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Minimal parameterization of FundamentalMatries using motion and amera properties.Diane LINGRANDINRIA - Projet RobotVis2004, route des Luioles { B.P. 9306902 Sophia Antipolis Cedex, FraneAbstratThis paper addresses the optimal reovery of the displaement and projetionparameters from unalibrated monoular video sequenes. We study the partiularases of amera and objets displaements and amera projetion in order to extratan optimized parameterization of the problem of parameters reovery for eah ases.This work follows previous studies on partiular ases of displaement, sene ge-ometry and amera analysis and fouses on the partiular forms of fundamentalmatries. This paper introdues the idea of using not all partiular ases as individ-ual ases but grouping these ases into a tratable number of sets, using propertieson fundamental matries.Some experiments were performed in order to demonstrate that if several modelsare orret, the model with the least parameters gives the best estimate, orrespond-ing to the true ase.Key words: Fundamental Matrix, Partiular displaement, Parameters estimation
1 IntrodutionThis paper deals with video sequenes taken by an unalibrated amera inan unknown environment. Our interest is to estimate as many parameters aspossible on the amera and objets motion and the amera projetion using astrategy of hypothesis testing.Many e�orts have been made in the Computer Vision ommunity for determin-ing motion and amera parameters from video sequenes. Relations betweenEmail address: Diane.Lingrand�sophia.inria.fr (Diane LINGRAND).Preprint submitted to Elsevier Siene 20 August 2001



2D views exist, Faugeras (1993), as the fundamental matrix F, but, in the gen-eral ase, we annot extrat all the unknown parameters from this F matrix.It is however possible in some partiular situations.This work follows previous work on partiular ases of displaement, senegeometry and amera analysis Vi�eville and Lingrand (1999); Lingrand (1999,2000). It fouses on the partiular forms of fundamental matries.Several authors have already been interested in partiular ases of projetion:Aloimonos (1990), Dementhon and Davis (1989), Horaud et al. (97), Soattoand Perona (1995), Ma et al. (1999), Quan (1996), or displaement: Hartley(1994),de Agapito et al. (1998), Vi�eville (1994), Armstrong et al. (1994). Someof them onsider several ases and ompare eah result, in order to automati-ally determine whih ase was performed.We all by general ase the situation where we don't know anything aboutmotion or amera projetion. A partiular ase is when we know (or make thehypothesis) that a parameter is null, onstant or known, or related to otherparameters. A partiular ase has fewer parameters and/or simpler equationsthan the general one.The motivations for these studies are threefold:� to eliminate singularities of general equations by onsidering eah ase thatmay ondut to singularity,� to estimate the parameters with more robustness using a simpli�ed model(an adapted model gives more auray than the general one as shown inVi�eville and Lingrand (1999)), and� to retrieve parameters that annot be retrieved in the general ase beausewe eliminate some unknowns that are meaningless in the partiular asestudied.It is already known that the large number of partiular ases prevent examin-ing all the ases linearly. In this paper, we introdue a new way to deal withthis amount of ases in three steps. (1) We eliminate, with some simple rules,some redundant ases and some physially impossible ases. (2) We divide theset of ases into two sets, eah orresponding to homographi or fundamentalrelations. (3) We divide again the fundamental ases into sets orresponding topartiular forms. We will provide details for eah of these steps in the followingsetions. 2



2 Stereo frameworkIn this setion, we present the stereo framework and the notations we will usein this paper.Rigid displaements: We onsider a rigid or pieewise rigid sene. A 3D-point M = [X Y Z 1℄T is moving onto M0 = [X 0 Y 0 Z 0 1℄T by a rotation Rfollowed by a translation t = [t0 t1 t2℄T :M0 = RM+ tA rotation matrix R depends only on 3 parameters r = [r0 r1 r2℄T related tothe rotation angle � and axis u by:r = 2 tan(�=2)u, � = 2 artan (krk=2)A rigid displaement us then parameterized by 6 parameters.We note by ~r the antisymmetri matrix representing the ross-produt r ^ �:8x ~r x = r ^ xThe rotation matrix R = er^� = e~r an be developed as a rational Rodriguesformula, Rodrigues (1840) : R = I+ " ~r+ 12~r21 + rT �r4 #
Camera projetion: The most ommonly amera model states that a 3D-point M = [X Y Z 1℄T is projeted with a perspetive projetion onto animage plane on a 2D-point m = [u v 1℄T . In the referene frame attahed tothe amera, the projetion equation is :Zm = 0BBBBB��u  u0 00 �v v0 00 0 1 01CCCCCA| {z }A M (1)
where �u and �v represent the horizontal and vertial lengths, u0 and v0orrespond to the image of the optial enter and  is the skew fator. Thoseparameters are the intrinsi parameters and are olleted in the projetionmatrix A. 3



Considering two frames: Let I1 and I2 denote two images. In the generalase, there exists a fundamental relation, Faugeras (1993), between points m2in I2 and points m1 in I1 : m2T Fm1 = 0where F is alled the fundamental matrix and is related to the intrinsi andextrinsi parameters by : F = ~(A2 t)A2RA�11where A1 and A2 are the projetion matrix for the �rst and seond frames,see (1).This kind of relationship vanishes if the displaement is a pure rotation or ifthe sene is planar. The relation between points is homographi :m2 = Hm1where H is alled the homographi matrix. Another study on homographimatries an be found in Lingrand (2000).3 Deriving all partiular asesIn order to study all partiular ases of ameras and objets displaements andamera projetion, we will examine eah partiular value, onsidering eahparameter at a time. A partiular model is obtained by ombining severalpartiular values.3.1 Partiular ases of intrinsi parametersAuthors generally make several hypotheses regarding intrinsi parameters. Forexample, the most general auto-alibration hypothesis states that the intrinsiparameters are onstant. They an be known or unknown. However, usually,some parameters are onstant while others are not.� The prinipal point of oordinates (u0; v0) an be �xed and/or known insome ases (for example, in the image enter), thus hanging the refereneframe, regarding the prinipal point position.� The  parameter is usually assumed to be null or, at least, onsidered to bea onstant value. 4



g1  = 0  onstant and nullg2  = 0  onstantg3  = (�)  frees1 �u = �v(�) �u�v onstant and knowns2 �u = �u(�) �u freef1 �v = 1 �v onstant and knownf2 �v = f0 �v onstantf3 �v = �v(�) �v free1 u0 = v0 = 0 u0 and v0 onstant and known2 u0 = u00 and v0 = v00 u0 and v0 onstant3 u0 = u0(�) and v0 = v0(�) u0 and v0 freeTable 1Table of partiular ases of intrinsi parameters for 2 frames� Eniso (1995) has experimentally proven that for a large number of ameras�u=�v an be onsidered to be onstant even if other intrinsi parametershange. We express this as f = �u = �v.The table 1 summarizes, for eah intrinsi parameter, the partiular ases ofinterest (onstant values are indexed by zero). Subsequently, we will refer toeah ase by the label given in the �rst olumn. For example, g1 means thatthe  parameter is null.3.2 Partiular ases of displaementDisrete motion - ontinuous motion: In an image sequene, if the dis-plaement between two frames is small, we an approximate the rotation equa-tions by their �rst order : R = e~r = I+ ~r+ o(~r)whih ours frequently in images sequenes exept with high speed objets.If the motion is larger, we an also onsider the seond order expansionR = I+ ~r+ ~r22 + o(~r2)About extrinsi parameters: The rotation parameters are related to therotation axis and the rotation angle by : r = 2 tan �2 u where u is a unitary5



vetor giving the diretion of the rotation axis.Some omponents of u an be known or null. Some value of � may yieldsingularities; � = �4 and the rotation axis is parallel to the translation vetorfor a srew displaement.Some roboti systems give preise values of the robot displaements (angle,axis, translation). Some values may be known (we denote by �0 a onstant andknown value of a parameter �). Other informations regarding parallelism ororthogonality to a known diretion or to an other vetor may also be available:� The rotation axis is orthogonal to the translation plane (e.g. planar motion) :r ? t, r:t = 0� srew displaement : r k t, 9� = r = �tAll onstraints on motion: All these onstraints, also alled \atomi parti-ular ases", have simple expressions that an be easily ombined. In this pur-pose, we use the fat that u is a unary vetor and that, for monoular systems,the norm of translation annot be reovered. To parameterize these vetorswith only 2 parameters, we divide eah omponent by a non-zero omponent.Then, the dot-produt and salar produt indue linear relations. For example,t2 = 1 and t ? r are equivalent to t0 u0 + t1 u1 + u2 = 0) u2 = �t0 u0� t1 u1All ases are olleted in the table 2.Generating all ases: All partiular ases, eah alled a \moleular ase",are generated by ombining the atomi ases and solving the onstraints bya substitution 1 . A moleular ase is omposed of one ase in eah family, afamily being named by a letter (g, s, f or  for projetion as seen in table 1and u, R, a, t or Z for motion as seen in table 2). Thus, a moleular ase isidenti�ed by the sequene :g[1-3℄f[1-3℄s[1-3℄[1-3℄R[1-4℄a[1-2℄u[1-24℄t[1-12℄Z[1-3℄where g[1-3℄ means \one atomi ase among g1, g2 and g3".How many ases do we have? If we look at the expression of the partiularabove-mentioned ases, we obtain 6:106 partiular ases. However, this is notthe real number beause of the inompatibility of some atomi ases and theredundany of some onstraints. Two di�erent sets of atomi onstraints angenerate the same simpli�ed model.1 This was done using Maple software for symboli omputations.6



u1 u0 = u2 = 0, u1 = 1 rot. axis k y-axis R1 R = I null rotationu2 u0 = 0, u1 = 1 rot. axis ? x-axis R2 R = I+ ~r �rst orderu3 u2 = 0, u1 = 1 rot. axis ?-axis R3 R = I+ ~r+ 12 ~r2 seond orderu4 u1 = 1 general ase R4 R = I+ ~r+ 12 ~r21+ rT r4 general aseu5 u0 = u2 = 0, u1 = �1 rot. axis k y-axisu6 u0 = 0, u1 = �1 rot. axis ? x-axis a1 � = �2 quarter turnu7 u2 = 0, u1 = �1 rot. axis ? z-axis a2 � free angleu8 u1 = �1 general aseu9 u0 = u1 = 0, u2 = 1 rot. axis k z-axis t1 t1 = t2 = 0, t0 = 1 trans. k x-axisu10 u0 = 0, u2 = 1 rot. axis ? x-axis t2 t1 = 0, t0 = 1 trans. ? y-axisu11 u1 = 0, u2 = 1 rot. axis ? y-axis t3 t2 = 0, t0 = 1 trans. ? z-axisu12 u2 = 1 general ase t4 t0 = 1 general trans.u13 u0 = u1 = 0, u2 = �1 rot. axis k z-axis t5 t0 = t2 = 0, t1 = 1 trans. k y-axisu14 u0 = 0, u2 = �1 rot. axis ? x-axis t6 t0 = 0, t1 = 1 trans. ? x-axisu15 u1 = 0, u2 = �1 rot. axis ? y-axis t7 t2 = 0, t1 = 1 trans. ? z-axisu16 u2 = �1 general ase t8 t1 = 1 general trans.u17 u1 = u2 = 0, u0 = 1 rot. axis k x-axis t9 t0 = t1 = 0, t2 = 1 trans. k z-axisu18 u1 = 0, u0 = 1 rot. axis ? y-axis t10 t0 = 0, t2 = 1 trans. ? x-axisu19 u2 = 0, u0 = 1 rot. axis ? z-axis t11 t1 = 0, t2 = 1 trans. ? y-axisu20 u0 = 1 general ase t12 t2 = 1 general trans.u21 u1 = u2 = 0, u0 = �1 rot. axis k x-axisu22 u1 = 0, u0 = �1 rot. axis ? y-axis Z1 t:u = 0 trans. ? rot. axisu23 u2 = 0, u0 = �1 rot. axis ? z-axis Z2 t ^ u = 0 srew displ.u24 u0 = �1 general ase Z3 no relationTable 2Table of partiular ases of displaementsIt is easy to eliminate inompatible onstraints. It is not possible to deal withredundant onstraints, beause this requires to ompare eah set of ombinedonstraints with all others in order to determine the similarity. The omplexityof this proess is O(n2).Although we annot remove redundant ases, we propose an adapted strategyto deal with the large number of ases. The idea of this paper is : (i) toeliminate some of the redundant ases by using some onsiderations on the7



atomi ases and (ii) to limit the number of ases by studying the partiularforms of the matries.Reduing the number of ases: Some redundany are obvious :� In ase (R1), one ase of axis and angle is onsidered.� In ases (R2) and (R3), we do not onsider (a1) when � is equal to �2 .� The ase (a1) is only onsidered if r k t, (Z2).This redues the amount of ases of fundamental relations to only 216756ases.4 Forms of fundamental matriesWe have signi�antly redued the number of ases but this is not small enoughto be omputationally tratable. We now split fundamental relations in sets ofmatries by forms. The matrix form is determined using simple rules in orderto obtain a very simple parameterization. We onsider (3�3) matries having 9parameters (oeÆients). If a oeÆient is equal to zero, then there is one lessparameter. If a oeÆient has the same expression or is opposite to another,there is one less parameter again. These operations are very simple and anbe rapidly omputed in eah ase. Furthermore, we know that a fundamentalmatrix is de�ned up to a sale fator, and that its determinant is �xed to0 (removing in most ases one parameter). This proess redues the 216756ases to only 188 subgroups.The table in appendix A shows all the simpli�ed forms obtained, and, for eahform, an example of ase that has generated it. This table will be useful forpeople who want to implement the algorithm.5 ExperimentsWe have reorded several video sequenes for whih the amera displaementindues a fundamental relation between image points m1 and m2. From eahpartiular matrix form, we have estimated the fundamental matrix parameterswith the robust least median square method in order to minimize the distanebetween a 2D point m1 and its epipolar line Fm2. To deal with ases withdi�erent degrees of freedom, we use an appropriate Akaike riterion, Akaike(1972). 8



Fig. 1. Images for x-axis translation, small pan rotation and auto-fousFor eah reorded video sequene, we have veri�ed that the model with theminimal residual error e�etively orresponds to the displaement performedby the roboti system. We present one experiment in �gure 1 for whih theamera has performed a small pan rotation followed by a translation parallelto the x-axis. The auto-fous was also enabled. The ase with the minimalresidual error orresponds to the fundamental matrix form number 59 in thetable given in appendix A :
F = 0BBBBB� 0 0 0x0 x1 x20 �x2 x3

1CCCCCAThis partiular form was obtained from ases where the rotation was approx-imated to its �rst and seond order, the translation is parallel to the x-axis,the rotation axis is orthogonal to the optial axis and the intrinsi parametersare free.6 ConlusionIn an earlier study on homographi matries Lingrand (2000), we have shownthat it is possible to redue the amount of partiular ases in order to make thease seletion omputationally feasible. In this paper, we have shown that asimilar result an be obtained with fundamental matries using redundanies.We have experimentally on�rmed that our system is able to automatiallyselet the ase orresponding to the performed displaement.9



The appliations are twofold: (i) an inremental reonstrution of the seneand (ii) the segmentation of objets moving with di�erent displaements orwith di�erent geometri properties in video sequenes.This work has also been extended to motion estimation of human head insideMRI sanner, improving the registration of fMRI volumes, Lingrand et al.(2001).Appendix A : Table of partiular forms of fundamental matries.We denote by no the form number, by p the number of parameters (we havenot taken into aount the fat that the fundamental matrix is de�ned up toa sale fator and that detF = 0 but we do so in our implementation) and byn the number of moleular ases that have generated a form.no p simpli�ed form of fundamental matrix for example generated by: n1 1 [0 0 0 0 0 x6 0 -x6 0 ℄ g1f1s11t1R1u24Z3a2 242 1 [0 0 x3 0 0 0 -x3 0 0 ℄ g1f1s11t5R1u24Z3a2 43 1 [0 x2 0 -x2 0 0 0 0 0 ℄ g1f1s11t9R1u24Z3a2 54 2 [0 0 0 0 0 x6 0 -x6 x9 ℄ g1f1s13t1R1u24Z3a2 125 2 [0 0 0 0 0 x6 0 x8 0 ℄ g1f3s11t1R1u24Z3a2 66 2 [0 0 0 0 0 x6 x7 -x6 0 ℄ g1f1s11t1R2u13Z2a2 167 2 [0 0 0 0 x5 x6 0 -x6 x5 ℄ g1f1s11t1R2u17Z1a2 3968 2 [0 0 0 x4 0 x6 0 -x6 0 ℄ g1f1s11t1R2u1Z2a2 169 2 [0 0 x3 0 0 0 -x3 0 x9 ℄ g1f1s13t5R1u24Z3a2 210 2 [0 0 x3 0 0 0 -x3 x8 0 ℄ g1f1s11t5R2u13Z2a2 811 2 [0 0 x3 0 0 0 x7 0 0 ℄ g1f1s21t5R1u24Z3a2 412 2 [0 0 x3 0 0 x6 -x3 -x6 0 ℄ g1f1s11t3R1u24Z3a2 1713 2 [0 x2 0 -x2 0 x6 0 -x6 0 ℄ g1f1s11t11R1u24Z3a2 814 2 [0 x2 0 -x2 0 x6 0 0 0 ℄ g1f1s11t9R2u1Z2a2 2415 2 [0 x2 0 -x2 x5 0 0 0 0 ℄ g2f3s11t9R1u24Z3a2 416 2 [0 x2 0 x4 0 0 0 0 0 ℄ g1f1s21t9R1u24Z3a2 317 2 [0 x2 x3 -x2 0 0 -x3 0 0 ℄ g1f1s11t10R1u24Z3a2 418 2 [0 x2 x3 -x2 0 0 0 0 0 ℄ g1f1s11t9R2u17Z2a2 1219 2 [0 x2 x3 0 0 0 -x3 0 0 ℄ g1f1s11t5R2u17Z2a2 820 2 [x1 0 x3 0 0 0 -x3 0 x1 ℄ g1f1s11t5R2u1Z1a2 6621 2 [x1 x2 0 -x2 x1 0 0 0 0 ℄ g1f1s11t10R2u11Z1a2 19822 3 [0 0 0 0 0 x6 0 x8 x9 ℄ g1f3s12t1R1u24Z3a2 1223 3 [0 0 0 0 0 x6 x7 -x6 x9 ℄ g1f1s12t1R2u13Z2a2 3224 3 [0 0 0 0 0 x6 x7 x8 0 ℄ g1f1s11t1R3u13Z2a2 20025 3 [0 0 0 0 x5 x6 0 -x6 x9 ℄ g1f2s11t1R2u17Z1a2 39626 3 [0 0 0 0 x5 x6 x7 -x6 x5 ℄ g1f1s11t1R2u11Z2a2 1627 3 [0 0 0 x4 0 x6 0 x8 0 ℄ g1f1s11t1R3u1Z2a2 5628 3 [0 0 0 x4 0 x6 x7 -x6 0 ℄ g1f1s11t1R2u10Z2a2 3229 3 [0 0 0 x4 x5 x6 0 -x6 0 ℄ g2f1s11t1R2u1Z2a2 3230 3 [0 0 0 x4 x5 x6 0 -x6 x5 ℄ g1f1s11t1R2u19Z2a2 1631 3 [0 0 x3 0 0 0 -x3 x8 x9 ℄ g1f1s12t5R2u13Z2a2 1632 3 [0 0 x3 0 0 0 x7 0 x9 ℄ g1f1s22t5R1u24Z3a2 833 3 [0 0 x3 0 0 0 x7 x8 0 ℄ g1f1s11t5R3u13Z2a2 6434 3 [0 0 x3 0 0 x6 -x3 -x6 x9 ℄ g1f1s13t3R1u24Z3a2 1335 3 [0 0 x3 0 0 x6 -x3 x8 0 ℄ g2f1s11t5R2u13Z2a2 2236 3 [0 0 x3 0 0 x6 x7 -x6 0 ℄ g1f1s21t3R1u24Z3a2 4followed on next page10



from previous page37 3 [0 x2 0 -x2 0 x6 0 x8 0 ℄ g1f3s11t11R1u24Z3a2 238 3 [0 x2 0 -x2 x5 x6 0 -x6 0 ℄ g3f1s11t11R1u24Z3a2 439 3 [0 x2 0 -x2 x5 x6 0 0 0 ℄ g2f3s11t9R2u1Z2a2 1240 3 [0 x2 0 x4 0 x6 0 -x6 0 ℄ g1f1s21t11R1u24Z3a2 441 3 [0 x2 0 x4 0 x6 0 0 0 ℄ g1f1s11t9R3u1Z2a2 6042 3 [0 x2 0 x4 x5 0 0 0 0 ℄ g2f1s21t9R1u24Z3a2 643 3 [0 x2 x3 -x2 0 0 x7 0 0 ℄ g1f3s11t10R1u24Z3a2 244 3 [0 x2 x3 -x2 0 x6 -x3 -x6 0 ℄ g1f1s11t12R1u24Z3a2 4045 3 [0 x2 x3 -x2 0 x6 0 0 0 ℄ g1f1s11t9R2u19Z2a2 6046 3 [0 x2 x3 0 0 0 -x3 x8 0 ℄ g1f1s11t5R2u11Z2a2 1647 3 [0 x2 x3 0 0 0 x7 0 0 ℄ g1f1s11t5R3u17Z2a2 6448 3 [0 x2 x3 x4 0 0 0 0 0 ℄ g1f1s11t9R3u17Z2a2 6049 3 [x1 0 x3 0 0 0 -x3 0 x9 ℄ g1f2s11t5R2u1Z1a2 6650 3 [x1 0 x3 0 0 0 -x3 x8 x1 ℄ g1f1s11t5R2u10Z2a2 851 3 [x1 x2 0 -x2 x1 x6 0 0 0 ℄ g1f1s11t9R2u10Z2a2 2452 3 [x1 x2 x3 -x2 x1 0 0 0 0 ℄ g1f1s11t9R2u11Z2a2 2453 3 [x1 x2 x3 0 0 0 -x3 0 x1 ℄ g1f1s11t5R2u19Z2a2 854 4 [0 0 0 0 0 x6 x7 x8 x9 ℄ g1f1s12t1R3u13Z2a2 40055 4 [0 0 0 0 x5 x6 0 x8 x9 ℄ g1f1s12t1R2u17Z1a2 277256 4 [0 0 0 0 x5 x6 x7 -x6 x9 ℄ g1f2s11t1R2u11Z2a2 1657 4 [0 0 0 0 x5 x6 x7 x8 x5 ℄ g2f1s11t1R2u11Z2a2 3258 4 [0 0 0 x4 0 x6 x7 x8 0 ℄ g1f3s11t1R2u10Z2a2 1659 4 [0 0 0 x4 x5 x6 0 -x6 x9 ℄ g1f2s11t1R2u19Z2a2 8060 4 [0 0 0 x4 x5 x6 0 x8 0 ℄ g2f1s11t1R3u1Z2a2 11261 4 [0 0 0 x4 x5 x6 x7 -x6 x5 ℄ g1f1s11t1R2u12Z2a2 2462 4 [0 0 x3 0 0 0 x7 x8 x9 ℄ g1f1s12t5R3u13Z2a2 12863 4 [0 0 x3 0 0 x6 -x3 x8 x9 ℄ g2f1s12t5R2u13Z2a2 4464 4 [0 0 x3 0 0 x6 x7 -x6 x9 ℄ g1f1s22t3R1u24Z3a2 865 4 [0 0 x3 0 0 x6 x7 x8 0 ℄ g1f1s11t3R2u13Z2a2 58866 4 [0 x2 0 -x2 x5 x6 0 x8 0 ℄ g2f3s11t11R1u24Z3a2 467 4 [0 x2 0 x4 0 x6 0 x8 0 ℄ g1f1s11t11R2u1Z2a2 14668 4 [0 x2 0 x4 x5 x6 0 -x6 0 ℄ g2f1s21t11R1u24Z3a2 869 4 [0 x2 0 x4 x5 x6 0 0 0 ℄ g2f1s11t9R3u1Z2a2 12070 4 [0 x2 x3 -x2 0 x6 -x3 -x6 x9 ℄ g1f3s12t9R1u24Z3a2 971 4 [0 x2 x3 -x2 x5 x6 0 -x6 x5 ℄ g1f1s11t11R2u17Z2a2 872 4 [0 x2 x3 -x2 x5 x6 0 0 0 ℄ g2f3s11t9R2u17Z2a2 3673 4 [0 x2 x3 0 0 0 x7 x8 0 ℄ g1f1s21t5R2u11Z2a2 3274 4 [0 x2 x3 0 x5 x6 -x3 -x6 0 ℄ g2f1s11t5R2u17Z2a2 1275 4 [0 x2 x3 0 x5 x6 -x3 -x6 x5 ℄ g1f1s11t3R2u17Z2a2 876 4 [0 x2 x3 x4 0 0 x7 0 0 ℄ g1f1s11t10R2u17Z2a2 15077 4 [0 x2 x3 x4 0 x6 0 0 0 ℄ g1f1s21t9R2u19Z2a2 2478 4 [x1 0 x3 0 0 0 -x3 x8 x9 ℄ g1f2s11t5R2u10Z2a2 879 4 [x1 0 x3 0 0 0 x7 0 x9 ℄ g1f1s12t5R2u1Z1a2 105680 4 [x1 0 x3 x4 0 x6 -x3 -x6 x1 ℄ g1f1s11t3R2u1Z2a2 881 4 [x1 x2 0 -x2 x1 x6 x7 -x6 0 ℄ g1f1s11t11R2u13Z2a2 1682 4 [x1 x2 0 x4 x5 0 0 0 0 ℄ g1f1s21t10R2u11Z1a2 99083 4 [x1 x2 x3 -x2 0 x6 -x3 0 x1 ℄ g1f1s11t10R2u1Z2a2 884 4 [x1 x2 x3 -x2 x1 0 -x3 x8 0 ℄ g1f1s11t10R2u13Z2a2 1685 4 [x1 x2 x3 -x2 x1 x6 0 0 0 ℄ g1f1s11t9R2u12Z2a2 3686 4 [x1 x2 x3 0 0 0 -x3 0 x9 ℄ g1f2s11t5R2u19Z2a2 887 4 [x1 x2 x3 0 0 0 -x3 x8 x1 ℄ g1f1s11t5R2u12Z2a2 1288 5 [0 0 0 0 x5 x6 x7 x8 x9 ℄ g1f1s12t1R2u11Z2a2 36889 5 [0 0 0 x4 0 x6 x7 x8 x9 ℄ g1f1s12t1R2u10Z2a2 24090 5 [0 0 0 x4 x5 x6 0 x8 x9 ℄ g1f3s11t1R2u19Z2a2 4891 5 [0 0 0 x4 x5 x6 x7 -x6 x9 ℄ g1f2s11t1R2u12Z2a2 2492 5 [0 0 0 x4 x5 x6 x7 x8 -x5 ℄ g1f1s11t1R3u10Z2a2 3293 5 [0 0 0 x4 x5 x6 x7 x8 0 ℄ g2f1s11t1R2u10Z2a2 9694 5 [0 0 0 x4 x5 x6 x7 x8 x5 ℄ g1f1s11t1R3u11Z2a2 6495 5 [0 0 x3 0 0 x6 x7 x8 x9 ℄ g1f1s12t3R2u13Z2a2 1176followed on next page11
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