviously be reduced because we will keep only one motif for each cluster of 

substitutable motifs of the same length. Second, we will modify the context 

construction rule. Indeed, we will denote by 1 the presence of a motif or of one of its 

substitutes. The first part can be also divided into two phases: (1) identifying clusters’ 

main motifs and (2) filtering. (1) The main motif of a cluster is the one that is the 

most likely to mutate to another in its cluster. To identify all the main motifs, we sort 

M in a descending order by motif lengths, and then by Pm. For each motif M’ of M, 

we look for the motif M which can substitute M’ and that has the highest Pm 

(probability of mutation to another motif). The clustering is based on the computing 

of the substitution probability between motifs. We can find a motif which belongs to 

more than one cluster. In this case, it must be the main motif of one of them. (2) The 

filtering consists of keeping only the main motifs and removing all the other 

substitutable ones. The result is a smaller set of motifs which can represent the same 

information as the initial set. 

Example 

Given a Blosum62 substitution matrix and the following set of motifs (table 1) sorted 

by their lengths and Pm, we assign each motif to a cluster represented by its main 

motif. We get 5 clusters illustrated by the diagram shown in figure 2. 

Experimental environment 

NG, AM, DD and DDSM encoding methods are implemented in C language and 

gathered into a DLL library. The accepted format of the input files is the FASTA 

format for biological sequences files. The library code that we have implemented 
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generates relational files under various formats such as the ARFF format used by the 

workbench WEKA [32] and the DAT format used by the system DisClass [14]. 

Our experiments are divided into 2 parts. In the first one, we make a detailed 

comparison between NG, AM, DD and DDSM encoding methods to confirm the 

results obtained in [18]. We perform the sequence classification using DT, SVM, NB 

and NN algorithms as described in section 1. We also conducted classification 

experiments using Blast [20] coupled with the nearest neighbour algorithm i.e., we 

assign to a protein query the class with the best hit score. Our method (DDSM) 

constructs the features using the substitution matrix Blosum62. The choice of this 

substitution matrix is not based on preliminary experiments, but instead on the fact 

that it is the most used by alignment tools especially the widespread Blast. We 

examine three aspects: 

1. The effect of each encoding method on the four classifiers to deduce which 

one is the best in terms of accuracy and number of generated attributes. 

2. The comparison of the four classifiers while varying the encoding methods. 

3. The comparison with Blast results. 

In the second part, we try to assess the effect of varying the substitution matrices on 

our method and on the classification quality and hence to determine whether there is a 

substitution matrix which could be recommended. Then we compare our feature-

construction method with other ones presented in [27,28,33], which means that we 

compare with nine related works [27,28,33,34,35,36,37,38,39]. 

Part 1 

To perform our experiments, we use 5 datasets comprising 1604 protein sequences 

from Swiss-Prot [40] and SCOP [41] described in table 2.  

We try to conduct our experiments on various kinds of datasets. These datasets differ 

from one another in terms of size, number of class, class distribution, complexity and 
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sequence identity percentage. The first dataset DS1 contains 3 distinct and distant 

protein families.  We suppose that classification in this case will be relatively easy 

since each family will probably have preserved patterns which are different from 

those of other families [13]. DS2 represents a bigger dataset comprising two sub-

families of protein sequences belonging to the Rhodopsin Like/Peptide family. 

However, the datasets DS3 and DS4 present more difficult classification problems. 

DS3 contains seven classes that represent seven categories of quaternary (4D) protein 

structure with a sequence identity of 25%. The problem here lies in recognizing the 

4D structure category from the primary structure. In this case, an important question 

is to be answered: does the primary structure contain sufficient information to identify 

the 4D structure? The task relative to DS4 is that of distinguishing between the human 

Toll-like Receptors (TLR) protein sequences and the non-human ones. The difficulty 

is due to the structural and functional similarity of the two groups. The choice of this 

dataset came after Biologists of Pasteur Institute of Tunis (PIT) asked to help them in 

identifying TLR families especially human ones among the 40 TLR that exist. DS5 

consists of 277 domains: 70 all-α domains, 61 all-β domains, 81 α/β domains, and 65 

α+β domains from SCOP [41]. This challenging dataset was constructed by Zhou 

[28] and has been extensively used to address structural class prediction 

[27,28,34,35,36,37,38,39]. 

Part 2 

In this part, we consider again the datasets DS3, DS4 and DS5 since they are 

considered to be delicate classification tasks and can thus reveal valuable information 

about the efficiency of the classifiers and the feature-construction methods. We try to 

investigate the effect of the substitution matrices variation on the quality of our 

encoding method and hence on the classification quality using C4.5, SVM, NB and 

NN algorithms. We employ all the substitution matrices used by the standalone 



 - 12 - 

version of Blast and belonging to the two well-known families: Blosum [19] and Pam 

[42] i.e., Blosum45, Blosum62 Blosum80, Pam30, Pam70, Pam 250. 

Since DS3 is the same dataset as in [33], these experiments allow us to compare our 

encoding method with other related ones presented in that paper, where the nearest 

neighbour algorithm NN was coupled with each of the following methods: functional 

domain composition FDC, amino acid composition AAC and Blast alignment tool 

[20], to predict the quaternary structures categories of the proteins. In fact, the 

investigation of the quaternary structures prediction using computational tools 

remains a task with important implications for many reasons. First, these structures 

are involved in many biological processes and have direct link with known diseases 

like sickle-cell anaemia. Second, the in vitro methods are very slow and costly in spite 

of being accurate. This comparison allows us to assess whether our feature-

construction method could offer any benefits over the above-mentioned methods 

quoted in [33] while using the same classifier (NN) and learning technique (leave-

one-out). 

Since prior information on the structure of a protein can provide useful information 

about its function, many other works similar to [33] have investigated this topic 

[27,28,34,35,36,37,38,39,43,44,45,46,]. These works often use kinds of amino acid 

composition or functional domain composition to deal with the prediction of 

oligomeric proteins or protein structural classes. DS5 represents a challenging dataset 

that has been extensively used to address structural class prediction [27]. This allows 

us to compare our method with several works existing in the literature.  
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Results and discussion 

Experimental Techniques 

The computations are carried out on a computer with an Intel Centrino 1.6 GHz CPU 

and 1Go of main memory. Results are shown in the next sub-sections tables. Best 

accuracies, for each dataset, are shown in bold and results below minimum accepted 

values results are underlined. The minimum accepted value (MAV) is obtained by 

assigning all the sequences of a dataset to its biggest class. Hence, we have 35%, 

50%, 46.7%, 65% and 29.2% as MAVs respectively for DS1, DS2, DS3, DS4 and 

DS5. We also show the number of attributes generated by each method.   

In the classification process, we use the leave-one-out technique [11] also known as 

jack-knife test. For each dataset (comprising n instances), only one instance is kept for 

the test and the remaining part is used for the training. This action is repeated n times. 

The leave-one-out is considered to be the most objective test technique compared to 

the other ones i.e., hold-out, n-cross-validation. Indeed the leave-one-out test allows 

to obtain the same classification results regardless of the number of runs, which is not 

the case for the other tests (see the monograph [47] for the mathematical principle and 

[48] for a comprehensive discussion). For the encoding methods, we use default 

parameters as in [18]: NG (N=3), AM (min-length = 3, activity = 25%), DD and 

DDSM (α = 0, β = 0 except for DS3 where β = 1 to reduce the runtime), DDSM 

(substitution matrix = Blosum62, substitution probability threshold T = 0.9). These 

parameters can also be specified by users. 

We recall that in part 1, we use the following classifiers: C4.5 decision tree, support 

vector machine SVM, naïve bayes NB and nearest neighbour algorithm NN of the 

workbench WEKA [32]. We generate and test the classification models; then we 

report the classification accuracy (rate of correctly classified sequences). Moreover, 

we conducted the leave-one-out test on the same datasets using Blast as already 
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explained in section 2.3. In part 2, we investigate any potential effect of the 

substitution matrix variance on the features building and the classification quality, and 

then we compare it with other classification systems quoted in [27,28,33]. 

Part 1 Results 

The experimental results vary according to the input data (table 3 and table 4). The 

classification of the datasets DS1 and DS2 was relatively easy, as expected. Each 

family probably has its own motifs which characterize it and distinguish it from the 

others. This explains the high accuracies reached by all the classifiers with all the 

encoding methods. But it is notable that the N-Grams encoding gave the best results 

although it is the simplest method to use. Moreover, since this kind of classification, 

is easy, it does not require any sophisticated preprocessing and can simply be 

addressed by using alignment tools; indeed Blast arrived at full accuracy (table 4). 

As for DS3, classification represents a real challenge. In fact, it is comprised of 717 

sequences unequally distributed into seven classes which represent seven quaternary 

protein structure categories. It is a question of predicting the 4D structure based only 

on the primary structure without any complementary information. The AM method 

could not be used because it generates a great number of attributes (dashes in table 3). 

The obtained accuracies with the NG and the DD methods were below the MAV 

(within 20.9% and 43.2 %) and the result obtained by Blast was acceptable (69.60 %) 

while the best accuracy reached (79.2%) was obtained with the DDSM method (figure 

3 illustrates a sample of ROC curves [49] of the NB classifier based on the DDSM, 

DD and NG encoding methods with Homotetramer as the positive class from DS3).  

The dataset DS4 was not as easy to classify as DS1 and DS2 since the human TLR 

and the non-human TLR resemble each other in terms of function and structure. 

Indeed the two classes share many similar parts, making it difficult to discriminate 
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them. That is why homology based classification (using Blast) didn’t reach full 

accuracy as it did for the two first datasets. The NG and the AM encoding seems to be 

inefficient since they gave accuracies below the MAV with two classifiers. The DD 

method outperforms the two previous methods (NG and AM). Since it adopts a 

discriminating approach to build the attributes, it allowed a better distinction between 

the human TLR and the non-human TLR. But, to improve classification in the dataset 

DS4, it is necessary to take into account the phenomenon of mutation and substitution 

between the amino acids which constitute the protein sequences.  Indeed, the DDSM 

method made it possible to reach the highest precisions with all the classifiers, while 

reducing the number of generated attributes.  Experimental results obtained with DS5 

show a good performance for all the encoding methods, though no full accuracy was 

reached. We can notice that NG performed very well and allowed to improve results 

with the classifiers C4.5, SVM and NN. Blast allowed also to obtain good accuracy 

which is due to the high identity percentage within the dataset. But, the best accuracy 

was obtained with DDSM (≈ 86%). 

Moreover, we can notice that SVM generally provided the best accuracies with all the 

encoding methods, though it is known as a slow classifier. So, we can conclude that 

the combination (DDSM, SVM) could be an efficient system for the protein 

sequences classification. 

Part 2 results 

In this section, we study the effect of the substitution matrices (SM) variation on the 

classification by applying some of the most often used SMs belonging to the two 

well-known families: Blosum and Pam [19,42]. These SMs are the same used by the 

standalone version of Blast [20]. 
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Substitution scoring is based on the substitution frequencies seen in multiple sequence 

alignments. Yet it differs from Pam to Blosum. Whereas the Pam matrices have been 

developed from global alignments of closely related proteins, the Blosum matrices are 

based on local multiple alignments of more distantly related sequences. This would 

have an effect on the representation size. Indeed, the number of constructed features 

varies from a substitution matrix to another. Blosum matrices with low numbers and 

Pam matrices with higher numbers allow the building of fewer features since they 

score highly the substitution between amino acids. This would yield larger clusters of 

substitutable motifs, and hence fewer main motifs i.e., fewer features (see section 

2.2.2 and 2.2.3). 

However, the variances of accuracies are slight when varying the substitution matrices 

with the same classifier (table 5, table 6 and table 7). Moreover, no substitution matrix 

allows obtaining the best accuracy for all the classifiers. We can even notice 

contradicting results; indeed, in DS3 and DS4, NN algorithm performs worse when 

coupled with Pam30, while the same matrix allows SVM to reach its best accuracy. 

The same phenomenon is noticed in DS5 with the classifiers C4.5 and SVM and the 

matrix Pam250. If one looks for reduced-size representation, Blosum matrices with 

low numbers and Pam matrices with higher numbers are recommended. 

Since we used the same dataset (DS3) and the same assessment technique (leave-one-

out) as in [33], we compare our feature-building method (DDSM with default 

parameter values: α = 0, β = 0, substitution matrix = Blosum62, substitution 

probability threshold T = 0.9) with the ones studied in [33] (FDC, AAC, and Blast 

coupled each one with the nearest neighbor algorithm NN). Comparative results are 

reported in table 8. We can notice that the worst results were obtained with the AAC 

method. Indeed, the obtained results were below the MAV 46.7%. Blast arrived at 
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better results, but the accuracy was not very high. In fact, an analysis of the Protein 

Data Bank (PDB) [50], where the protein structures are deposited, reveals that 

proteins with more than 30% pairwise sequence identity have similar 3D structures 

[51]. But in our case we process a dataset with a sequence identity of 25%. The FDC 

method seems to be promising since it allowed reaching an accuracy of 75.2 %. But 

our method was quite better and enabled to reach the highest accuracy rates among 

the mentioned methods and also coupled with the same classifier i.e., NN algorithm 

(77%). 

 If we look for better classification systems we can consider the combinations (DDSM 

& C4.5) or (DDSM & SVM). In addition higher accuracy can be obtained by using 

the combination (DDSM & SVM)  and the matrix Pam30 which enabled to reach an 

accuracy of 82% (table 8). This indicates that SVM coupled with our encoding 

method DDSM represent an efficient system for protein classification. 

In the same way, the use of the same dataset (DS5) and the same validation technique 

(leave-one-out) as in [27,28] allowed us to compare our method with these two works 

as well as six others [34,35,36,37,38,39]. In these studies, variants of the amino acid 

composition AAC have been proposed to encode protein sequences and then coupled 

with a classifier to predict the protein structural classes. These works are based in the 

assumption that there is a strong correlation between the AAC and the structural class 

of a protein. In table 9, we report the results obtained by our method (DDSM with 

default parameter values: α = 0, β = 0, substitution matrix = Blosum62, substitution 

probability threshold T = 0.9) coupled with C4.5, SVM, NB and NN as well as the 

results of the related works (in table 9, AACx means the AAC variant presented in the 

paper x). We can claim that our encoding method generally outperforms any AAC 

encoding method proposed by the above-mentioned works. In [27], authors coupled 
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three kinds of AAC with SVM i.e., (AAC & SVM), (pair-coupled AAC & SVM) and 

(PseAAC & SVM). In the best case, they reached an accuracy of 80.5%, whereas the 

combinations (DDSM & SVM) and (DDSM & NB) allowed reaching respectively 

82.3% and 85.9% of accuracy. To enhance their results, authors in [27] proposed a 

fusion network that combines the results obtained by the three proposed combinations 

and they arrived at an accuracy of 87.7%. Although, this result is slightly superior to 

ours, it does not mean that their encoding method outperforms DDSM. Indeed, the 

improvement of their results comes from the fusion network classifier and not from 

the AAC variants they use. Moreover, in most of these related works 

[27,28,34,35,36,37,38,39], authors perform a fine-tuning to look for the classifier 

parameter values allowing to get the best results, whereas we just use the default 

parameter values of both our encoding method and the classifiers as found in WEKA 

[32]. This fine tuning allowed to reach competitive accuracies which is the case of the 

combination (AAC & LogitBoost) [38]. We believe that we can also reach higher 

accuracies if we perform a fine-tuning of the parameters of our method and the 

classifiers. But, we chose to just use the default parameter values to make it easier for 

users who may have no prior knowledge on what these parameters mean or how to 

specify them.  
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Figures 

Figure 1  - Sequence pre-processing based on motif extraction 

This figure describes the process of sequence encoding. The extracted motifs are used 

as attributes to build a binary context where each row represents a sequence. 

Figure 2  - Motifs clustering 

This figure illustrates the set of clusters and main motifs obtained from the data of 

table 1 after application of our algorithm. RV belongs to 2 clusters and is the main 

motif of one of them. 

Figure 3  - ROC curve samples for the NB classifier in  the dataset DS3 with the 
DDSM, DD and NG encoding methods. The positive class is Homotetramer. 

This figure shows a sample of ROC curves of the NB classifier based on the DDSM, 

DD and NG encoding methods with Homotetramer as the positive class (DS3). It 

appears that the DDSM based ROC curve is obviously higher than the two other ones. 

A ROC graph enables to compare two or more supervised learning algorithms. It 

depicts relative trade-offs between true positive rates and false positive rates [49]. 

It is possible to derive a synthetic indicator from the ROC curve, known as the AUC 

(Area Under Curve - Area Under the Curve). The AUC indicates the probability that 

the classifier will rank a randomly chosen positive instance higher than a randomly 

chosen negative instance. There exists a threshold value: if we classify the instances at 

random, the AUC will be equal to 0.5, so a significant AUC must be superior to this 

threshold. 
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Tables 

Table 1  - Motifs clustering 

M  is a set of motifs (table 1) sorted by their lengths and Pm. The third row shows the 

cluster main motifs. 

M LLK  IMK VMK GGP RI RV RF RA PP 

Pm 0.89 0.87 0.86 0 0.75 0.72 0.72 0.5 0 

Main motif LLK LLK LLK GGP RI RI RI RV PP 

Table 2  - Experimental data 

Dataset (source) Identity percentage (%) Family/class Size Total 

High-potential Iron-Sulfur Protein 19 

Hydrogenase Nickel Incorporation Protein HypA 20 DS1 (Swiss-prot) 48 

Hlycine Dehydrogenase 21 

60 

Chemokine 255 
DS2 (Swiss-prot) 48 

Melanocortin 255 
510 

Monomer 208 

Homodimer 335 

Homotrimer 40 

Homotetramer 95 

Homopentamer 11 

Homohexamer 23 

DS3 (Swiss-prot) 25 

Homooctamer 5 

717 

human TLR 14 
DS4 (Swiss-prot) 28 

Non-human TLR 26 
40 

All-α domain 70 

All-β domain 61 

α / β domain 81 
DS5 (SCOP) 84 

α + β domain 65 

277 
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Table 3  - Machine learning classifiers coupled with encoding methods 

Mtr: Metric, Clfr: Classifier, CA: Classification Accuracy (%), NA: Number of 

Attributes. 

 Encoding method 

Data Mtr Clfr NG AM DD DDSM 

C4.5 96.7 95 95 96.7 

SVM 96.7 93.3 96.7 96.7 

NB 86.7 90 81.7 80 
CA 

NN 63.3 78.3 60 61.7 

DS1 

NA 4935 2060 4905 2565 

C4.5 99.6 99.4 99.8 99.4 

SVM 100 99.4 100 100 CA 

NB 100 74.7 100 100 

 NN 100 100 100 98.8 

DS2 

NA 6503 7055 10058 1312 

C4.5 36.4 - 36.7 79.2 

SVM 43.2 - 43.2 78.94   

NB 43.2 - 43.1 59.4 
CA 

NN 20.9 - 21.3 77 

DS3 

NA 7983 - 8403 508 

C4.5 60 57.5 77.5 82.5 

SVM 67.5 65 87.5 87.5 

NB 57.5 40 92.6 95 
CA 

NN 52.5 60 80 80 

DS4 

NA 5561 3602 7116 5505 

C4.5 75.5 75.1 67.9 73.3 

SVM 84.1 81.2 82.3 82.3 

NB 77.3 63.7 84.5 85.9 
CA 

NN 80.5 79.4 78 78 

DS5 

NA 6465 2393 13830 13083 

Table 4  - Comparison between Blast and DDSM in term of accuracy (%) 

Dataset Blast-based (DDSM & SVM) Best of  DDSM (from table 3) 

DS1 100 96.7 96.7 

DS2 100 100 100 

DS3 69.60 78.94   79.2 

DS4 78.57 87.5 95 

DS5 79.4 82.3 85.9 

Table 5  - Experimental results per substitution matrix for DS3 

Accuracy (%) Substitution matrix Attributes 

C4.5 SVM NB NN 

Blosum45 377 78.5 79.2 59.4 77.7 

Blosum62 508 79.2 78.9 59.4 77 

Blosum80 532 77.6 80.5 60 77.6 

Pam30 2873 77.8 82 60.3 76.7 

Pam70 802 78.1 80.5 60.5 77 

Pam250 1123 77.3 79.4 59.6 78.7 
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Table 6  - Experimental results per substitution matrix for DS4 

Accuracy (%) Substitution matrix Attributes 

C4.5 SVM NB NN 

Blosum45 5095 82.5 85 95 80 

Blosum62 5505 82.5 87.5 95 80 

Blosum80 5968 72.5 87.5 92.5 80 

Pam30 7005 82.5 92.5 92.5 65 

Pam70 5846 82.5 85 92.5 80 

Pam250 1948 82.5 77.5 95 80 

Table 7  - Experimental results per substitution matrix for DS5 

Accuracy (%) Substitution matrix Attributes 

C4.5 SVM NB NN 

Blosum45 12603 69.3 82.3 85.9 78 

Blosum62 13083 73.3 82.3 85.9 78 

Blosum80 13146 70.1 82.3 84.1 78 

Pam30 13830 69.3 82.3 84.5 78 

Pam70 13822 70.4 82.3 84.5 78 

Pam250 1969 66.1 85.2 79.4 78 

 

Table 8  - Comparison with results reported in (Yu et al., 2006) for DS3 

Methods Accuracy % Correctly classified sequences 

DDSM & C4.5 79.2 568  

DDSM & SVM 78.9 588 

DDSM & NB 59.4 434 

DDSM & NN 77 564 

FDC & NN 75.2 539 

AAC & NN 41.4 297 

Blast-based 69.6 499 

Table 9  - Comparison with results reported in (Chen et al., 2006) and (Zhou, 
1998) for DS5 

Methods Accuracy % Correctly classified sequences 

DDSM & C4.5 73.3 203 

DDSM & SVM 82.3 228 

DDSM & NB 85.9 238 

DDSM & NN 78 216 

Blast-based 79.4 220 

AAC[27] & SVM [27] 80.5 223 

pair-coupled AAC[27]  & SVM [27] 77.6 215 

PseAAC[27] & SVM [27] 80.5 223 

SVM fusion [27] 87.7 243 

AAC[28] & Component coupled [28] 79.1 219 

AAC[34] & City-block distance [34] 59.9 166 

AAC[35] & Euclidean distance [35] 55.2 153 

AAC[36] & Neural network [36] 74.7 206  

AAC[37] & SVM [37] 79.4 219 

AAC[38] & LogitBoost [38] 84.1 233 

AAC[39] & Rough Sets [39] 79.4 219 
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Additional files 
Additional file 1 – Experimental data, 328 K 

Experimental_data.zip comprises all datasets with their classification files.  

Additional file 2 – Software 

Programs are available upon request from the authors or from www.cril.univ-

artois.fr/~mephu/SeqCod 
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