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Abstract

In this paper, we examine how the execution context of
grid jobs can help to refine submission strategies on a pro-
duction grid. On this kind of infrastructure, the latency
highly impacts performances. We present experiments that
quantify the dependencies between the grid latency and
both internal and external context parameters on the EGEE
grid infrastructure. We show how job submission managers,
job execution sites and the submission date can be statisti-
cally correlated to grid performances.

1. Objectives

Grids are increasingly used as support infrastructures
for different scientific application areas [11, 9, 5]. Several
grids, such as the European EGEE grid infrastructure1 [10]
or the Open Science Grid (OSG)2, have reached a produc-
tion level quality of service. These large scale and multi-
users systems are characterized by a non-stationary load,
their heterogeneity and their large geographic expansion.
As a consequence, non-negligible jobs submission laten-
cies, measured as the time between the jobs submission
and the start of their execution, are observed. They are
mainly due to queuing systems, network delays and system
faults. This system variability is known to highly impact
application performances and thus has to be taken into ac-
count [14].

Several initiatives aim at modeling grid infrastructure
Workload Management Systems (WMS). In [12], corre-
lations between job execution characteristics (job size or
number of processors requested, job runtime and memory
used) are studied on a multi-cluster supercomputer in order
to build models of workloads, enabling comparative study
on system design and scheduling strategies. Feitelson [4]

1http://www.eu-egee.org
2http://opensciencegrid.org

has observed correlations between runtime and job size,
number of cluster and time of the day.

Models of the grid latency enable the optimization of
job submission parameters such as jobs granularity or the
timeout value needed to make the WMS robust against sys-
tem faults and outliers. Properly modeling a large scale in-
frastructure is a challenging problem given its heterogeneity
and its dynamic behavior. In a previous work, we adopted
a probabilistic approach [6] which proved to improve appli-
cation performances while decreasing the load applied on
the grid middleware by optimizing jobs granularities. Fur-
thermore, in [7], we show how the distribution of the grid
latency impacts the choice of a timeout value for the jobs.
An optimal timeout value can be obtained by minimizing
the expectation of the job execution timeJ which can be
expressed as follows, whereFR denotes the cdf of the la-
tency,fR the corresponding pdf,t∞ the timeout value and
ρ the proportion of outlier jobs:

EJ (t∞) =
1

FR(t∞)

∫
t∞

0

ufR(u)du+
t∞

(1 − ρ)FR(t∞)
−t∞.

The resulting timeout value is highly dependent on the na-
ture and parameters of the distribution ofR. In particular,
the weight of the tail of the distribution of the latency is a
discriminatory parameter: heavy-tailed distribution always
lead to a finite optimal timeout value whereas for light-
tailed ones, it may be better not to set any timeout.

These studies show that determining a precise and up-to-
date model of the grid latency is a crucial issue to allow the
optimization of job submission parameters. However, the
underlying model relies on an estimation of the distribution
of the grid latency which is currently collected by the user
at a global scale from historical data in absence of specific
grid monitoring service. The forthcoming estimation of the
distribution may be outdated, thus impairing the accuracy
of the estimation, in particular in case of rapid variationsof
the grid status.

Taking into account contextual information has recently
been reported to help in estimating single jobs and work-



flows execution time by rescheduling [13]. We aim at refin-
ing our grid model with more local and dynamic parame-
ters. Each job can be characterized by its execution context
that depends on the grid status and may evolve during the
job life-cycle. The context of a job depends both on param-
eters internal and external to the grid infrastructure. The
internal context corresponds to parameters such as the com-
puter(s) involved in the WMS of a specific job. It may not
be completely known at the job submission date. The ex-
ternal context is related to parameters such as the day of the
week and may have an impact on the load imposed to the
grid.

Our final goal is to improve job execution performance
on grids. This requires taking into account contextual in-
formation and its frequent update. In this paper, we are
studying some parameters among the broad range of con-
textual information that could be envisaged and we discuss
their relevance with regard to grid infrastructures.

2. EGEE infrastructure and data collection

Our experiments are based on the EGEE production grid
infrastructure. With 35000 CPUs dispatched world-wide
in more than 190 computing centers, EGEE represents an
interesting case of study as it exhibits highly variable and
quickly evolving load patterns that depend on the concur-
rent activity of up to 1000 users. For the following discus-
sion, we here introduce the main components of the batch-
oriented EGEE grid infrastructure, that are diagrammed in
figure 1.
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Figure 1. EGEE submission schema.

When a user want to submit a job from her workstation,
she connects to an EGEE client known as a User Interface
(UI). A Resource Broker (RB) queues the user requests and
dispatches them to the different computing centers avail-
able. The gateway to each computing center is one or more
Computing Element (CE) batch manager that will distribute

the workload over the Worker Nodes (WN) in the center.
During its life-cycle, a job changes its status. Received by
the RB it is initially waiting, then queued at the CE and
running on the WN. If everything went right, the job is then
completed. Otherwise, it is aborted, timeout or in an error
status depending on the type of failure. As shown in fig-
ure 1, UIs can connect to different RBs, and RBs may be
connected to overlapping sets of CEs.

To study the grid behavior, we have collected mea-
sures over the submission of a very large number of probe
jobs (i.e. jobs only consisting in the execution of a
/bin/hostname command). We maintained a constant
number of probes inside the system by submitting a new
one as soon as one completed to avoid introducing any ex-
tra variability. The probe jobs were assigned a fixed 10000
seconds timeout beyond which they were canceled and not
taken into account (2.5% of the submitted jobs timeouted).
The results presented in this document involve the remain-
ing 4477 probe jobs. For each one, we logged the job sub-
mission date, the UI used, the UI load at submission time,
the RB used, the CE used and the jobs status duration (total
durationttot and partial durationstsub, trb, tq andtrun as
illustrated in figure 1).

The cumulative distribution function (cdf) of the latency
of this data set is plotted on figure 2. Its median is 363
seconds, its expectation is 559 seconds and its standard de-
viation is 850 seconds, which quantifies the highly variable
behavior of the EGEE grid. The first part of this experi-
mental distribution is close to a log-normal distribution and
its tail can be modeled by a Pareto distribution [7]. Pareto
distributions are used to model a large class of computer
system measurements (jobs durations, size of the files, data
transfers length on the Internet. . . ) [8]. This heavy tailed
distribution demonstrates that the EGEE grid exhibits non-
negligible probabilities for long latencies.

3. Influence of context parameters on the grid
latency

Many parameters may have a direct influence on the jobs
submitted to a grid infrastructure. We are here focusing on
three of them which proved to have a particular impact as
shown below: the site of computation (CE), the job dis-
patcher (RB) used, and the day of the week. The CE and
RB are directly related to the specific EGEE grid. How-
ever, the results obtained could be extended to other grid by
replacing CEs and RBs by the equivalent workload manage-
ment services. In the DIET middleware [1] for instance, it
could correspond to Master Agents (MA) and Local Agents
(LA).
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Figure 2. Cumulative density function of the
whole experimental data

3.1. Site of computation parameter

The probe measures involved 90 different computing
center gateways (CEs) from the infrastructure. Figure 3
plots the cumulative distribution of the grid latency for each
CE involved in the experiment. To ensure statistical signifi-
cance, CEs with less than 30 probe measures were removed
from the study. 60 computing elements out of the 90 were
remaining.

Figure 3 suggests that 3 classes can be identified among
the CEs. Ak-means classification was thus done on the
cumulative density functions of the CEs and the obtained
classes are identified with distinct colors on the figure. Cen-
troids of the classes are plotted in black.

The first class of CEs, pictured in blue, has the highest
performance in average. The median of its centroid is 237
seconds. It is composed of 15 CEs. The second class of
CEs, pictured in green, is composed of 35 CEs. The me-
dian of its centroid is 373 seconds, which corresponds to a
1.6 ratio with respect to the fastest class. Finally, the slow-
est class, pictured in red, is composed of 10 CEs and the
median of its centroid is 652 seconds. Table 1 compares
the median, expectation and standard-deviation of the grid
latency for each CE class. It reveals that even if the first
(blue) class of CEs has the highest performance in average,
it is also more variable than the second (green) class. The
third (red) class is the most variable. The impact of vari-
ability on the performances of an application depends on
the number of submitted jobs and on the performance met-
ric. In some cases (high number of jobs), it would be better
to submit jobs on a less variable CE class, even if it has the
lowest performance in average.

A noticeable feature of the green class is that almost all

of its CEs contain thelcgpbs string in their names. In this
class, the only CE whose name does not contain this string
is plotted in cyan on figure 3 and is close to the border of
this class. In the blue class, no CE contains this string in
its name and in the slowest class, 7 CEs have this string in
their name. This shows that thelcgpbs string name is in-
formative in itself although the reasons are not necessarily
known (it may correspond to a specific middleware version
deployed on some of the CEs in this heterogeneous infras-
tructure).

The order of magnitude of the grid latency thus appears
to be correlated to the execution CE. It is relevant because
the CE is directly related to the job queuing time as a CE
exactly corresponds to a batch queue. Variations of middle-
ware and system versions may explain the differences ob-
served among the 3 different classes while variations inside
a given class may be coming from the load imposed by the
users and the performance of CEs host hardware.

However, in general, the execution CE is only known
after the job submission, during the scheduling procedure.
Thus, this information could only be exploited for param-
eters that can be updated once the job has been submitted,
as for instance the timeout value or the application comple-
tion prediction, whereas parameters such as the granularity
of the tasks to submit could not benefit from the CE infor-
mation.
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Figure 3. Classification in 3 classes of the cu-
mulative density functions of the grid laten-
cies by CE. Centroids of the k-means classes
are plotted in black.



CE group Median (s) Expect. (s) Stdev (s)
not lcgpbs (blue) 237 436 880
lcgpbs (green) 373 461 493

other (red) 652 1132 1396
Whole data 363 559 850

Table 1. First moments and median of the grid
latency w.r.t the execution CE class

3.2. Resource Broker parameter

The probe measures were submitted to 3 different Re-
source Brokers (RBs). Figure 4 displays the cumulative
density function of the submission time of the probe jobs
sent to each of the RBs as well as the one of the submis-
sion time considering the whole experimental data set. We
first can notice that the submission times seem to be quan-
tified to a discrete set of values that correspond to the ones
were the cumulative density function is growing. As every
curve correspond to more than 1400 probe measures, this
phenomenon does not come from the lack of measures but
rather from a characteristic of the submission system. In-
deed, to ensure scalability, jobs are sequentially submitted
to the RB, which could explain this behavior. The submis-
sion time is a multiple of the duration required to submit one
job, which is about 4 seconds according to those measures.

The 3 RBs exhibit quite different behaviors. Two of them
(red and blue curves) have equivalent tails that are smaller
than the one of the third RB (green curve). It indicates that
the latter RB is prone to have very high submission delays:
on this RB, 30% of the jobs require more than 40 seconds
to be submitted, whereas they are less than 10% for the two
other RBs. On the other hand, many of the jobs of the green
RB are submitted faster than on the two other ones. As
a consequence, the median of the submission time on the
green RB is only 12 seconds, whereas it is respectively be-
tween 19 and 20 seconds and between 15 and 16 seconds
on the blue and red RBs.

Table 2 displays the expectation and standard-deviation
of the submission time with respect to the RB. Knowing that
a job is submitted to the red or blue RB reduces the variance
of the submission time distribution. On the contrary, the
standard-deviation of the green RB is higher than the one of
the whole data.

3.3. Day of the week parameter

The day of the week is an important parameter of the
external context which is likely to influence the load of the
grid infrastructure. Figure 5 plots the cumulative density
function of the grid latency with respect to the day of the

Resource Broker Expectation (s) Stdev (s)
IFCA (red) 19 14

LAL (green) 25 24
SINP (blue) 22 16
Whole data 22 19

Table 2. First moments of the submission
time w.r.t the RB
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Figure 4. Cumulative density functions of the
submission time by Resource Broker

week and table 3 displays the corresponding expectations
and standard-deviations. For this experiment, 1364 probes
submitted during the week-end were added to the previous
4477 ones.

The seven days exhibit similar behaviors for latencies
lower than 500 seconds. Above this value, Saturday and
Sunday have very similar cdf significantly lower than the
ones of the other days. In average, those week-end days
correspond to the ones when the latency is the highest, as
shown by table 3. The variance also seems to be higher
during the week-end than during the week.

4. Discussion

We have shown in these experiments that the grid latency
is related to the choice of a RB or a CE. More precisely,
we have observed that the middleware and system versions
are probably involved in this phenomenon. Computers with
older systems and middlewares are probably computers that
were installed before newer ones, and not upgraded. The
differences can thus either come from software performance
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Figure 5. Cumulative density functions of the
grid latency for each day of the week

Day Expectation (s) Standard-deviation (s)
Monday 622 1088
Tuesday 530 747

Wednesday 461 542
Thursday 609 972

Friday 569 808
Saturday 630 1035
Sunday 629 1066

Whole data 569 886

Table 3. First moments of the grid latency
w.r.t the day of the week

improvement or the fact that newer computers have higher
computing capabilities. This hypothesis could be confirmed
by other experiments establishing what fraction of the la-
tency is due to the computer hardware or to its software.
It might be a valuable information for middleware devel-
opers. However, from a grid user point of view, the main
interest is not necessarily the cause but rather its impact on
the applications. A similar approach led Cieslak and co-
authors [2] to propose performances analysis through grid
log data mining. This can be very efficient in identifying
point of failures or performance drops although it usually
provide little information on their cause.

The last experiment made shows also an interesting re-
sult: days from Monday to Friday are usually accepted as
working days while Saturdays and Sundays are usually non-
working days. This is the case for most western and eastern
countries involved in the EGEE project. However, this as-

sumption fails in some participating countries (for instance,
in Algeria the week-end is on Thursday-Friday and in Is-
rael on Friday-Saturday). This information on working days
would thus need to be corrected by the geographical loca-
tion of the grid sites handling the jobs. Working on such a
large geographical area also implies to consider the time of
the day. Working hours depend on the country we are deal-
ing with and local habits. The dependency between latency
and day of the week could be refine considering:

• Local meaning of week-end (e.g. Saturday/Sunday or
Thursday/Friday).

• Local time of the day (day or night).
• Time zone: days start with significant time shifts in the

EGEE infrastructure (from GMT+9 in Japan to GMT-8
in the USA).

• Local habits (e.g.working hours).

We believe that the dependency between latency and day
of the week is related to the system administrators activity
(they are more frequently at work and system or services
crashes are more rapidly fixed on week days). However,
we also need to consider the fact that there is more activity
during the week than during week-end, generating probably
more faults. These hypotheses need to be further tested by
building a notion of time context with respect to time zones,
working days and hours.

Similarly, we can anticipate a correlation between tem-
perature and faults in southern countries: in summer, air
conditioning systems cooling down computing centers are
more likely to break down, making large amounts of local
resources unexpectedly unavailable. CPU’s temperature is
certainly the most accurate parameter to demonstrate this
fact but is often difficult to obtain remotely. Considering
cities temperatures could also gives indications on failures
probability. This information is easily obtained for large
cities through well known Web information providers.

In the future, we plan to examine with more details the
execution context. A definition of the context as Dey [3]
proposed is probably too general to adapt to our case. For
us, context is information that is relevant for our problem.
We make a difference between the context of execution we
need to study:

• Time context (day, hour, absolute/local, working/not-
working, week/week-end).

• Hardware context (CPU, bus, hard disk size and speed,
network adapter, bandwidth, load).

• Software (system, middleware).
• Temperature (CPU, city (daily, hourly, ...)).

and the context we will really use for estimating job laten-
cies and optimizing job resubmission strategies. Reachinga
very fine granularity (e.g.monitoring each computer CPU)



may be intractable in practice and the desired information
is not always available. However, higher level information
derived statistically such as the CEs and RBs classes may al-
ready be sufficient for improving the system performances.
Similarly, cities temperature may be both a sufficient and
accessible information to further optimize it.

5. Conclusion

We consider the context of execution being composed
by the elements that are relevant to our problem. Going into
the details of all the parameters of the problem is intractable
without a statistical approach. The level of detail we will
reach depends both on the availability of the contextual in-
formation and the needs of the model.

In this paper, we have exhibited correlations between
job submission latencies and parameters from the execu-
tion context such as the job dispatcher and batch systems
involved in jobs management, or the week of the day. These
results encourage to perform more detailed studies in order
to have a better understanding of the influence of these pa-
rameters.

Depending on their influence and availability, they can
be used to refine our model of job latency and to optimize
our job resubmission and timeouting strategies. At last, we
plan to include our updated model into grid middlewares in
the future. In the example of the EGEE grid, there are two
levels of modification we will have to consider: at the UI
level for choosing the RB and at the RB level for choosing
the CE. Furthermore, even if we do not get control on the
targets CEs, the timeout value assigned to a job may be dy-
namically adapted taking into account the destination site
processing it.
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C. Grandi, and Peter Kunszt. Programming the Grid with
gLite. Computational Methods in Science and Technology,
12(1):33–45, 2006.

[11] Erwin Laure, Heinz Stockinger, and Kurt Stockinger. Perfor-
mance Engineering in Data Grids.Concurrency and Compu-
tation: Practice &amp; Experience, 17(2-4), 2005.

[12] Hui Li, David Groep, and Lex Wolters. Workload Character-
istics of a Multi-cluster Supercomputer. InJob Scheduling
Strategies for Parallel Processing, pages 176–193. Springer
Verlag, 2004.

[13] Jason Nichols, Haluk Demirkan, and Michael Goul. Auto-
nomic Workflow Execution in the Grid.IEEE Transactions
on Systems, Man, and Cybernetics, 36(3), May 2006.

[14] Jennifer Schopf and Francine Berman. Stochastic Schedul-
ing. In Supercomputing (SC’99), Portland, USA, 1999.


