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Abstract

In this paper, we study grid jobs latency. Together with outliers, latency highly im-
pacts applications performance on production grids, due to its order of magnitude
and important variations. It is particularly prejudicial for determining the expected
duration of applications handling a high number of jobs and it makes outliers de-
tection difficult.

In a previous work, a probabilistic model of the latency has been used to estimate
an optimal timeout value considering a given distribution of jobs latencies. This
timeout value is then used in a job resubmission strategy.

The purpose of this paper is to evaluate to what extent updating this model
with relevant contextual parameters can help to refine the latency estimation. In
the first part of the paper, we study the validity of parameters along several weeks.
Experiments on the EGEE production grid show that performance can be improved
by updating model parameters. In the second part, we study the influence of the
resource broker or the computing site and the day of the week. We experimen-
tally show that some of them have a statistically significant influence on the job
latency. We exploit this contextual information in the perspective of improving job
submission strategies.
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1 Motivations

Users often complain on low efficiency and faults encountered on production
grids. For instance, running metagenomics experiments on EGEE, authors of
[ABEHGO8] report 8% of non finished jobs (pending forever), 27% of aborted
jobs (mainly due to credentials expiration) and 65% of finished jobs. On those
finished jobs, only 45% were correctly completed, due to different problems:
file transfer errors, file catalog error, uploads and installation problems.

Production grids are characterized by high and non-stationary load and by
a large geographical expansion. As a consequence, latency, measured as the
duration between the beginning of a job submission and the time it starts
executing, can be very high and prone to large variations. As an example,
on the EGEE (Enabling Grid for E-sciencE) production grid!, the average
latency is in the order of 5 minutes with standard deviation also in the order of
5 minutes. This variability is known to highly impact application performance
and thus it has to be taken into account [SB99].

Modeling grids latency is interesting to give a reliable estimation of the ex-
pected jobs completion time. On an unreliable grid infrastructure where a
significant fraction of jobs is lost (outliers), this information is valuable to set
up an efficient resubmission strategy minimizing the impact of faults. It can
be exploited either at the workload management system level or at the user
level. Jobs facing too high latencies are cancelled and resubmitted before they
become too penalizing.

In [GMPO07], a probabilistic model is presented to allow the optimization of
timeout values considering a given latency distribution. This timeout value is
then used for job resubmission. In this paper, we test the validity of such a
model along time.

In previous works [GLMRO7, LMGOS8], we have shown that some parameters
of the execution context have an influence on the cumulative density function
of the latency. In this paper, we quantify their influence on the timeout values
and the expected execution time (including resubmissions). We aim at refining
our model by taking into account most relevant contextual parameters in order
to optimize job resubmission strategies.

Section 2 presents several initiatives aiming at modeling grid infrastructures
and, in particular, several studies on the influence of different parameters. In
this work, we focus on a particular production grid, EGEE, that is described
in section 3. Section 4 introduces our latency model including job resubmission
in case of faults or outliers. This model aims at determining the best value of

! EGEE, http://www.eu-egee.org/
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job timeout and is based on real observations on a production grid. The data
that has been used for the experiments proposed in the paper is described in
section 5. The experiments are presented in the next two sections. Section 6
studies the validity of our model along time and shows that an update of
the estimated model parameter is valuable for reducing the global latency.
Section 7 studies the influence of different parameters of the execution context
on the estimated model parameters and the global latency. Resource brokers,
computing centers, day of the week and time of the day are considered.

2 Related work

Several initiatives aim at modeling grid infrastructure Workload Manage-
ment Systems (WMS). They are usually based on logs from local clusters
[CGV08, GLMTO08]| or national grids [LGW04, NPF08] or probe jobs for mea-
surements [GLMRO7]. Some initiatives aim at collecting large collection of
logs. The Network Weather Service [SW04] proposes an architecture for man-
aging large amounts of data in the purpose of prediction making. The Grid
Workloads Archive [ILJT08] proposes a workload data exchange format and
associated analysis tools in order to share real workload from different grid
environments. It already contains more than 7 billions data entries. More re-
cently, the Real Time Monitor (RTM)? together with the Grid Observatory ?
propose extensive traces from the EGEE grid. These traces were not avail-
able at the time of the experiments made in this paper. They also require
pre-processing such as data cleaning and interpretation in order to be used.
This explains why we have used probe jobs (detailed in section 5) for the
experiments of this paper. In addition, probe jobs submitted from the user
environment, exactly relate to what is experienced from her point of view.

Taking into account contextual information has been reported to help in es-
timating single jobs and workflows execution time by rescheduling. Different
works have been done on either experimental or production grid. Feitelson
[Fei02] has pointed out the importance of these studies and the methodologies
to conduct them.

We now detail several works that have studied the influence of different param-
eters, detected or measured on experimental or production grids, with different
types of resources (dedicated, shared, ...) and with very different load patterns.
Some works have used these parameters to better model the studied factors
while others have only observed their influence, without extracting models.

2 Real Time Monitor, http://gridportal.hep.ph.ic.ac.uk/rtm
3 EGEE Grid Observatory, http://www.grid-observatory.org
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Feitelson [Fei02] observed correlations between run time and job size, num-
ber of clusters and time of the day. In [NDGO06], the influence of changes in
transmission speed, in both executable code and data size, and in failure like-
lihood are analyzed for a better estimation of end time of sub-workflows. This
information is used for re-scheduling jobs after faults or overruns.

In [LGWO04], correlations between job execution properties (job size or number
of processors requested, job run time and memory used) are studied on a
multi-cluster supercomputer in order to build models of workloads, enabling
comparative studies on system design and scheduling strategies. In [NMBT06],
authors make predictions of batch queues waiting time to improve the total
execution time.

To refine grid monitoring, [RBJS06] presents a model of the influence between
the grid components and their execution context (system and network levels),
experimented on the Grid’5000 French national platform.

In [NPFO08], authors constructed a model for the prediction of resource avail-
ability on the Austrian grid. Their study of the impact of the day of the week
and the hour of the day clearly shows two different profiles. The differences
with our work are that users of this grid are all located in Austria (same
timezone, similar working periods) and that this grid does not seem to be
saturated, contrarily to the EGEE one.

Authors of [OCV07] analyze job inter-arrival times, waiting times in the
queues, execution times and size of exchanged data. They conducted experi-
ments on the EGEE production grid on several VOs (Virtual Organizations)
and studied the influence of the day of the week and the time of the day.
Their conclusion is that the load increases at the end of the day but that it is
difficult to extract a precise model of this behavior with respect to the day or
to the time.

Users behavior on the EGEE grid is studied in [DCDOO07]. The authors ob-
served that “some job submissions are done during the morning, and most
of them are done in the afternoon”, with a ratio of more than two. However,
authors are not proposing strategies to exploit this information.

These works present studies on different factors such as inter-arrival time,
batch queues waiting time, latency, execution time or availability of resources.
They all depend on the load of the grid. The parameters that have been studied
can be divided in different categories:

Job context: run time, memory used, number of processors requested and
data size required.

Execution environment context: system, network (architecture, proto-
col, bandwidth, transmission speed), day of the week and hour of the day.



In the remainder of this paper, we focus on heavily loaded production grids for
implementing a resubmission strategy. Our work focus on the estimation of the
latency impacting jobs prior to their start time which is notified by the middle-
ware. The resubmission strategy does not require taking into account the jobs
context but only their execution environment context. Resource brokers and
computing centers batch systems are the first parameters that we will study.
In addition, taking into account observations of [DCDOO07, NPF08] together
with our own observations, day and time of submission will be studied.

We will now describe the EGEE production grid used has experimental plat-
form in order to introduce the different elements involved in the latency and
job submission.

3 Experimental platform

Our experiments are conducted within the biomed VO of the EGEE produc-
tion grid infrastructure. With 40,000 CPUs dispatched world-wide in more
than 240 computing centers (at the time of the experiments), EGEE represents
an interesting case study as it exhibits highly variable and quickly evolving
load patterns that depend on the concurrent activity of thousands of potential
users. Even if the infrastructure is relatively homogeneous from the OS point
of view (all the hosts are running Scientific Linux, based on Red-Hat distribu-
tion), important architecture and performance variations are expected among
the worker nodes (64/32 bits machines, single/multiple processors, different
speeds, single/multiple cores).

On the EGEE grid, when a user wants to submit a job from her workstation,
she connects to an EGEE client known as a User Interface (see figure 1). A
Resource Broker (RB) queues the user requests and dispatches them to the
available computing centers. The gateway to each computing center is one or
more Computing Element (CE). A CE hosts a batch manager that distributes
the workload over the Worker Nodes of the center. Different queues handle
jobs with different forecast wall clock times. The policies for deciding on the
number of queues and on the maximal time assigned to each of them are site-
specific. We later denote as CE-queue a specific batch queue configured on a
given CE.

During its life-cycle, a job is characterized by its evolution status. If everything
happens as expected, the job is then completed. Otherwise, it might be aborted,
timed-outed or in an error status depending on the type of failure.

The latency is measured as the duration between the beginning of a job sub-
mission and the time it starts executing, denoted as (t;o; —tyn) in figure 1. Due
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Fig. 1. EGEE job life cycle: from the submission by a user on her personal work-
station to the working node where the job will run.



to the middleware architecture, an incompressible polling delay is necessary
to detect the job termination after ¢,,,. When detecting the running state of
a job, the measure is subject to this polling time which is therefore integrated
into our measurements. In the remainder, we will call latency the total delay
experienced by the user, including the polling time.

In a typical application of the biomed VO, the mean and standard-deviation
of the latency have similar values, in the order of magnitude of job execution
times (several minutes, up to hours). Thus, the latency and its variations have
an important impact on the performance. A precise model of the latency is
needed to handle failed jobs and refine submission strategies.

4 Using latency models for optimization

Models of the grid latency enable the optimization of job submission parame-
ters such as job granularity [GMPO6] or timeout value, which can improve the
robustness of the WMS against system faults and outliers.

Properly modeling a large scale infrastructure is a challenging problem given
its heterogeneity and its dynamic behavior. In a previous work [GMPO0S], we
adopted a probabilistic approach which proved to be able to explain applica-
tion performance on a production grid.

In [GMPO07], we have shown how the distribution of the grid latency impacts
the choice of a timeout value for the jobs. We model the grid latency as a
random variable R with probability density function (pdf) fz and cumulative
density function (cdf) Fr. Outliers are jobs that did not returned. We denote
by p the ratio of jobs considered as outliers. The strategy we consider consists
in cancelling and resubmitting a job when it has not reached the running status
before a certain time, called timeout and denoted by t.,. As demonstrated in
detail in appendix A, the expectation of the resulting of the total latency J
faced by the job (including resubmissions) is expressed as a function of R, the
timeout t,, and the proportion of outliers p:

Bftx) = 5 [ ufatiddut s =t (1)

E; is denoted as the “expected execution time” in the remainder of the paper
since we consider jobs of almost null execution time. The optimal timeout
value is obtained by minimizing E; with respect to the timeout value .

Figure 2 shows the cumulative density of the latency (Fr) computed from
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Fig. 2. Cumulative density function (F) of the latency for all jobs completed before
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Fig. 3. Expected execution time with respect to the timeout value. In this example,
the minimum of the curve is reached for t,, = 528s, leading to the shortest execution
time FEj; = 494s.

a set of 5,800 measurements. Figure 3 plots E; with respect to the timeout
value .., using equation 1. The curve presents a fast decreasing phase towards
a minimal followed by a slow increasing phase. The increasing phase tends
towards an asymptotic straight line which slope increases with the fraction of
outliers (here, 3%). The minimum of the curve gives the optimal timeout value
(here, to, = 528s leading to E; = 494s). Underestimation of the timeout value
leads to a higher increase of the expected execution time than overestimation.

Given a probability distribution of the latency, minimizing equation 1 gives
the best choice for the timeout value. In the real life, we will have to first
measure the probability distribution in order to compute the optimal timeout
value. In a first step (Section 6), we will study the validity of the model
along time and the frequency of necessary updates. Then, we will focus on
refining this model by considering parameters of the execution context that
can be identified during the job life cycle: the target Resource Broker (RB),
the Computing Element (CE) and finally the local submission date and time
(Section 7). The goal is to exhibit parameters for which we obtain significantly
different optimal timeout values. Those parameters could then be included
into optimization strategies to improve their accuracy, thus leading to better
performance.

5 Experimental data and method

To study grid latency, measures were collected by submitting a significant
number of probe jobs. These jobs, consisting in the execution of a negligible
duration /bin/hostname command, are only impacted by the grid latency. In



the remainder we make the hypothesis that the users job execution time is
known and that therefore only the grid latency varies significantly between
different runs of the same computation task. To avoid influencing the system
load with our monitoring, a constant number of probes was maintained inside
the system at any time during the data collection: a new probe was submitted
each time another one completed. For each probe job, we logged the job sub-
mission date, the job final status and the total duration. The probe jobs were
assigned a fixed 10,000 seconds maximal duration beyond which they were
considered as outliers and cancelled. This value is far greater than the average
latency observed (in the order of 300 seconds). We consider as faults both
outliers jobs and jobs that really failed before 10,000 seconds. We compute
the ratio of faults and introduce it as the p value in equation 1, considering
that all faults are resubmitted at ¢.

In a previous work [GLMRO7], we collected 5,800 job traces in September 2006
(denoted further as 2006-1X). In this paper, we added 10,000 job traces (with
an outliers ratio of 21%) acquired between September 2007 and March 2008.
The exact periods of experiment are thus:

September 15th 2006 until September 26th 2006 (2006-1X)

September 5th 2007 until September 27th 2007 (weeks 2007-36 to 2007-39)
December 12th 2007 until December 17th 2007 (week 2007-50)

December 21th 2007 until January 22th 2008 (weeks 2007-51 to 2008-03)
February 15th 2008 until March 11th 2008 (weeks 2008-07 to 2008-10)

The discontinuity of the periods in the later data set is due to unscheduled
failures in the acquisition system and does not have any relation with authors
choices.

In the study we are conducting, we aim at reducing the total execution time
including resubmissions when failures happen. For studying the influence of a
parameter, we split the data according to the studied parameter into different
subsets indexed by i. The studied parameters and the corresponding meaning
for ¢ are:

validity for long period of time: number of the week (see section 6)

resource broker: index of the RB in the list of RBs (see subsection 7.1)

computing element and queue: index of the class of CE-queue (see sub-
section 7.2)

day of the week: number of the day in the week (1-7) (see subsection 7.3)

hour of the day: index of the 4 hours time period in the day (1-6) (see
subsection 7.4)

working versus non working periods: boolean value

The model (random variable F;, optimal t..; conducting to the minimal ;) is
computed for each of the different subsets. The optimal F;(t;) of each group

10



is thus compared to the value obtained with the optimal timeout computed
from the whole data set: Ej;(tocqu). The relative difference:

Eji(tei) — Eyi(tocan)

A pu—
EJi(tooall)

expresses the reduction of the execution time yielded by adapting the opti-
mization strategy to the studied parameter.

We first study the validity of the model parameters for long periods of time by
splitting the data into subsets corresponding to single weeks. In this study, we
have computed a AFE; instead of the above A, considering that, in practice,
parameters will be estimated at a certain time and used during a later period
of time. The expression of AFE; is given by:

AE, — Eji(tei) — Eji(tes))
g Eji(toos)

where j corresponds to the reference subset.

6 Study of the validity of model parameters along time

Figure 4 shows the cumulative density function of the latency for the different
weeks and for the whole period of 2007-2008. The curves covering the period
2007-2008 present a similar profile. We observe that most of the times, the
distribution of the job waiting times in the RB is multi-modal, thus explain-
ing the steps on figure 4. These modes could be due to the internal scheduling
algorithm of resource brokers. Another possible cause might be the RB imple-
mentation itself (e.g. presence of active polling loops, etc.). Such steps have
also been observed by other biomed users (see e.g. figure 4 in [ABEHGOS])
and in the vlemed VO of the EGEE grid.

An interesting way to compare those curves is to consider the differences be-
tween the optimal timeout values that they led to (computed using equa-
tion 1). Figure 5 shows the expectation of the execution time for the different
weeks. Despite the fact that the curves have different profiles, the optimal
timeout values are visually in the same interval, around 400s.

These values are detailed in table 1: the optimal value for 2006 is 528s while
values for 2007-2008 range between 422s and 491s. The table also displays, for
each period of time, the mean value and the standard deviation of the latency
R. In most cases, a reduction of the mean latency corresponds to a decrease of

11
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date R o(R) outliers bestts | Ej(tso)

2006-1X | 570s  886s 5% 528s 494s

2007/08 | 469s  723s 17% 474s 500s
2007-36 | 446s  748s 24% 423s 502s

2007-37 | 506s  848s 33% 422s 606s

2007-38 | 447s  682s 24% 428s 522s
2007-39 | 489s  741s 32% 436s 585s
2007-50 | 660s 1046s 18% 467s 628s
2007-51 | 478s  510s 13% 491s 510s

2007-52 | 443s  582s 13% 482s 469s
2007-53 | 449s  678s 16% 484s 482s
2008-01 | 434s  317s 13% 485s 491s
2008-02 | 418s  547s 12% 433s 435s
2008-03 | 538s 1196s 10% 474s 413s

Table 1

Mean and standard variation of the latency, fraction of outliers, optimal timeout
value and minimal expectation of execution time. These quantities are computed
for the 2006 period, for the 2007-2008 period and for all weeks in the 2007-2008
period. The minimal optimal timeout value is 422s while the maximal one is 491s.

the standard deviation. Finally the optimal expected execution time is shown.
Assuming that the optimal timeout value has been computed in September
2006 (528s), we compute, in table 2, the resulting expectation of execution
time and the relative difference with the optimal value computed week by
week in order to measure the impact of parameters chosen earlier instead of
the optimal ones. The relative differences are up to 8%. It happens that this
timeout value is higher than all optimal values for the period 2007-2008. The
highest differences are obtained when the ascending slopes of figure 5 are the
highest, which is directly related to the fraction of outliers.

Furthermore, if we consider the minimal and the maximal of timeout values
among the different weeks (422s and 491s), the expected execution time for
each of these values and the relative differences are shown in table 3. In the
case of the maximal timeout value, relative errors are below 6% while in the
case of the minimal timeout value, relative errors are up to 17%. This is clearly
explained by the shape of the curves on figure 5: the slope of the decreasing
part is higher than the slope of the increasing part of each curve. Thus, an
overestimation of the timeout value is better than an underestimation, if this
overestimation is not too high, which must be quantified. As a conclusion of

14



date | E;(528s) AE; date | E;(528s) AEy
2007-36 528s 5.2 % || 2007-52 477s 1.7 %
2007-37 648s 7.0 % || 2007-53 491s 1.9 %
2007-38 544s 4.2 % || 2008-01 493s 0.4 %
2007-39 631s 7.9 % || 2008-02 441s 1.4 %
2007-50 652s 3.9 % || 2008-03 418s 1.2 %

2007-51 514s 0.9 %

Table 2

In this experiment, the timeout value from the period of September 2006 has been
used (528s). For each week of the 2007-2008 period, we present the expectation of
the execution time and the relative difference with the optimal one.

15



date | E;(4228) AFE;% | E;(491s) AFE;%

2007-36 505.5 0.7% 527.1 5.0%
2007-37 605.9 0% 632.2 4.3%
2007-38 524.8 0.5% 530.5 1.6%
2007-39 602.9 3.1% 616.8 5.5%
2007-50 718.7 14.5% 642.3 2.3%
2007-51 594.9 16.7% 509.6 0%

2007-52 491.2 4.8% 470.9 0.4%
2007-53 513.4 6.5% 484.0 0.4%
2008-01 516.7 5.2% 493.1 0.4%
2008-02 437.0 0.6% 437.2 0.6%
2008-03 419.1 1.5% 414.8 0.5%

Table 3

In this experiment, we focus on data from the period 2007-2008. As determined in
table 1, the minimum timeout value is 422s and the maximum is 491s. For these
extreme values, the new expectation of execution time and the relative difference
with the optimal value are presented.

this part of the study, updating the timeout value along time may improve
the total execution time, up to 17%.

7 Latency context parameters

In order to refine our model, we consider the parameters of the execution con-
text that could explain the high variability of the latency. Two different jobs
submitted on the EGEE grid may differ on the path they follow from their sub-
mission site (UI) to the execution site (WN). Different hardware characteristics
and software configurations/versions may also influence the performance. The
load of the infrastructure is also an important factor and may depend on the
behavior of the users and on the nature of the experiments they are conduct-
ing. Not only users are to be considered but also administration operations
that influence the grid status. Similarly, time context (working or non-working
periods) is to be considered. Failures may have different explanations such as
hardware failures, load and any other external factors (such as extremely hot
weather conditions leading to air conditioning failures, ...).

Going into the details of all the local parameters of the problem is intractable
due to the difficulty to acquire and store such information. The level of details
that can be exploited depends both on the availability of the contextual infor-

16



all RBs RBfr | RBes | RBru

optimal oo | tooref = D96 s | 729 s 546 s 506 s

At 0% 31% 2% 9%
min Ej 479.125 s 483.7 s | 445.2 s | 476.2 s
Ej(tooret) 479.125 s | 488.8 s | 4459 s | 4779 s
AE; 0% 1% 02% | 0.4%

Table 4
Study of the influence of the Resource Brokers.

mation and on the needs of the model. We thus restrict our study to context
parameters that could realistically be used for estimating job latencies and op-
timizing job resubmission strategies. In the following, we consider high level
information such as Resource Broker, Computing Element and queues used.
We also study the time context using the day of the week, and time periods
of the day.

7.1  Resource Broker parameter (RB)

The probe measures acquired during three weeks in September 2006 (log 2006-
IX) were submitted to 3 different Resource Brokers (RBs):

e a French one (grid09.1lal.in2p3.fr),
e a Spanish one (egeerb.ifca.org.es) and
e a Russian one (1cgl6.sinp.msu.ru).

In this log, the outlier ratio p was 5%. Figure 7 displays the cumulative density
function of the latency of the probe jobs sent to each of the RBs as well as
the one of the submission time considering all RBs.

The 3 RBs exhibit quite different behaviors that need to be quantified. Table 4
displays in each row:

e the optimal estimated timeout value;

e the difference between this value and the global reference value obtained
using all measurements without distinction between RBs;

e the minimal expected execution time;

e the expected execution time if the timeout is set to the global reference
value;

e and the relative difference with the optimum.

The optimal timeout values significantly differ and the most distinct is the one
associated to the French RB (variation At,, = 31%). However, the expected

17
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execution time varies by a much smaller amount (AE; <1%). This shows
that even if a parameter (here the RB) might significantly influence the time-
out optimization, its impact on the execution time is not necessarily critical.
Taking into account the RB in the timeout optimization will not improve the
execution time, compared to the regular update of the model parameters.

7.2 Computing Element (CE)

In a computing center, the batch submission system is usually configured with
several queues. The influence of the Computing Element (CE) and the associ-
ated queues (CE-queue), is considered in this section. The same methodology
as in section 7.1 could be envisaged but a significant difference is that the
number of CE-queues is much higher than the number of RBs in the same set
of data: we had 92 CEs and queues and only 3 RBs. It might thus be relevant
to group similar CE-queues to obtain fewer classes. As can be seen in figure 9
many of the 92 CE-queues have similar cdfs while others are more singular.
The idea here is to group CEs and queues that have similar properties into
different classes. To ensure statistical significance, CE-queues with less than

1

0.8 -

0.6

Fr

0.4

0.2

0

il | 1
0 200 400 600 800 1000
Grid latency (seconds)

Fig. 9. Classification in 3 classes of the cumulative density functions of the grid
latencies by CE. Centroids of the k-means classes are plotted in black.

30 probe measures were removed from the study. Sixty (60) CE-queues out of
the 92 remained.

7.2.1 Methodology

As explained at the end of section 5, we are interested in splitting the data
in different subsets and to evaluate the pertinance of the parameters deter-
mining this clustering. We have used the k-means classification method that
we present in paragraph 7.2.1.1. In order to measure the pertinance of the
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classification, we have used a well known method: ANOVA that we detail in
paragraph 7.2.1.2.

In subsection 7.2.2, we build three classes from intuitive observations on the
distribution profiles. We refine this analysis by studying different number of
classes from 2 to 10 in subsection 7.2.3. ANOVA analysis shows that Hj is
rejected in all cases but refining results from the case of 3 classes (subsection
7.2.4) shows that only 2 classes are statistically different. We conclude by
merging 2 classes obtained from the classification into 3 classes and comparing
the result with the classification into 2 classes.

7.2.1.1 Classification method: k-means The k-means method [Ste56]
is an iterative method that clusters data in k different classes by minimizing
the intra cluster variance (the sum of squared distance of the elements of a
class to its centroid). This method is very fast but needs to specify the number
of classes, value k, and an initialisation of each centroid.

The distance we have used is a distance between two curves Fr and is com-
puted as the sum of the squared distance between F values for same latency
values. Different values of k have been studied in this paper. For evaluation
of the classification result, the ANOVA method has been used.

7.2.1.2 Evaluation of the classification: ANOVA The ANalysis Of
VAriance (ANOVA) [Fis25] is a well-known method in statistics that consists
in a generalisation of the T-test for more than two subsets of a dataset and
that tests an hypothesis usually called Hy, the null hypothesis. This hypothesis
says that the subset data were drawn from the same population. The ANOVA
test compares the variance of the different subsets with the variance of the
whole dataset, using a ratio I, in order to validate or not the null hypothesis:

I variance between groups

variance within groups

Depending on the F' value and the degree of freedom, D f, of the problem, a
confidence in rejection of Hy is given, usually denoted by p. In the case of our
study, the degree of freedom is given by the number of classes minus 1.

From such an analysis, if the rejection is confirmed, it does not say that all
classes are statistically different, but only that they are not similar. Further
tests must be done in order to determine how many subsets are statistically
different.
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CE group Median (s) | Expect. (s) | Stdev (s)
not legpbs (blue) 237 436 880
legpbs (green) 373 461 493
other (red) 652 1132 1396
Whole data 363 559 850

Table 5
First moments and median of the grid latency w.r.t the CE class

7.2.2  Classification of the CEs and queues

Figure 9 suggests that 3 classes can be identified among the CEs. A k-means
classification with £ = 3 was thus performed on the cumulative density func-
tions of the CEs. The resulting classes are identified with distinct colors on
the figure. Centroids of the classes are plotted in black.

The first class of CEs, pictured in blue, has the highest performance in average.
The median of its centroid is 237 seconds. It is composed of 15 CEs. The
second class of CEs, pictured in green, is composed of 35 CEs. The median
of its centroid is 373 seconds, which corresponds to a 1.6 ratio with respect
to the fastest class. Finally, the slowest class, pictured in red, is composed of
10 CEs and the median of its centroid is 652 seconds. Table 5 compares the
median, expectation and standard-deviation of the latency for each CE class. It
reveals that even if the first (blue) class of CEs has the highest performance in
average, it is also more variable than the second (green) class. The third (red)
class is the most variable. The impact of variability on the performance of an
application depends on the number of submitted jobs and on the performance
metric. In some cases (high number of jobs), it would be better to submit jobs
on a less variable CE class, even if it has lower performance in average.

A noticeable feature of the green class is that almost all of its CEs contain the
lcgpbs string in their names. In this class, the only CE whose name does not
contain this string is plotted in cyan on figure 9. It is close to the border of
this class. In the blue class, no CE contains this string in its name and in the
slowest class, 7 CEs have this string in their name. This shows that the 1cgpbs
string name is informative in itself although the reason is not necessarily known
(it may correspond to a specific middleware version or installation procedure
deployed on some of the CEs in this heterogeneous infrastructure).

However, in order to complete this study, we need to study different number
of classes to evaluate the more significant one.
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Fig. 10. Timeout values repartition after k-mean classification into 2 classes (left)
and 3 classes (right) of CE-queues.

7.2.8 Testing different number of classes for CE-queues

Different aggregations of CE-queues were tested based on their cdf using the
k-means classification algorithm with & = 2 to 10 classes. For each CE-queue,
the optimal timeout value is computed by minimizing equation 1. Figure 10
shows the repartition of the timeout values in the classes. The width of each
box is proportional to the number of CE-queues in the class.

In order to measure if the classes are statistically discriminant, we have tested
the hypothesis Hy “all sets have equal mean and equal variance” using ANOVA.
The results are reported in the following table where Df corresponds to the
number of degrees of freedom, F to the ratio statistic of the between groups
variance to the within groups variance and p value to the significance level of
Hy. Symbol *** means rejection of hypothesis Hy with high confidence (level
1% of p < 0.01).

nb. of classes || Df F | p value | Hy rejection
2 1]139]4.10™ ok

31 211001 1.107" ok

4 3]14.112107° ok

5( 411031 1.107% ok

6| 5| 84]2107% ok

71 61109 1.107% ok

8| 7| 9.6 2107% ok

9| 8| 958107 ok

10| 9] 83]3.107% ok
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Fig. 11. k-means classification into 3 classes after grouping classes 1 and 2.

The result of the ANOVA test shows that the Hy hypothesis is strongly re-
jected in all cases at a level less than 1% (between 8.1077 % and 0.04 %).
The best result is obtained for 9 classes but the gain is not so high. Note that
the ANOVA test only shows that the hypothesis Hj is rejected: this does not
necessary imply that all classes differ from each other.

In the case of 2 classes, these classes are statistically discriminant. But for
more than 2 classes, further tests must be done in order to determine how
many classes are independent.

7.2.4  Refining the ANOVA analysis

For example, let us look at the case of classification into 3 different classes
(classes 0, 1 and 2). Using ANOVA, if we test classes 1 and 2, we observe
that they do not differ significantly: F' = 0.2334 (p = 0.6338). Building a new
class (class 1+42) from classes 1 and 2, we now test class 0 against class 1+2
and obtain that they differ significantly: F' = 19.651 (p = 3.003¢ — 05). We
observe that grouping two classes after the classification k = 3 gives a similar,
although slightly better, result than the classification k = 2.

The optimal timeout for the 2 populations (classes 0 and 142) are t,,o = 779s
and to1,9 = 881s respectively leading to an optimal execution time of E; =
398s and E; = 794s respectively (see figure 12).

optimal to, | min E; | Ej(teoret) | A%
all data tooref = DD0s | 4798
class 0 730s 398s 399s 0.2%
class 1+2 | 881s 794s 921s 16%

23



0.8 [

"whole class 1+2" ——

o
o

cumulative density function FR
o
S

o
N

0

0 2000 000 8000 10000

000Iatency (s) 6
Fig. 12. Cumulative density functions of latency with respect to time (in seconds).
This figure is obtained from the k-means classification into 3 classes. We grouped
the last 2 classes into a single one so that we have 2 classes: the initial class 0 (in red)
and new class 1+2 (in green) resulting of the merging of classes 1 and 2. Each curve
corresponds to the cdf of one CE-queue. The blue and magenta curves correspond
to the cdf of the centroid of class 0 and class 1+2 respectively.
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Fig. 13. Errors measured between minimal E; and Ej(tscref), Where toorer if com-
puted from all classes.

Figure 13 shows the errors computed between the minimal E; and Ej(tooref),
where tor is computed from all classes. It quantifies the performance loss
that can be expected when CE cdfs are approximated by the centroid of their
class.

7.2.5 Discussion

The order of magnitude of the grid latency thus appears to be correlated to
the execution CE-queue. It is not surprising because the CE is directly related
to the job queuing time as a CE-queue exactly corresponds to a batch queue.
Variations of middleware, system versions and availability of the site to VOs
may explain the differences observed among the 2 different classes while vari-
ations inside a given class may be coming from the load imposed by the users
and the performance of CEs host hardware. However, in general, the execu-
tion CE-queue is only known after the job submission, during the scheduling
procedure. Thus, this information could only be exploited for parameters that
can be updated once the job has been submitted, as for instance the timeout
value or the application completion prediction, whereas parameters such as
the granularity of the tasks to submit could not benefit from the CE-queue
information.

We have seen previously in the paper that the influence of the RB is very low.
It could be explained by the fact that RBs are connected to overlapped sets of
CEs that may belong to different classes, thus merging the different behaviors
we can see when considering the CEs.
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Fig. 14. Expectation of job execution time for each day of the week.

7.8 Day of the week

Considering that the load of the grid may depend on human activity (users
often start submitting jobs during working hours), we have, as a first step, con-
sidered the influence of the day of the week on the latency. We expect different
behaviors during week days and weekends, considering that in most western
countries, Saturdays and Sundays are non working days. The considered data
set, presented in section 5, concerns several weeks.

Figure 14 shows the latency expectation for each day of the week. The different
days of week show different behaviors. However, there is no clear distinction
between week and week-end. The two extrema curve correspond to Wednesday
and Friday. An explanation is that on Fridays users might initiate experiments
that will run over the weekend, thus creating a stress effect on Friday’s load.

To quantify the influence of the day of the week, we compute, for each week
and each day of the week, the optimal timeout value, according to equation 1.
These values are plotted on figure 15 with respect to the day of the week. As
confirmed by ANOVA analysis, there is no significant difference between the
days of the week (p = 0.5268).

We also present on figure 16 the evolution of the optimal timeout value with
respect to the week of the experiment, for each day of the week. There is no
evidence of absolute pertinence of the day of the week in this figure. Even the
period between Christmas and New Year’s Eve is not really separated from
the others. However, in figure 17, we observe that, in most weeks, there is a
decrease of the best timeout value between Tuesday or Wednesday and Thurs-
day followed by an increase until Friday or Saturday. This profile information
needs further investigation to be exploited.
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Fig. 17. Each curve corresponds to a week of the experiment. The optimal timeout
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Fig. 18. Each curve corresponds to a day of the week. We plotted optimal timeout
values with respect to the time period of the day. We observe that there is more
variability for the night time periods than during the day.

This time context study will now be completed by the analysis of the hours
in the day. Indeed, working and non-working periods may influence the sub-
missions, and consequently the load on the grid and the latencies. As seen in
this paragraph, the study of the day of the week is not convincing enough.

7.4 Hours of the day

In a first analysis, we divide days into periods of four hours: Hy (0-4 am), H;
(4-8 am), Hs (8-12 am), H3 (0-4 pm), Hy (4-8 pm) and Hj (8-12 pm),

We also select data using CEs from a similar timezone: Austria, Belgium,
Denmark, France, Germany, Italy, Netherlands, Portugal, Spain and Sweden
(565 measures from week 7 to week 10).

For each day of the week, and for each time period of the day, we have com-
puted the latency cdf Fr and the optimal timeout value that is displayed on
figure 18.

Moreover, figure 19 plots the different population of latency for the different
hours of the week. We compare the results using (i) all CEs and all days, (ii)
only CEs from the same timezone and all days and (iii) only CEs from the
same timezone and only working days (Monday to Friday). An ANOVA on all
those analysis confirms that the population of jobs submitted during a same
one hour period are all statistically identical (p = 0.57 in case of all CEs,
p = 0.35 in case of one timezone and p = 0.12 with only working days).

Even if the ANOVA score is lower when using only one timezone and working
days, the populations are still statistically equivalent: the time parameter has
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an influence but too small to be statistically relevant.

Furthermore, we have separated data from working periods during weekdays
and weekends as follows:

working period : Monday to Friday, 8am to 6pm
non-working period : Monday to Friday, 6pm to 8am, whole Saturday and
Sunday

We then computed the optimal value for all the data, considering supposed
working periods and supposed non working periods. As shown in this table, it
does not lead to any better distinction between time periods.

data set optimal to, | min Ej | Ej(teorer) | AE;
all data tooret = 429s | 451.58

working period 476s 448.4s | 449.1s 0.3%
non-working period | 429s 452.6s | 452.6s 0%

As a partial conclusion of this time period study, its influence is very small
as compared to the variations of the model parameter along time and the
classes of CEs. Other works have shown that the time parameter influence
parameters of the grid, such as [NPF08]. However, they have done their study
on a national grid with users in the same country. In our case, even if we
choose CEs from the same timezone, many RB worldwide are connected to
these CEs, and people all around the world will use these RBs. The EGEE grid
is permanently used and no significant load pattern changes can be correlated
to working periods.

8 Conclusion

From the work presented in this paper, we can extract two guidelines for job
monitoring:

e Due to variations of the load conditions over long periods of time, timeout
optimization (equation 1) may benefit from updates along time (as for ex-
ample, once a week). Future work will focus on strategies to perform this
update.

e Some context parameters related to the EGEE production grid such as CE-
queues have an influence on the expected job execution time. Moreover, we
have shown that we can group CE-queues into classes that are statistically
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different, thus reducing the number of data to be analyzed?. Practically,
this means that timeout values (f,) can be adapted depending on the class
of the CE where a job is scheduled.

The experiments on the influence of the RB or the time period (both day of the
week and hour of the day) show that even if the influence on optimal timeout
values is significant, it has a hardly relevant impact on the final expected
execution time. An optimistic explanation could be that the EGEE production
grid is used almost continuously by people around the world without noticeable
time patterns and that RBs are roughly equivalent.

Future works will study other submission strategies than the one explained in
section 4. Studying other parameters such as specific job requirements that
constrain the execution targets is also planned.
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A Proof of Equation 1.

Given that p is the ratio of outliers, ¢, the timeout value and Fg the cumu-
lative density function latency R for non outliers jobs, we denote by ¢ the
probability for a job to timeout. A job timeout if it is an outlier or if it faces
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a latency greater than f.:

qg=p+ (1 —=p)P(R>1lx)=1—(1—-p)Fr(t)

We denote by J the latency including the resubmission after t.,. J is greater
than nt., if and only if the job timeout n times:

P(J>nts)=¢q¢"= P(J <nly) =1—4q"

If ¢ is in the interval [nto , (n+ 1)to):

Fy(t) = P(J <tt € [ntes , (n+1)ts])
= P(J <nto) + P(nteo < J <t |t < (n+1)tw)
=1—q"+ Pt <J <t |t < (n+1)ts)

The second term corresponds to the case where a job timeouts n times (prob-
ability ¢") and faces a latency lower than ¢ — nt., for the (n 4+ 1) trial.

Pntew < J <t|t<(n+1)tw) =q"(1 — p)Fr(t — nt)

We can easily prove that F; is continuous.

The density function f; is obtained by derivation:

Vt € [nte , (n+ Dt], fi(t) =¢"(1 —p)fr(t —nts)
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We then compute the expectation of J:

[e.e]

Ey(t) = / tf () dt

(n+1)teo

=) 2 [t )

0

(Oo q”) :/wufR w)du + oo <Z nq ) (:/OofR(u)du)

1_p/ufR Ydu + too(1 P)%C]QFR(%O)
17

oo —t
(1 —=p)Fr(ts) =
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