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For decades, there has been an intensive research effort in the Computer
Vision community to deal with video sequences. In this paper, we present
a new method for recovering a maximum of information on displacement
and projection parameters in monocular video sequences without calibra-
tion. This work follows previous studies on particular cases of displacement,
scene geometry and camera analysis and focuses on the particular forms of
homographic matrices.

It is already known that the number of particular cases involved in a
complete study precludes an exhaustive test. To lower the algorithmic
complexity, some authors propose to decompose all possible cases in a hi-
erarchical tree data structure but these works are still in development ?7.
In this paper, we propose a new way to deal with the huge number of par-
ticular cases : (i) we use simple rules in order to eliminate some redundant
cases and some physically impossible cases, and (ii) we divide the cases
into subsets corresponding to particular forms determined by simple rules
leading to a computationally efficient discrimination method.

Finally, some experiments were performed on image sequences acquired
either using a robotic system or manually in order to demonstrate that
when several models are valid, the model with the fewer parameters gives
the best estimation, regarding the free parameters of the problem. The
experiments presented in this paper shows that even if the selected case is

an approximation of reality, the method is still robust.

Key Words: particular cases; homographies; perspective, para-@eige and orthographic pro-

jections

1. INTRODUCTION
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For decades, there has been an intensive research effort in the Computer Vision
community to deal with video sequences. Researchers have been interested in re-
covering 3D objects structure, projection or displacement parameters from such
sequences. In the general case, the acquisition device has to be considered un-
calibrated (for example, in the case of an auto-focus camera). In this paper, we
consider uncalibrated monocular video sequences for which we intend to recover as

much information as possible on displacement and projection parameters.

The motivations for such studies are threefold: (i) to eliminate singularities of
general equations, (ii) to estimate the parameters with more robustness and (iii) to

retrieve parameters that cannot be retrieved in the general case.

The theory states that there exists relations between 2D projected points [9] but
the system cannot be solved in the general case since there are more parameters than
equations. Furthermore, these equations are degenerate or present singularities in
some particular cases. However, we can solve the equations if we know or assume

values or relations of some parameters.

In a previous study [25], we have shown that we increase the numerical precision of
retrieved parameters by using the set of constraints that gives the smallest residual

error given by a criterion (described in the cited paper).

This paper extends previous works [25, 13, 14] on particular displacement cases,
scene geometry and camera analysis. It focuses on the particular forms of funda-

mental and homographic matrices.

Several authors have already been interested in particular cases of projection
[2, 6, 11, 22, 18], or displacement [10, 5, 24, 3, 23]. Some of them consider sev-
eral particular cases, compare these different parameterizations and identify which

model is consistent with the data.

We will build an exhaustive list of particular cases of projection and displace-

ment, setting some of the parameters to constant and/or known values and using
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known relations between parameters. This reduces the number of unknowns in the
equations and avoid also some singular cases.

It is already known that the huge number of particular cases prevents exhaustive
studies [13]. Some attempts in order to reduce the algorithmic complexity are
based on tree structures but they are still in development [25]. In this paper, we
introduce a new method in order to deal with all cases : (i) we use simple rules in
order to eliminate some redundant cases and some physically impossible cases, and
(ii) we divide the cases into subsets corresponding to particular forms determined
by simple rules leading to computationally efficient discrimination method. We will

provide details for each of these steps in the sections hereafter.

2. STEREO FRAMEWORK

In this section, we describe the equations and the formalism of displacement and
projection which allows us to achieve a minimal parameterization of the relations
between 2D points into two frames.

In a video sequence, we will consider frames pairwise: two consecutives frames or
the first one and the last one. This work could be easily extended to trifocal tensors.
Adding some other constraints, the framework could also be extended to sequences,
assuming for examples that the translation is constant between consecutives frames,

or varies with constant acceleration, ...

2.1. Rigid displacements
We will consider a rigid scene or piecewise rigid scene. A 3D-point M; =
[X; Y7 Z; 1)F is moving onto the point My = [X» Y5 Z5 1] by a rotation R
and a translation t = [tg t; ta]7 : Mz = RM;j + t as shown in figure 1.
A rotation matrix R depends only on three parameters r = [ro r r2]? related to
the rotation angle 6 and to the rotation axis direction (represented by the unary

vector u) by r = 2 tan(4)u < 6 = 2 arctan (@)
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FIG. 1. Stereo framework

Using the notation of the cross-product :

0 —Tre T1
r=r/A.= T2 0 -7
—Tr1 To 0

so that :
VX, rTAX =TX

T is the antisymmetric matrix representing the cross-product by r operator.
The rotation matrix R = e* can be developed as a rational Rodrigues formula,

[19] :

2.2. Camera projection
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The most commonly accepted hypothesis states that a 3D-point M is projected
with a perspective projection onto an image plane on a 2D-point m = [u v 1]%.

The perspective model : Choosing a reference frame attached to the camera, the

projection equation is :

X
u Qy, v up 0
Y
ZUZOavng (2)
A
1 0 0 10
1

where o, and «, represent the horizontal and vertical lengths, uy and vy correspond
to the image of the optical center and ~ is the skew factor.

This model can be refined, by taking optical distortions into account [21, 4, 7].
In this paper, we will consider that the needed corrections have been done as a
preprocessing.

Two approximation models of the projection equation 2 have been proposed in the
literature : the para-perspective and the ortho-perspective projection.

The para-perspective model : The perspective projection model is approximated

to its first order with respect to the 3D coordinates [2, 17, 11]. This is equivalent to
approximating the perspective projection in two steps (see figure 2) : (i) a projection
parallel to the gaze direction onto an auxiliary plane P, which is parallel to the
image plane and passes through the scene center Mo = [X; Yy Zo]? followed by
(ii) a perspective projection onto the image plane. This so called para-perspective
model yields linear equations (3). However, its parameters depend on the gaze
direction of the scene (3, and 3, are related to the other intrinsic parameters and

to the gaze direction) :
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orthogonal

{\ projection
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u projection X
m|v ¢
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1 AT
Ma0 Pa
image plane auxiliary plane
Z=ZO
FIG. 2. The para-perspective projection
X
u ay Y Bu uo
Y
v = 0 Ay ﬁv Vo (3)
Z
1 0 0 0 1
1
where :
Bu = ay ))(/_S + }Z/_([J)
ﬂv = Qy }Z/_g

This equation corresponds to the most general case of para-perspective projection
although more simple expressions have been proposed [18].

The orthographic model : The zero-order development with respect to the 3D

depth consists in a rougher approximation. It is also equivalent to another two-step
approximation: (i) an orthogonal projection onto the auxiliary plane P, followed

by (ii) a perspective projection onto the image plane (see figure 3). This approxi-
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FIG. 3. The orthographic projection

mation, called the orthographic model (4), is well adapted to foveal attention and
is characterized by linear equations without any new parameters. It is an approxi-
mation of the para-perspective model when the observed objects are in the fovea,

i.e. close to the optical axis :

X
u a, v 0 u
Y
v =10 a, 0 vy (4)
Z
1 0 0 0 1
1

Those three projection models can be integrated in the following expression :

ay 7 AButpuo (1—p)uo
km=10 a, A\B, +pvy (1—p)vy | M (5)

0 0 1 (1—p)

A

with :
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projection case Al p

perspective projection 1|1

orthographic projection 0]0

para-perspective projection | 1 | 0

2.3. General equations between two frames
Let I; and I> denote two images. In the general case, there exists a fundamental

relation between a point ms in 5 and its corresponding mj in [ :

0
m; 0 Al
K1y = A1 M]_
0
kKemg = Ay M, — =0

Mz - RMl + t
0 m; Az [R][t]

which is a bilinear form in m; and my (see [12] for details). This equation can be

rewritten in a more common way :
sz F mj; = 0

where F is called the fundamental matrix [9].
However, this relation is not defined in some singular cases. For example, it is
well known that, in the perspective projection case, if the displacement is a pure

rotation, or if the scene is planar, the relation between points is homographic :
mo = H mq

where H is called the homographic matrix. In the case of a pure rotation : H =
H,=A- RAl_l. In the case of a plane with normal n and distance to the origin
d: H=A(R+ %)Al_1 which goes to Ho, when d goes to co. H, is the

homography of the plane at infinity.
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Our first new contribution in this paper will be explained in the two next para-
graphs 2.4 and 2.5. It consists in determining in which case of displacement or
structure, the relation between corresponding 2D points is homographic when the

projection is para-perspective (2.4) or orthographic (2.5).

2.4. Homographic relation in the para-perspective case
In the para-perspective case, we write the projection and displacement equations

by extracting the third column from matrix A :

U Qy 7 U X Bu
v|[=10 a, v Y|+tZ |8, | =(A)sM+ Z(A);
1 0 0 1 1 1

T an M (A)s

where (A)_j3 is an invertible square matrix since :

det((A)_3) =aya, #0

Thus :
(m1 = (A0 M, + 21 (Ar)s
= M; = ((A1)-3)" m1 — Z1 ((A1)-3)"" (A1)s ©)
mo = A M,
M, = [R[t] My

\

Let us denote :

K = (A2 [R]t])s — (A2 [R]t]) 3 (A1) -3) "' (A1)s
and Hu,,,, = (Az [R|t])_3((A1)_3)""
Equation 6 leads to : mz = H,,,, m; + 71 K

This relation is homographic if and only if K = 0 or if there exists a (3x3)
matrix Hz such that Z; K = Hz m;. The first condition induces a displacement
constraint. It leads to the simple equation r = 6 M meaning that the rotation

axis is parallel to the gaze direction. In that case, the homography is Hy,,,, as
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defined above. The second condition induces a geometric relation on the 3D point :
Zy is an affine function of X7 and Y7, meaning that the 3D points must belong to a
plane P, which cannot contain the optical axis and the gaze direction (see [12] for

a demonstration). In that case, the homographic matrix is :

Hpara =H

Opara

+ [(A2[R[t])s — (A2[R[t])_3((A1)—3)"" (A1)s] n [(A1)_5+ (A1)sn] "
(7)

2.5. Homographic relation in the orthographic case
The orthographic case is a particular case of para-perspective projection for which
the gaze direction is the optical axis. Following a demonstration similar to the para-
perspective case, we also obtain two constraints; the displacement constraint states
that the rotation axis must be parallel to the optical axis, giving a homographic

matrix :

He,,,., = (A2 [R]t])_3 ((A1)_5)~"

and the geometric constraint states that the 3D-points must belong to the same

plane which does not contain the optical axis. The homographic matrix is :
Horino = Hoo,,,, + (A2 [RIt])sn” (A1) _5)7"

All constraints on displacement and scene geometry for homographic relations

are summarized in the following table :

projection displacement constraint | geometric constraint
perspective t=0 plane
para-perspective r || CMp plane Z = f(X,Y)
orthographic r|| 0z plane Z = f(X,Y)
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3. ALL PARTICULAR CASES DESCRIPTION
In order to do an exhaustive study of particular cases combinations, we first
study every elementary particular case. We begin with particular camera parameter

values, and then particular displacements of the camera.

3.1. Particular cases of projection and intrinsic parametes
In the previous section 2.2, we studied particular cases of projection and their

simplifications. Let pl, p2 and p3 denote the different kinds of projection :

pl | A=0and p =0 | orthographic
p2 | A=1and u =0 | para-perspective projection

p3 | A=1and p =1 | perspective projection

If no auto-focus and no zoom is used, for instance, it is possible to parameterize
the model with fewer parameters than in the general case. This is one reason to
study particular cases of intrinsic parameters.

Authors generally make several hypotheses regarding intrinsic parameters. For
example, usually, in case of auto-calibration, common hypothesis states that the
intrinsic parameters are constant. They may or may not be known. But, usually,
some parameters are constant and some other are not.

We now detail all prior knowledge on parameters leading to particular cases.

3.1.1. The principal point

The principal point of coordinates (ugp, vp) is not fixed at the image plane in the
general case but can be fixed in some cases and its position can be known (for
example, at the image center). We then change the reference frame, regarding the

principal point position.

3.1.2. They parameter
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This parameter is usually assumed to be null or, at least, considered a constant
value. Furthermore, the numerical precision of the model obtained by this parame-

ter is not crucial for the para-perspective or the orthographic projection cases.

3.1.3. Thex, anda, parameters

Enciso [8] has experimentally proven that, for a large number of cameras, the

o« ratio can be considered as a constant value even if other intrinsic parameters

v

change. The constancy of this ratio can be expressed by the equality f = a, = ay,

and the following transformation :

2w 000
aw 7 AButpuo (1—p)uo [y AButpuo (L—p)uo

0 100
0 av ABotpve (L—pvo [ = |0 f ABv+pve (1—p)vo

0 010
0 o I (1—p) 00 I (1—p)

0 001

3.1.4. The3, and 3, parameters.
These parameters are null except in the para-perspective projection case.

In the para-perspective case, 3, and [, are related to the other intrinsic para-

meters by :
— Xo Yo
ﬁu = Qu Zo +7 Zy
Y
B = ay Z_g
Their ratio is ;: 2z = 2 Xoty Yo
Bo a, Yo
Thus, if lect v with t Xo btain : Ze = 2 Xo which i
us, if we neglect v with respect to a, $2, we obtain : Z+ = 2 9 which is

also a constant ratio, known if );—;; value is known.
Table 1 summarizes, for each intrinsic parameter, the particular cases (constant
value are indexed by zero).

Subsequently, we refer to each case by the label given in the first column.
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TABLE 1

Particular cases of intrinsic parameters for 2 frames

label | case description
gl vy=0 v constant and null
g2 Y =" ~ constant
g3 | v=1(7) 7 free
f1 ay =1 ap constant and known
2 ay = fo o constant
f3 ay = ay(T) o, free
sl ay = ay(T) o4 constant and known
52 y = ay(T) . free
bl Bv =0 v constant and null
b2 Bv = Po (v constant
b3 Bo = Bu(T) By free
Bl | Bu = Bu(7) Bu and B, equal
B2 Bu = Bu(T) % constant
B3 Bu = Bu(T) % free
cl ug =vg =0 ug and vg constant and known
c2 ug = ug, and vo = vo, ug and vg constant
c3 up = uo(7) and vo = vo(7) | uo and vo free
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3.2. Particular cases of displacement
A rigid displacement is parameterized by the rotation R and the translation t

parameters.

3.2.1. Discrete motion - continuous motion
In an image sequence, if the displacement between two frames is small, we can ap-

proximate the rotation equations by their first order expansion, using the notations

r=0u:
1 —ry
R=e"=I+f+0f)=|r, 1 —r
—-r1 To 1

Otherwise, if the motion is larger, we can also consider the second order expan-

sion :
1—(rf4+r3) rro—r2  r2ro+nm
<2
R=I+7 r #2) = 2 2
= —l—r+9+0(r)— riro+re 1—(r5+73) Tari—1p
ToTQ —T1 rpry+rg  1—(r§ +rf)

3.2.2. About extrinsic parameters

The rotation parameters are related to the rotation axis and the rotation angle
by : r = 2 tan g u, in the general case and r = 6 u, in the first or second order
of expansion. The vector u is an unary vector giving the direction of the rotation
axis.

Some components of u can be known or assumed null. Some values of § may yield
singularities; for example 6 = 0 corresponds to a null rotation. Another particular
case is the screw displacement for which # = 7 and the rotation axis is parallel to
the translation vector. The case # = 7 is not considered in this paper but must be
considered if the camera has an angle of view greater than 180 degrees.

Some robotic systems give precise values of the robot displacements (angle, axis,

translation). Some values may be known (we denote by _ 6y a constant and known
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value of a parameter #). Other informations on parallelism or orthogonality to a

known direction may be available. As is the case for the translation vector.

3.2.3. Relations between axis and direction

These relations in which we are interested are orthogonality and parallelism :

e the rotation axis is orthogonal to the translation plane (e.g. planar motion) :

rltert=0&rgtg+ri1t1 +1r2t0=0

To = Hto
e screw displacement : r ||t & 3k /r=kt & I / r o= kit
T2 = Iitz

e the rotation axis or the translation direction is parallel or orthogonal to a

known direction denoted by g (_ror t).

3.2.4. All constraints on motion

All these constraints, also called “atomic particular cases”, have simple expres-
sions that can easily be combined. For this purpose, we use the fact that u is
an unary vector and that, for monocular systems, the norm of translation can-
not be recovered. To parameterize these vectors with only 2 parameters, we di-
vide each component by a non-zero component. Then, the dot-product and scalar
product induce linear relations. For example, if &5 = 1, t L r is equivalent to
toug +t1ur +us =0= us = —tpupg — t1 w1

All cases are collected in table 2.

3.3. Generation of all cases
In this section, we combine all previous constraints in order to generate all pos-
sible cases. We then generate the simplified equations of our vision problem, i.e.,
the F or H matrix coefficients, depending of the cases.
We call atomic case each case described above. By combining atomic cases, we

produce molecular cases, i.e. all possible particular cases. For each molecular case,
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TABLE 2

Particular cases of displacements

Rl | R=1I null rotation WL |r. r=0 axis L known axis
R2 | R=I+F first order W2 | rA _r=0 axis || known axis
R3 | R=I+1+ % 72 second order W3 general case
R4 | R=1+ f:::r%;i general case ul up =uz =0, u; =1 axis || y-axis
4

rl r=2tan(%) ﬁ general case u2 up =0, u; =1 axis L x-axis
al 0=73 quarter turn u3 up =0, u; =1 axis L z-axis
a2 0 free angle ud up =1 general case
T1 t=20 null translation ud up =uz =0, uy = —1 | axis || y-axis
T2 | t=][to t1 t2]¥ translation u6 ug =0, u; = —1 axis L x-axis
t1 t1 =t =0, tp =1 | trans. || x-axis u7 uz =0, u; = —1 axis L z-axis
t2 t1 =0,tp =1 trans. L y-axis u8 up = —1 general case
t3 to =0,t0 =1 trans. L z-axis u9 up=u; =0, uy =1 axis || z-axis
t4 to =1 general trans. ul0 | up =0, uz =1 axis L x-axis
t5 to=1t2 =0, t1 =1 | trans. || y-axis ull | up =0, ux =1 axis | y-axis
t6 to=0,t =1 trans. L x-axis ul2 | ue =1 general case
t7 to =0, =1 trans. L z-axis ul3 | wp =u1 =0, us = —1 | axis || z-axis
t8 t1 =1 general trans. uld | up =0, upg = —1 axis | x-axis
t9 to=1t1 =0,ty =1 | trans. || z-axis uld | ug =0, up = —1 axis | y-axis
t10 | to=0,t2 =1 trans. L x-axis ulb | upx = -1 general case
t1l | t1 =0,t2 =1 trans. L y-axis ul? | w1 =u2=0,up =1 axis || x-axis
t12 | Lo =1 general trans. ul8 | ug =0,up =1 axis L y-axis
D1 t. t=0 trans. L known axis ul9 | ug =0,up =1 axis L z-axis
D2 | tA_t=0 trans. || known axis u20 | wp =1 general case
D3 no relation u2l | up =u2 =0, up =—1 | axis || x-axis
Z1 tu=0 trans. L rotat. axis u22 | up =0, up = -1 axis L y-axis
72 tAu=0 screw displacement u23 | u2 =0, ug = —1 axis L z-axis
73 no relation u24 | ug=-—1 general case
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constraints are solved by combining the atomic cases and solving the constraints
by substitution! with some rules : one projection mode, one rotation mode. .. This
corresponds to choosing one case in each family, a family being named by a label.
For example, in the R family, we have to choose one of R1, R2, R3 and R4. We
denote by R[1-3] the set {R1, R2, R3} and by R[1;3] the set {R1, R3}. Thus, a

molecular case is identified by the sequence :
p[1-3]g[1-3]f[1-3]s[1-3]b[1-3]|B[1-3]c[1-3]R[1-4]r1a[1-2]u[1-24| W[1-3] T[1-2]¢[1-12] D[ 1-3] Z[1-3]

3.3.1. How many cases do we have?
If we look at the expression of a particular case above-mentioned, we obtain 3.108

particular cases. But, this is not the real number of particular cases due to :

Incompatibility of some atomic cases, for instance (the symbol @ means “AND”) :
rllt)e Lt)o(r#0)e(t#0)

Redundancy of some constraints; two different set of atomic constraints can gen-

erate the same simplified model. For instance :

(ro =0) ® (t L r) is the same case than (t; =0) @ (12 =0) @ (t L r)

It is easy to eliminate incompatible constraints. To deal with redundant con-
straints requires to compare each set of combined constraint with the others in
order to determine the similarity. The complexity of this process is O(n?), that
makes this elimination intractable for large values of n.

Furthermore, redundant cases are not the main reason for the big amount of
particular cases. Thus suppressing redundancies is not sufficient to reduce the huge
number of case to a computationally tractable amount.

We now propose an adapted strategy in order to deal with all cases. Previous

works have tried to build a hierarchy of cases but they encounter problems in order

1This work is done using Maple for symbolic computation.
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to manage it. The idea of this paper is (i) to eliminate some of the redundant cases
by some considerations on the atomic cases and (ii) to limit the number of cases
by the study of the particular forms of the matrices. For this second step, we will
separate cases into two subgroups: cases inducing homographies and cases inducing

fundamental relations.

3.4. Reducing the number of cases

Some redundancies are obvious :

e in case of a null rotation, (R1), we do not consider every case of axis and angle,
one is sufficient;
e in case of first and second order of rotation, (R2) and (R3), we do not consider

the case (al) where 6 is equal to T;

s

e the case (al) where 6 is equal to 7 is only considered if the rotation axis and
the translation direction are parallel, (Z2);

e in the case of a null translation, we do not consider any relation of orthogonality
or parallelism to other directions;

e in the case of non para-perspective projection, (pl) and (p3), B, and j3, are

equal to zero.
We also consider the following experimental simplifications :

e when approximating a perspective projection, (pl) and (p2), we neglect the
parameter v with respect to other approximations;
e following previous studies [8] and [26], we assume that the ratio * is constant;

e these two previous items imply that the ’g— ratio is also constant.

Then, there only remains, from the intrinsic parameters part, 117 cases and from
the extrinsic parameters part, 21709 cases, leading to a total of 2539953 partic-
ular cases. This is approximately 100 times less than previously determined (see

Appendix C for details).
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3.5. Fundamental and homographic matrices
For each case, we have computed the set of reduced equations. Now, for each
case, we compute the fundamental or homographic matrix expression.
As previously studied in subsections 2.3, 2.4 and 2.5, the displacements inducing

homographic relations are :

e in the orthographic case (pl) : u || Oz. The relations between t and r are
equivalent to the nullity of some vector components. We will not consider (Z1)
and (Z2). Previous studies on orthographic displacement have shown that the
displacement is retinal (t[1;3;5;7]).

e in the para-perspective case (p2) : u || [Xo Yo Zo] (D2). Since the view axis
has at least a component on the optical axis, we set us = £1. Moreover the view

axis is not exactly the optical axis, thus we cannot have ug = 0 and u; = 0.

e in the perspective case (p3) : t = 0. Therefore we do not consider the paral-

lelism and orthogonality constraints on t.

We also note that, since we are dealing with only 2 views, relations between r
or t with a known vector _g will not simplify the H-matrix form, except in the
para-perspective case, if g = Mp.

The homographic relation cases lead to 351 cases of orthographic homographic
relations, 18360 cases of para-perspective homographic relations and 2619 cases of
perspective homographic relations, leading to a total 21330 cases of homographic
relations (see explanations in Appendix C).

We will not study para-perspective and orthographic projection for fundamental
matrices since the domain of validity of such projection approximations is included
in conditions of existence of homographic relation. In the case of perspective pro-
jection, (p3): t # 0 thus up = +1 or u; = £1.

For perspective projection, there are 72252 different cases as shown in Appendix

C.
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4. MATRIX FORMS
In the previous section, we have significantly reduced the number of cases in
both fundamental matrices and homographic matrices sets. However, we have still
to deal with a huge amount of cases which is numerically intractable. In this section,
we introduce a new idea in order to split the two sets of matrices in a two-level tree.
Each set of matrices is first split in subsets of matrices depending on their form.
We determine a matrix form by a very simple parameterization. We consider (3x3)

matrices having 9 parameters (coefficients) and we use two simple rules :

e If a coefficient is equal to zero, then there is one fewer parameter.

e If a coeflicient has the same expression or is opposite to another, then there is

one fewer parameter again.

These operations are very simple and can be computed on every case in a rea-
sonable time (approximately one day for the entire process determining the matrix
form).

This process, as illustrated in figure 4, reduces the 21330 cases of homography
matrices to only 108 subgroups and the 72252 cases of fundamental matrices to
only 188 subgroups.

The table in Appendix A shows all the particular forms of homography matrices
and the table in Appendix B shows all the particular forms of fundamental matrices.

Homography and fundamental matrices are defined up to a scale factor. This
parameter has not been eliminated here. We take it into account in the numerical
implementation. Fundamental matrices have also to satisfy the constraint det F =
0. We have to check if this constraint is satisfied or not in order to know if the
number of degree of freedom is reduced. This is important in order to properly use

the Akaike [1] criterion at the numerical stage (see next section).
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FIG. 4. Set of cases that generates the same matrix form. The central column shows an

example of homography matrix form (number 19 in the table from Appendix A).

For each matrix form, we have collected all the cases that have generated them.
Once the matrix form corresponding to an experiment is determined, it is possible

to backtrack the source cases.

5. EXPERIMENTS
5.1. Forms of homography

We have recorded several video sequences for which the camera displacement in-
duces a homographic relation between image points m; and mo. We have first ex-
tracted points of interest and determined matching points using the image-matching
algorithm from Zhang [28]. From each matrix form enumerated in table 1, we have
estimated the homography parameters with the robust Least Median of Squares

method [20] in order to minimize the distance between a 2D point mj and its
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projected estimation H mo:

H m;
(02)7 my)

‘ 2

where h? represents the last line of the H matrix and m; and msy are normalized.

To deal with cases with different degrees of freedom, we use an appropriate Akaike
criterion [1].

For each video sequence, we have verified that the model with the smallest resid-
ual error indeed corresponds to the displacement performed by a robotic system.
An example is proposed in figure 5. For each pair of consecutive images, the case
with the least residual error is the case n°51 in the table in Appendix A that

corresponds to the matrix form :

Ty T2 I3
Hs1 = | —20 21 6
0 0 I1

We observe that this case corresponds to a first order rotation (R2). If we consider
only the first and the last frame, the rotation is general (R4).

We also performed several experiments without the help of a precise robotic
system. A human took a camera by hand and tried to realize different particular
displacements. Figure 6 shows two frames of a video sequence. The camera motion
was approximately a rotation around its optical axis followed by a translation. As
the previous experiment with a robotic system, for each pair of consecutive images,
the case with smallest residual error is the case n°51 in the table in Appendix A. This
result demonstrates the robustness of the analysis of displacement by particular
cases. Even an approximative displacement is best recovered by a close particular

case than the general equation.

DRAFT April 23, 2001, 5:10pm DRAFT



FIG. 5. Frames 1, 2 and 8 of the video sequence. The robotic system performs a rotation

around the optical axis.

FIG. 6. Approximate rotation around the optical axis and translation.
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FIG. 7. x-axis translation and small pan rotation, with auto-focus

5.2. Forms of fundamental matrices
We have done the same experiment for a displacement that induces a fundamental
relation. The criterion is using the distance between a 2D point m; and its epipolar

line Fmo [27, 16]:

|l’1’12T Fl’l’l1|

m F)=
fm8) V(FTmy)? + (FT my)3

The camera has performed a translation parallel to the x-axis, a small pan rota-
tion, and corrected focal length with auto-focus. The case with less residual error

corresponds to the fundamental matrix form (number 59 in the table in Appendix

B):
0O 0 O
Fso = To 1 X9
0 —Ty I3
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This particular form was obtained from cases where the rotation was approxi-
mated to its first and second order, the translation is parallel to the x-axis, the

rotation axis is orthogonal to the optical axis and the intrinsic parameters are free.

6. HOW TO EXTEND THIS WORK TO VIDEO SEQUENCES ?

In this paper, we have dealt with video sequences with pairs of frames. Two major
extension could be down: (i) an extension of this work to trilinearities (relations
between 2D points from 3 frames) and (ii) an extension to video sequences of n
frames.

In order to consider sequences of n images, we need to introduce several cases
about the displacements. We have constraints on translation, axis and angle of
rotation and zoom factor. For each of these quantities, the questions are: is the
displacement between two frames constant? Is the acceleration constant? linear?
following a known rule?

In our formalism, we need to introduce these constraints in the Maple code who
will generates others equations with more constraints but also more data (n images)
and more parameters. It is also easy to change the criterion used to measure the
adequation of the model to the data (one C function to be rewritten).

We have to think about the fact that some objects may disappear along a video
sequence and that their movements may be detected only in few images of the video

sequences. This is a problem that will be examined in another paper.

7. CONCLUSION
We have studied how to deal with video sequences and with particular cases of
displacement and projection that often occur in real situations (man walking on
a flat road, objects far from the retina, ...). The general equations of the vision

problem present singularities in some particular cases that are usually avoided.
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In the present paper, we have proposed an alternative approach to this prob-
lem, using such singularities and other particular cases in order to obtain more
informations than in the general case instead of avoiding them.

Our major contributions are :

e We have determined the conditions of existence of homographic relations be-
tween projected 2D points for the orthographic, the para-perspective and the per-
spective projections.

e We have used these conditions and other obvious redundancy properties to
reduce the amount of homographic particular cases to study. Thus, we have deter-
mined all particular forms of matrices and we have obtained, for each particular
form, the list of cases that have generated this form. This result is a first funda-

mental step for further studies.

This study might be extended in two ways : (i) to be able, given a form, to
analyze the molecular constraints, to determine which are redundant and which
correspond to the case we are dealing with, and (ii) to do the same analysis with
geometrical property of the 3D scene, meaning homography induced by planes. The
structure of this analysis is as general as possible to extend this work to other kind
of cameras (conic mirror, ...).

The applications are twofold :

e an incremental reconstruction of the scene using different cases : each case
studied has fewer parameters than the next one, giving the ability to recover some
parameters from others already determined. We have already studied the control
of a robot on a particular case [15].

e the segmentation of objects moving with different displacements or with dif-
ferent geometric properties in video sequences : using a v-trimmed square method
instead of the least median square method, we can build sets of points with same

matrix forms (and same numerical matrix forms).
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APPENDIX A

Table of particular forms of homographic matrices

The following table shows the simplified forms obtained and, for each form, the

cases that have generated them. We denote by # the form number, by p the number

of parameters (we have not taken into account the fact that the homography matrix

is defined up to a scale factor but we do it in our numerical implementation) and

by n the number of molecular cases that have generated a form.

Particular forms of homography and cases that have generated them

TABLE

Z [ b simplified form of homography generated by n
T T [ty 0O 0 0 =1 O 0 0 21 ] plglf[1;2]b1B1c[1;2]T1t13R1udZ3a2 @

p3glf[1;2]b1B1c[1;2] T1t13R1udZ3a2 @

p3g2f1b1B1c[1:2]T1t13R1udZ3a2 @

p3g2f2b1B1c1T1t13R1udZ3a2 11
2 |1 [EXR] 0 0 1 =z 0 0 x| plglflb1Blc|[1;2]T2t[5:7|R1udZ3a2 4
3 | 1 ey 0 =y 0 z3 0 0 0 x| plglf[1;2]b1B1c[1;2]T2t1R1udZ3a2 4
1| 2 [ty 0O ) 0 =1 wg 0 -wg w1 | p3glflbIB1clT1t13R2u[17;21]Z3a2 2
5 | 2 [¢1 O 0 0 =1 ag 0 0 x| plglf2blB1c[1;2]T2t[5;7|R1udZ3a2 4
6 | 2 [t1 O 0 0 25 O 0 0 x| plglf3blB1lclT1t13R1udZ3a2 @

p3g[1;2]f3b1B1c1T1t13R1udZ3a2 3
7| 2 [t1 0 ap 0 =z ag 0 0 x| plglf[1:2]b1B1c[1;2]T2t3R1udZ3a2 4
8 | 2 [y 0 = 0 x5 O 0 0 x| plglf3blB1c1T2t1R1u4Z3a2 1
9 | 2 [y 0 =3 0 x; 0 -z3 0 x| p3glf[1;2]b1B1c1T1t13R2u[1:5]|Z3a2 4
10 | 2 [y 0 =3 0 z; O 0 0 x| p3g2f2b1B1c2T1t13R1u4Z3a2 1
11 | 2 leg]  @o 0 -wz9 @1 O 0 0 =7 | pl1:3]g1lf1b1B1c1T1t13R2u[13:9]Z3a2 4
12 | 2 le1 @3 0 -wy @1 = 0 0 =7 | plglflb1B1c1T2t[5;7|R2u[13:9]Z3a2 4
13 | 2 [e] wg 0 0 21 O 0 0 7 | p3g3f1b1B1c1T1t13R1udZ3a2 2
14 | 2 [t] @y @y -azg w3 O 0 0 2] plglf[1;2]b1B1clT2t1R2ul3Z3a2 2
15 | 3 ey O 0 0 =1 =g 0  zg o1 | p3gli2bIBIclITIt13R2u[17;21]Z3a2 2
16 | 3 [EXR] 0 0 x5 =g 0 -zg xp | p3glflb1B1c1T1t13R3u[17;21]Z3a2 @

p3glflb1B1c1T1613R4u[17;21|Z3a[1;:2] 6
17 | 3 [EXR] 0 0 x5 =g 0 0 x| plglf3b1Blc[1;2|T2t[5;7|R1udZ3a2 @

plglf3b1lB1c2T1t13R1u4Z3a2 @

p3glf3b1B1c2T1t13R1udZ3a2 6
18 | 3 [t1 0 aqp 0 x5 ag 0 0 ] plglf3blBlc[1;2]T2t3R1udZ3a2 @

plglf3blB1c2T2t1R1udZ3a2 3
19 | 3 [t7 0 ag3 0 z1 0 -z3 wg w] p3g2f[1;2]b1B1c1T1t13R2u[1:5]Z3a2 4
20 | 3 [t1 0 a3 0 =z wg -w3 -wg wq ] p3glflb1B1c1T1613R2u[2;6;19;23]|Z3a2 4
21 | 3 [t1 0 a3 0 =z ag 0 -wg wp ] p3g2f1b1B1c1T1t13R2u[17;21]Z3a2 2
22 | 3 [y 0 =3 0 1 =g 0 0 x| plglf[1;2]b1B1c3T1t13R1u4Z3a2 @

plglf[1;2]b1B1e3T26[1:3;5:7|[R1udZ3a2 &

p3g[1:2]f[1;2]b1B1c3T1t13R1udZ3a2 14
23 | 3 [y 0 =3 0 x5 0 -z3 0 x| p3glf[1-3]b1B1c1T1t13R3u[1;5]Z3a2 @

p3glf3b1B1c1T1t13R2u[1:5]Z23a2 @

p3glf[1-3]b1B1c1T1t13R4u[1;5]Z3a[1;2] 20
24 | 3 [e] wg 0 -xp wx; O 0 0 g | p[1:3]glflb1B1c1T1t13R3u[9;13]Z3a2 &

pl1:3]glflb1B1c1T1t13R4u[9;13]Z3a[1;2] 12
25 | 3 [e1 wg 0 -xp w1 g 0 -wg wq ] p3glflb1B1c1T1613R2u[11;15;18;22]Z3a2 4
26 | 3 [e] wg 0 -wp w1 g 0 0 g | plglflblB1clT2t[5;7|R[3:4]u[9:13]Z3a2 8
27 | 3 [e] wg 0 0 25 O 0 0 1 | p3g3f3b1B1c1T1t13R1udZ3a2 1
28 | 3 ey =3 0 x4 1 O 0 0 x| pl1:3]g1f2b1B1c1T1t13R2u[9;13|Z3a2 4
20 | 3 ey =3 @1 -z w1 =g 0 0 x| plglflb1B1c1T2t3R2u[9:13]Z3a2 2
30 | 3 ley x3 @1 xy 1 O 0 0 =7 | plglf2b1B1c1T2t1R2u|9:13]Z3a2 2
31 | 3 ley =3 ®3 -z3 1 0 -z3 0 x| p3glflb1B1c1T1613R2u[3;:7:10;14]Z3a2 4
32 | 3 ley ®3 ®3 -z3 1 O 0 0 w3 | plglflb1B1c1T2t1R[3;4|u[9;13]Z3a2 4
33 | 3 [t] w5 a3 0 23 0 0 0 27| p3g3f[1;2]b1B1c2T1t13R1udZ3a2 2
31 | 4 [y 0O 0 0 =5 ag 0 wg w1 | p3gli3bIB1clTIt13R2u[17;21]Z3a2 2
35 | 4 [EXE] 0 0 x5 =g 0 zg wp | p3glf2b1B1c1T1t13R3u[17;21|Z3a2 @

p3glf2b1B1c1T1613R4u[17;21|Z3a[1;:2] 6
36 | 4 [y 0 =3 0 1 =zg -z3 =wg w1 | p3glf2b1B1c1T1t13R2u[2:6:19;23]Z3a2 4
37 | 4 [y 0 =3 0 w1 =g 0 zg x| p3g2f2b1B1c1T1t13R2u[17;21]|Z3a2 2
38 | 4 [y 0 =3 0 x5 0 -z3 =g = | p3g2f3b1B1c1T1t13R2u[1:5]Z3a2 2
39 | 4 [t1 0 a3 0 x5 ag 0 0w | p[1:3]g1lf3b1B1c3T1t13R1udZ3a2 @

plglf3b1B1c3T2t[1:3:5:7|R1udZ3a2 &

p3g2f3b1B1c[2:3]|T1t13R1udZ3a2 8
40 | a [¢] @y -ao 0 x5 ag 0 -wg wg | p3g2f1b1B1c1T1t13R4u21%3al 1
a1 | a [e] wg 0wy 0 0 0 g | p[1:3]glf2b1B1c1T14[9;13|R3ul3%3a2 @&

pl1:3]g1f2b1B1c1T1t13R4u[9;13|Z3a[1;2] 12
42 | 4 leg  @o 0 x4 w1 =g 0 0 =1 | plglf2b1B1c1T2t]5;7|R2u[9;13]Z3a2 4
43 | 4 ey =3 0 x4 x5 O 0 0 x| pl1:3]g1f3b1B1c1T1t13R2u[9;13]Z3a2 &

p2g1f[1-3]b[2;3]B[1;2]c1T1t13R2u[11-15|Z3a2 28
44 | a4 leg  @o 0 x4 x5 O 0 0 wp | p2g1[1;3]b[2;3|B[1;2]c1T1t13R2u[10;14|Z3a2 16
45 | 4 ey =3 0 x4 w5 =z 0 0 =1 | p2g1f1b[2:3]|B[1:2]c1T2t5R2u[11;15]|Z3a2 8
46 | a [e] wg 0 wy w5 wp 0 0 g | p2g1f1b2B1c1T2t5R2u[10;14]Z3a2 8
a7 | a [e] wy @y x4 w1 g 0 0 x| plglf2b1B1clT2t3R2u[9;13]Z3a2 2
48 | a [t] @y @3 a4 w5 O 0 0 2] plglf3blB1c1T2t1R2u[9;13]Z3a2 &

followed on next page
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p2g1f[1-3]b[2;3]B[1;2]c1T261R2u[11;15]Z3a2 26
49 | a [¢] @y o 0 x5 ag 0 -wg wp | p3g2f1b1B1c1T1t13R4ul7%3al 1
50 | 4 ley =3 ®3 -z w1 =g -z3 -zg o1 | p3glflb1B1c1T1t13R2u[4:8:12;16:20:24]|Z3a2 6
51 | 4 ey =3 ®3 -zy w1 =g 0 0 1 pl1:3]g1lf1b1B1c[2;3]T1t13R2u[9-13|Z3a2 @
plglflb1B1c[2:3|T24[1:3:5:7|R2u[9:13]Z3a2 &
p2g1f1b[2:3]B[1:2]c[1-3] T2t9R2u[10-12;14-16|Z1a2 &
p2g1f1b[2:3]|B[1:2]c[1-3] T2t 10R2u[11;15]Z1a2 &
p2g1f1b[2:3]B[1;2]c[1-3] T2¢11R2u[10;14]Z1a2 144
52 | 4 [t @y @y -zp w1 g 0 0 3] plglfblB1c1T2t3R[3:4]u[9;13]Z3a2 4
53 | 4 [¢] @y a3 0 21 0 -z3 wg wp] p3g3f[1;2]b1B1c1T1t13R2u[1:5]Z3a2 4
54 | 4 [¢] @y a3 0 =z ag 0 -wg wp ] p3g3f1b1B1c1T1t13R2u[17;21]Z3a2 2
55 | 4 [¢] @y a3 0 =z ag 0 0 x| p3g3f[1;2]b1B1c3T1t13R1udZ3a2 2
56 | 4 ey =3 w3 0 x5 0 -z3 -zy x| p3g2f[1-3|b1B1c1T1t13R4u5Z3al 3
57 | 4 ey =3 w3 0 x5 0 -z3 =3 = | p3g2f[1-3|b1B1c1T1t13R4ulZ3al 3
58 | 4 ley =3 ®3 x4 1 O -z3 0 =7 | p3glf2b1B1c1T1613R2u[3;:7:10;14]Z3a2 4
50 | 4 ley ®3 ®3 x4 1 O 0 0 w3 | plglf2b1B1c1T2t1R[3:4[u[9:13]Z3a2 @
p2g1]1:2]b[2;3|B[1;2]c1 T2t 1R2u10;14|Z3a2 20
60 | 5 [ty 0O 0 0 =5 wg 0 wg wg | p3gli3b1B1clT1613R3u[17;21]43a2 @
p3glf3b1B1c1T1t13R4u[17;21]Z3a[1;2] 6
61 5 [y 0 =3 0 1 =zg =7 wg 1] p3g2£[1;2]b1B1cl1 T1613R2u[2;6;10;23|Z3a2 8
62 | 5 [y 0 =3 0 w5 =z -z3 =@y w1 | p3glf3b1B1c1T1613R2u[2:6:19;23]Z3a2 4
63 | 5 [y 0 =3 0 x5 =g 0 zg x| p3g2f3b1B1c1T1t13R2u[17;21]|Z3a2 2
64 | 5 ey =2 0 x4 w1 =g 0 0 xg | plglf2b1B1c1T26[5:7|R[3:4]u[9:13]|Z3a2 8
65 | 5 ey =3 0 x4 w1 =g 0 zg x| p3glf2b1B1c1T1t13R2u[11;15;18;22]|Z3a2 4
66 | 5 ey =3 0 x4 x5 O 0 0 xg | plglf3b1B1c1T1613R[3:4]u[9:13]Z3a2 @
plglf3blB1lclT1t13R4u[9;13]Z3al &
p2g1f[1-3]b[2;3]B[1;2]c1T1t13R[2-4]u[12;16]Z3a2 &
p2g1£3b[2;3]B[1;2]c1T1t13R2u[10;14]Z3a2 &
p2g1f[1-3]b[2;3]B[1;2]c1T1t13R[3:4]u[10;11;14;15]Z3a2 &
p2g1f[1-3]b[2;3]B[1;2]c1T1t13R4u[10-12;14-16]Z3al &
p3glf3b1B1c1T1t13R3u[9;13]Z3a2 @
p3glf3b1B1c1T1t13R4u[9:13]Z3a[1:2] @
3][1-3]b1B1c1T1t13R[2-4[u[9:13]Z3a2 @
3]£[1-3]b1B1c1T1t13R4u[9-13|Z3al 308
67 | 5 ey =3 0 x4 w5 zg 0 0 =1 | plglf3b1B1c1T26[5:7|R2u9:13]Z3a2 @
p2g1£]2:3]b[2:3|B[1:2]c1 T2t5R2u[11;15|Z3a2 20
68 | 5 [e1 wg 0 wy w5 wxg 0 0 g ] p2g1£2b[2;3]B[1:2]c1T2t5R2u[10;14]Z3a2 8
69 | 5 [e] wg 0 wy w5 wxg 0 0 1 p2g1f1b[2;3]B[1:2]c1T2t5R[2-4]u[12;16]Z3a2 &
p2g1f1b[2;3]B[1;2]c1T2t5R[3:4]u[10;11;14;15]Z3a2 56
70 | 5 [¢1 wg @y x4 w5 g 0 0wl plglf3blB1clT2t3R2u[9;13]Z3a2 @
p2g1f[1-3]b[2;3]B[1;2]c1T2t3R2u[11;15|Z3a2 26
71 5 [ey =3 ®3 -z w1 =g 0 0 zg | plglflblBlc|[1-3]T2t12R4u[9;13]Z3al @
plglflb1B1c[2;3|T1613R[3:4[u[9:13]Z3a2 @
plglflblBlc|2;3|T2t13R4u[9;13]Z3al &
plglflb1B1e[2:3]T2t[1:3:5:7|R[3:4]u[9-13]Z3a2 &
p3glflb1B1c|2;3|T1t13R3u[0;13]Z3a2 &
p3glflb1B1c[2;3]|T1t13R4u[9;13]Z3a[1;2] 62
72 | 5 [¢1 @y a3 0 =1 ag 0 wg wp] p3g3f2b1B1c1T1t13R2u[17;21]Z3a2 2
73 | 5 [¢] @y a3 0 wg 0 -3 g @ | p3g[2;3]f[1-3]b1B1c1T1t13R[3;4]u[;5]Z3a2 @
p3g3f[1-3]b1B1c1T1t13R4u[1;5]Z3al &
p3g3f3b1B1c1T1t13R2u[1;5|Z3a2 32
74 | 5 [t1 @y a3 0 x5 ag 0 -wg wg ] p3g[2;3]f1b1B1c1T1t13R[3;4]u[17;21]Z3a2 &
p3g3f1b1B1c1T1t13R4u[17;21]Z3al 10
75 | 5 [ey =3 =3 0 x5 =g 0 0 =1 | p3g33b1B1c[2;3]|T1613R1udZ3a2 2
76 | 5 ey =3 =3 x4 w1 =zg 0 0 =7 | plglf2b1B1c[2:3]T2t[1:3:5:7|R2u[9:13]Z3a2 &
pl1:3]g1f2b1B1c[2;3] T1613R2u[9:13]Z3a2 @
p2g1£2b[2:3]B[1:2]c[1-3] T2t 10R2u[11;15]Z1a2 &
p2g1£2b[2;3]B[1;2]c[1-3] T2t11R2u[10;14]Z1a2 &
p2g1£2b[2;3]B[1;2]c[1-3] T2t9R2u[10-12;14-16]Z1a2 144
77 | 5 [¢1 @y w3 x4 w1 g 0 0 3] plglf2b1B1clT2t3R[3;4]u[9;13]Z3a2 @
p2g1[1;2]b[2;3]|B[1;2]c1 T2t3R2u[10;14]Z3a2 20
78 | 5 [t @y w3 x4 w5 O -a3 0 x| p3glf3b1B1clT1t13R2u[3;7;10;14]Z3a2 4
79 | 5 ley =3 ®3 x4 x5 O 0 0 x3 | plglf3b1B1c1T2t1R[3:4[u[9:13]Z3a2 @
p2g1f[1-3]b[2;3]B[1;2]c1 T2t 1R[2-4]u[12;16|Z3a2 &
p2g1f[1-3|b[2;3]B[1;2]c1T2t1R[3:4[u[10;11;14;15]|Z3a2 180
80 | 5 [ey =3 ®3 x4 w5 @ 0 0 =1 | p2g1f1b[2:3]|B[1:2]c1T2t6R2u[11;15]|Z3a2 8
81 5 ley ®3 ®3 w®y x5 =zg 0 0 ap | p2g1f1b[2:3]|B[1:2|c1T2t6R2u[10;14]|Z3a2 8
82 | 6 [ty 0 a3 0 =5 ag w7 wg w1 | p3g2i3b1B1cl T1t13R2u[2;6;19;23]Z3a2 1
83 | 6 [e] wg 0 wy w5 wxg 0 0 g | plglf3s1b1BlclT2t[5-7]rl1ULR[3-4]u[9;13]23W3D3a2 &
p2g1£[2;3]51b[2-3]B[1:2]c1T2t5r1UTR[3-4]
u[10-12:14-16]Z3W3D3a2 @
p2g1£2s1b[2-3|B[1:2]c1T2t5r1U1R2u[12;16]Z23W3D3a2 @
p2g1£3s1b[2-3|B[1:2]c1T2t5r1U1R2u[10;12;14;16]Z3W3D3a2 128
84 | 6 [ey =3 0 x4 w5 =g 0 zg x| p3glf3b1B1c1T1t13R2u[11;15;18;22]Z3a2 4
85 | 6 ley =3 ®3 -z w5 =zg -z3 o6 g | p3glflb1B1c1T1t13R3u[3:7:10;14]Z3a2 @
p3glflb1B1c1T1613R4u[3;7;10;14|Z3a[1;2] 12
86 | 6 [t1 @y w3 -wzy w5 wg @3 -vg g | p3glflb1B1c1T1613R3u[11;15;18;22]Z3a2 &
p3glflb1B1c1T1613R4u[11;15;18;22]Z3a[1;2] 12
87 | 6 [t1 @y a3 0 =z wg w7 wg wy] p3g3f[1;2]b1B1c1T1t13R2u[2:6;19;23]Z3a2 8
88 | 6 [¢] @y a3 0 x5 ag 0 wg wp] p3g3f3b1B1c1T1t13R2u[17;21]Z3a2 2
89 | 6 ey =3 w3 0 x5 =g 0 zg g | p3g[2:3]f2b1B1c1 T1t13R3u[17;21|Z3a2 &
p3g[2:3]f2b1B1c1 T1t13R4u|17;21|Z3a[1;2] 12
9 | 6 ey =3 ®3 ®3 w5 =zg -z3 -zg w9 | p3glflb1B1c1T1t13R3u[2:6:19;23]Z3a2 @
p3glflb1B1c1T1t13R4u[2;6;19;23|Z3a[1;2] 12
91 6 leg @ z3 w4 w1 =zg -z3 =wg w1 | p3glf2b1B1c1T1613R2u[4:8:12;16:20:24]|Z3a2 6
92 | 6 [e] @y w3 x4 w1 g 0 0 1 plglf2blB1lc[1-3]T2t12R4u[9;13]Z3al &
plglf2blB1e2T1613R([3:4]u[9;13]Z3a2 @
plglf2blB1c[2;3|T1t13R4u[9;13]Z3al @
plglf2b1B1c[2:3]T2t[1:3:5:7|R[3:4]u[9:13]Z3a2 &
p3glf2b1B1c[2;3|T1t13R[3:4]u[9;13]Z3a2 &
p3glf2b1B1c[2;3|T1t13R4u[9;13]Z3al &
p2g1f2b[2;3|B[1;2]c[1-3]T2t10R[3-4]u[11:15]Z1a2 @
p2g1£2b[2:3]|B[1:2]c[1-3] T2t 11R[3:4]u[10;14|Z1a2 &
p2g1f2b[2:3|B[1;2]c[1-3] T2t9R[3:4[u[10-12;14-16]Z1a2 302
93 | 6 [ey =2 ®3 x4 w5 zg 0 0 =1 | plglf3blB1c[2;3|T1t13R2u[9;13]Z3a2 &

plglf3b1Blc|2;3|T2t[1;3:5:7|R2u[9;13]Z3a2 &
p2g1lf[1-3]b[2:3]B[1:2]c[1-3]T2t[2:4:7:8:9;10-12]
R2u[11;15]Z3a2 @
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p2g11[2;3]b[2:3]B[1;2]c1 T2t6R2u[11;15]Z3a2 @
p2g1f[1-3]b[2;3]B[1;2]c[2;3] T2t[1:3;5;6]R2u[11;15]Z3a2 &
p2glf[1-3|b[2;3]|B[1;2]c[2;3] T1t13R2u[11;15]Z3a2 &
p3glf3b1B1c[2;3|T1613R2u[9;13]Z3a2 @
p2g1[1;2]b[2;3]B[1;2]c[1-3] T2t[10-12|R2u[11;15|Z2a2 &
p2glf[1;2]b[2;3|B[1;2]c[1-3]T2 11;12|R2u(11;15|Z1a2 @
p2g1[1:2]b[2;3|B[1;2]c[1-3] T2t[2;11]R2u[12;16]Z1a2 &
p2glf3b2B1c1T2t[2:4;9;10-12|R2u[11;15]Z1a2 &
p2glf3b2B1c1T2t[9:11]R2u[10;14]Z1a2 &
p2g1f3b2B1c1T2t[2;9;11]R2u[12;16]Z1a2 &
p2g1f3b2B1c1T26[10-12]R2u[11;15]Z2a2 1624
94 | 6 [t @y w3 a4 w5 g 0 0 3] plglf3blB1clT2t3R[3:4]u[9:13]Z3a2 &
p2g[1-3|f1b[2;3]B[1;2]c1T2t3R[2-4]u[12;16|Z3a2 &
p2g1[1-3]b[2;3]B[1;2]c1T2t3R[3:4[u[10;11;14;15]|Z3a2 180
95 6 ey xo =3 =4 x5 g 0 0 wp | p2g1[1:2]b|2:3|B|1:2]c[1-3]| T2t[2;4;7-12]R2u[10;14]|Z3a2 @
p2g1f[1;2]b[2;3|B[1;2]c[2;3]| T1613R2u[10;14|Z3a2 &
p2g1£2b[2:3]|B[1:2]c1T2t6R2u[10;14]|Z3a2 &
p2g1£[1;2]b[2:3]B[1;2]c[2;3]T2t[1:3;5;6]R2u[10;14]Z3a2 &
p2g1f[1;2]b[2;3]B[1;2]c[1-3]T2t[10-12|R2u[10;14]Z2a2 &
p2g1f[1;2]b[2;3]B[1;2]c[1-3]T2t[7:8;10;12]R2u[10;14]Z1a2 &
p2g1[1;2]b[2:3]B[1:2]c[1-3] T2t[7;10]R2u[12;16]Z1a2 084
96 6 [t @y w3 a4 w5 g 0 0 g | p2g1f1b[2;3]B[1:2]c1T2t6R[2-4]u[12;16]Z3a2 &
p2g1f1b[2:3|B[1:2]c1T2t6R[3;4]u[10;11;14;15]Z3a2 56
o7 7 3 0 w3 =4 a5 xg @7 0 w9 | p3gli[1-3]b1B1c[2:3| T1t13R[2:3]ul1:5]Z3a2 @
p3glf[1-3|b1B1c[2;3] T1t13R4u[1;5]|Z3a[1;2] 48
98 7 [t1 @y a3 0 x5 ag 0 wg awg] p3g[1-3]f[1-3]b1B1c[2:3] T1t13R[2-4]u[17;21]Z3a2 &
p3g[1-3]f[1-3]b1B1c[2;3] T1t13R4u[17;21]Z3al @
p3g[2;3]f3b1B1c1T1t13R[3;4]u[17;21]Z3a2 &
p3g[2:3]f3b1B1c1T1613R4u[17;21]Z3al 156
9 | 7 [¢1 @y a3 0 x5 ag w7 wg wy] p3g3f3b1B1c1T1t13R2u[2;6;19;23|Z3a2 4
100 7 [ey =3 ®3 x4 xp 0 -z3 zg g | p3g[2:3]f[1-3]b1B1c1T1t13R2u[3:7;10;14]|Z3a2 24
101 7 ley =3 ®3 x4 w5 =z -z3 =wg 1 | p3glf3b1B1c1T1613R2u[4;8:12;16;20;24|Z3a2 6
102 7 ey =3 =3 =4 x5 g 0 -zg xg | p3g[2:3]f1b1B1c1 T1t13R2u[11;15;18;22|Z3a2 8
103 7 ey =3 =3 =4 x5 g 0 0 xg | p3glf3b1B1c[2;3| T1t13R[3:4]u[9;13Z3a2 @
p3glf3b1B1c[2;3] T1t13R4u[9;13]Z3al @
p3g[2:3]f[1-3]b1B1c[2:3] T1t13R[2-4]u[9;13|Z3a2 &
p3g[2;3]f[1-3]b1B1c[2;3] T1t13R4u[9;13]Z3al
and all other para and ortho 10318
04 | 8 [e1 =3 w3 =4 =5 =g -x3 xg g | p3gli2bIBlcIT1t13R3ul0Z3a2 13
105 8 ley =3 ®3 x4 w5 =zg 0 zg a9 | p3g[1-3]f[1-3]s1b1B1c[2;3|T1613r1ULR2
u[11:15:;18:22]Z3W3D3a2 ¢
p3g[2:3]£[2:3]s1b1B1c1T1t13r1U1R2u[11;15;18;22]Z3W3D3a2 88
106 8 ley =3 ®3 x4 w5 =z @3 oy w9 | p3gl1f]2;3]b1B1c1T1t13R3u[11;15;18;22|Z3a2 @
p3g1f[2:3]b1B1c1T1613R4u[11;15;18:22|Z3a[1;2] 24
107 | 8 [t] @y w3 a4 w5 wg ag 0 g ] p3glf[1-3]b1B1c[2:3]|T1t13R2u[3;7;10;14]Z3a2 24
108 | © o1 @y w3 w4 @y wg  ay wg w9 | all tho other perspective cases 3630
APPENDIX B
Table of particular forms of fundamental matrices
Please note that, as it is for the previous table, the number of parameters p does
not take into account that the fundamental matrix is defined up to a scale factor
and that its determinant is null. This is done is the numerical implementation.
TABLE
Particular forms of fundamental matrices
= D simplified form of fundamental matrices for example generated by: n
1 1 0 0 0 0 0 zg 0 -z 0 glflslcltlR1u24Z3a2 24
2 1 0 0 x3 0 0 0 -r3 0 0 glflslcltbR1u24Z3a2 4
3 1 0 T 0 -z 0 0 0 0 0 glflslcl1tOR1u24Z3a2 5
4 2 0 0 0 0 0 zg 0 -zg zg glflslc3t1R1u24Z3a2 12
5 2 0 0 0 0 0 zg 0 zg 0 glf3slcltlR1u24Z3a2 6
6 2 0 0 0 0 0 zg B4 -z 0 glflslcltlR2ul3Z2a2 16
7| 2 0 0 0 0 xg zg 0 -xg xg glflslcltlR2ul7Z1a2 396
8 2 0 0 0 x4 0 zg 0 -z 0 glflslcltlR2ulZ2a2 16
9 2 0 0 x3 0 0 0 -r3 0 zg glflslc3tbR1u24Z3a2 2
10 2 0 0 x3 0 0 0 -3 rg 0 glflslc1t5R2ul3Z2a2 8
11 2 [0 0 x3 0 0 0 x7 0 0] f1s2c1tbR1u24Z3a2 4
12 | 2 [0 0 =z3 0 0 =g -z3 -zg 0] 1c1t3R1u24Z3a2 17
13 2 [0 To 0 -To 0 zg 0 -zg 0] 1cltll1R1u24Z3a2 8
14 2 [0 To 0 -To 0 zg 0 0 0] 1cl1t9R2ulZ2a2 24
15 2 0 To 0 -To zg 0 0 0 0 1clt9R1u24Z3a2 4
16 2 0 zo 0 xgq 0 0 0 0 0 glfls2c1t9R1u24Z3a2 3
17 | 2 0 ap @3 —xg 0 0 a3 0 0 glflslcltl0R1u24Z3a2 4
18 2 0 zo x3 -zg 0 0 0 0 0 glflslclt9R2ul7Z2a2 12
19 2 0 T x3 0 0 0 -z3 0 0 glflslcltbR2ul7Z2a2 8
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20 | 2 | [o1 0 w3 0 0 0 -3 0 7] glflslcltbR2ulZlaZ 66
21 | 2 | [ep zg 0 -zg z] 0 0 0 0 glflslclt10R2ullZla2 198
32 | 3 0 0 0 0 0 =z¢ 0 g zg glf3slc2tIR1u24Z3a2 12
23 | 3 0 0 0 0 0 g zy  -xzg zg g1lflslc2t1R2ul3Z2a2 32
24 | 3 0 0 0 0 0 g w7 zg 0 g1lflslcltl1R3ul3Z2a2 200
25 | 3 0 0 0 0 5 zg 0 -zg zg g1lf2s1clt1R2ul7Z1a2 396
26 | 3 0 0 0 0 g5 zg w7 -xzg zg glflslcltl1R2ullZ2a2 16
27 | 3 0 0 0 @y 0 g 0 zg 0 glflslcltl1R3ulZ2a2 56
28 | 3 0 0 0 @y 0 g w7 -xzg 0 g1lflslclt1R2ul0Z2a2 32
20 | 3 0 0 0 xy z5  zg 0 -zg 0 g2flslclt1R2ulZ2a2 32
30 | 3 [0 0 0 xy g ag 0 -zg x5 | glflslclt1R2ul0Z2a2 16
31 | 3 [0 0 a3 0 0 0 -3 zg zg | glflslc2t5R2ul3Z2a2 16
32 | 3 [0 0 a3 0 0 0 zy7 0 zg | g1f1s2c2t5R1u24Z3a2 8
33 | 3 0 0 =z3 0 0 0 x7 zg 0 glflslclt5R3ul3Z2a2 64
34 | 3 0 0 a3 0 0  wg -z3  -zg zg g1f1s1c3t3R1u24Z3a2 13
35 | 3 0 0 a3 0 0 zg -z3 zg 0 g2f1s1clt5R2ul3Z2a2 22
36 | 3 0 0 a3 0 0 g w7 -xzg 0 g1f152c1t3R1u24Z3a2 4
37 | 3 0wy 0 -xzg 0 g 0 zg 0 g1f3s1clt11R1u24Z3a2 2
38 | 3 0wy 0 -zg 5 zg 0 -xzg 0 g3flslclt11R1u24Z3a2 4
30 | 3 0 xzp 0 -z3 g ag 0 0 0 g2f3s1c1tOR2ulZ2a2 12
40 | 3 [0 a3 0 xy 0 zg 0 -zg 0] glfls2c1t11R1u24Z3a2 4
a1 | 3 [0 3 0 zy 0 zg 0 0 0] glflslcltOR3ulZ2a2 60
2 | 3 [0 3 0 zy zg 0 0 0 0] g2f1s2c1t9R1u24Z3a2 6
3 | 3 [0 23 =3  -xzo 0 0 zy 0 0] g1f3s1clt10R1u24Z3a2 2
44 | 3 0 @y ®3 -za 0 =z -z3 -zg 0 glflslclt12R1u24Z3a2 40
45 | 3 0  wy w3 -zg 0 g 0 0 0 g1f1s1cl1tOR2ul0Z2a2 60
46 | 3 0wy w3 0 0 0 -3 zg 0 g1lflslclt5R2ullZ2a2 16
a7 | 3 0wy w3 0 0 0 w7 0 0 g1fls1clt5R3ul7Z2a2 64
a8 | 3 0wy w3 @y 0 0 0 0 0 g1f1s1c1tOR3ul7Z2a2 60
49 | 3 | [#1 [ 0 0 0 -3 0 zg glf2s1clt5R2ulZla2 66
50 | 3 | [=1 0 a3 0 0 0 -z3 zg ' glflslclt5R2ul0Z2a2 8
51 | 3 | [= zo 0 -xzo zq zg 0 0 0] glflslcltOR2ul0Z2a2 24
52 | 3 | [= zy =3 -wg zq 0 0 0 0] glflslcltOR2ullZ2a2 24
53 | 3 | [z x5 @y 0 0 0 -z3 0 zq glflslclt5R2ul0Z2a2 8
54 | 4 0 0 0 0 0 =g z7 zg zg glflslc2tIR3ul3Z2a2 100
55 | 4 0 0 0 0 5 zg 0 zg zg g1fls1c2t1R2ul7Z1a2 2772
56 | 4 0 0 0 0 g5 zg zy  -xzg zg glf2s1clt1R2ullZ2a2 16
57 | 4 0 0 0 0 z5  zg zy zg zg g2flslclt1R2ullZ2a2 32
58 | 4 [0 0 0 xy 0 ag zy zg 0] glf3slclt1R2ul0Z2a2 16
50 | 4 [0 0 0 xy r5  zg 0 -zg zg | glf2s1clt1R2ul0Z2a2 80
60 | 4 [0 0 0 xy r5  zg 0 zg 0] g2flslclt1R3ulZ2a2 112
61 | 4 [0 0 0 zy r5  zg zy  -zg x5 | glflslclt1R2ul2Z2a2 24
62 | 4 0 0 a3 0 0 0 zy zg zg glfls1c2t5R3ul3Z2a2 128
63 | 4 0 0 a3 0 0 zg -z3 zg zg g2f1s1c2t5R2ul3Z2a2 44
64 | 4 0 0 a3 0 0 g w7 -xzg zg g1f152c2t3R1u24Z3a2 8
65 | 4 0 0 a3 0 0 g w7 zg 0 g1flslclt3R2ul3Z2a2 588
66 | 4 0wy 0 -xzg 5 zg 0 zg 0 £2f3s1c1t11R1u24Z3a2 4
67 | 4 0wy 0 @y 0 g 0 zg 0 glflslcltl1R2ulZ2a2 146
68 | 4 0 xzp 0 zy z5  zg 0 -zg 0 g2f1s2c1t11R1u24Z3a2 8
6o | 4 [0 a3 0 xy g5 zg 0 0 0] g2f1s1cltOR3ulZ2a2 120
70 | 4 [0  z3 =3 -z 0 =z -z3  -zg zg | g1f3s1c2t9R1u24Z3a2 9
71 | 4 [0 z3 =3 -z r5  zg 0 -zg zg | glflslclt11R2ul7Z2a2 8
72 | 4 0 @y ®3 -za r5  zg 0 0 0 g2f3s1c1tOR2ul7Z2a2 36
73 | 4 0wy w3 0 0 0 w7 zg 0 g1f1s2c1t5R2ullZ2a2 32
74 | 4 0wy w3 0 z5  wg -3 -xzg 0 g2f1s1clt5R2ul7Z2a2 12
75 | 4 0wy w3 0 r5  wg -3 -xzg zg g1fls1clt3R2ul7Z2a2 8
76 | 4 0wy w3 @y 0 0 w7 0 0 g1f1s1clt10R2ul7Z2a2 150
77 | 4 0wy w3 @y 0 g 0 0 0 g1f152c1t9R2ul9Z2a2 24
78 | 4 | [e1 0 a3 0 0 0 -xz3 zg zg g1f251c1t5R2ul0Z2a2 8
79 | 4 | [=1 0 a3 0 0 0 zy7 0 zg glflslc2t5R2ulZ1a2 1056
80 | 4 | [e1 0 z3 zy 0 =z -z3 -zg x| glflslclt3R2ulZ2a2 8
81 | 4 | |1 zo 0 -za zq zg zy  -zg 0] glflslclt11R2ul3Z2a2 16
82 | 4 | |7 za 0 zy zg 0 0 0 0] glf1s2c1t10R2ullZ1a2 990
83 | 4 | |1 zy  z3  -wg 0 =z -z3 0 zq glflslclt10R2ulZ2a2 8
84 | 4 | [e1 g w3  -wg zq 0 -3 zg 0 g1fls1clt10R2ul3Z2a2 16
85 | 4 | [e1 zg w3z  -wg z] zg 0 0 0 g1fls1cltOR2ul2Z2a2 36
86 | 4 | [e1 3 w3 0 0 0 -3 0 zg g1f251c1t5R2ul0Z2a2 8
87 | 4 | [e1 3 w3 0 0 0 -z3 zg z] glflslclt5R2ul2Z2a2 12
S8 | © T0 0 0 0 5 @g z7 Tg zg glflslc2tiR2ullZ2a2 368
89 | 5 [0 0 0 xy 0 ag zy zg zg | glflslc2t1R2ul0Z2a2 240
2 | 5 0 0 0 xy g ag 0 zg zg glf3slclt1R2ul0Z2a2 48
91 | 5 0 0 0 @y zg5  zg z7  -xzg zg glf2s1clt1R2ul2Z2a2 24
92 | 5 0 0 0 @y g5 zg w7 zg @y g1lflslclt1R3ul0Z2a2 32
93 | 5 0 0 0 @y g5 zg w7 zg 0 g2f1s1clt1R2ul0Z2a2 96
94 | 5 0 0 0 @y g5 zg w7 zg zg glflslcltl1R3ullZ2a2 64
95 | 5 0 0 a3 0 0 g @y zg zg g1f1s1c2t3R2ul3Z2a2 1176
9% | 5 0 xp 0 xy r5  zg 0 zg 0 g2flslclt11R2ulZ2a2 202
97 | 5 [0 23 =3  -xzg 0 =z -z3 zg zg | glfls1c2t9R2ulZ2a2 26
98 | 5 [0 23 =3  -za 0 zg zy  -zg zg | glfls1c2t9R2ul7Z2a2 14
2 | 5 [0 23 =3  -za 0 zg zy zg 0] glf3slclt12R1u24Z3a2 3
100 | 5 [0 z3 =3 -z r5  zg 23 zg 0] g3f1slclt10R1u24Z3a2 10
101 | 5 0 @y ®3 -za r5  zg 0 -zg zg glf2slclt11R2ul7Z2a2 8
102 | 5 0  wy w3 -zg g5 wg 0 zg zg g2f1s1clt11R2ul7Z2a2 12
103 | 5 0wy w3 0 0 0 w7 zg zg g1fls1c2t5R2ullZ2a2 240
104 | 5 0wy w3 0 z5 =g -3 -zg zg g1f251c1t3R2ul7Z2a2 32
105 | 5 0wy w3 0 z5 =g w3 zg 0 g2f1s1clt5R2ullZ2a2 36
106 | 5 0wy w3 0 zg5  zg w7 -xzg zg g1fls1clt3R3ul7Z2a2 40
107 | 5 0 wxy =3 zy 0 zg zy  -xzg 0 glfls2c1t12R1u24Z3a2 6
108 | 5 [0 z3 =23 zy r5  zg 0 -zg x5 | glflslclt11R3ul7Z2a2 40
100 | 5 [0 23 a3 zy r5  zg 0 0 0] g2f1s1c1tOR3ul7Z2a2 168
110 | 5 | [« 0 23 0 0 0 zy zg zg | glfls1c2t5R2ul0Z2a2 128
111 | 5 | [z 0 23 zy 0 =z -z3 -zg zg glf2s1clt3R2ulZ2a2 8
112 | 5 | [#] 0 a3 @y 0 zg -z3 zg z] g1lflslclt3R3ulZ2a2 16
113 | 5 | [#1 zg 0 -zg zq zg w7 zg 0 g1flslclt11R3ul3Z2a2 56
114 | 5 | [=1 zg 0 @y z5  zg 0 0 0 g1f152c1t9R2ul0Z2a2 120
115 | 5 | [#1 zy w3z  -wg 0 zg -z3 0 zg g1f2s1c1t10R2ulZ2a2 8
116 | 5 | [=1 zy w3  -wg zq 0 w7 zg 0 g1f1s1c1t10R3ul3Z2a2 56
117 | 5 | [=g 3 w3 0 0 0 -z3 zg zg glf2s1clt5R2ul2Z2a2 12
followed on next page
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from previous page
118 | 5 | [#1 0 0 z7 0 zg | glfls2cltbR2ul0Z2a2 32
119 | 5 | [=] 0 0 w7 g -wq | g1lflslclt5R3ullZ2a2 16
120 | 5 | [« 0 0 w7 zg zq | glflslclt5R3ul0Z2a2 32
121 | 5 | [« g wg  -wg  -zg zq | g2flslclt5R2ulZ1a2 70
122 | 5 | [e -z =g 0 0 0] glflslcl1tOR3ul0Z2a2 48
123 | 5 | [« 0w -xz3 0 zq | glflslclt10R3ulZ2a2 16
124 | 5 | [e] xy  ag 0 0 0 glflslcl1tOR3ul0Z2a2 96
125 | 5 | [#g zg 0 0 0 0 g1f152c1t9R2ullZ2a2 24
126 | © To r5 @6 z7 zg zg glflslcltIR3ul2Z2a2 5160
127 | © [0 0 ag @7 zg zg g1f1s1c2t0R2u10Z2a2 199
128 | © [0 g wg a3 zg zg | £2f3s1c2t11R1u24Z3a2 34
120 | © [0 g ag 0 zg zg | glf3slcltl1R2ul7Z2a2 44
130 | © [0 g ag w7 zg 0] £2f3s1c1t10R1u24Z3a2 10
131 | © [0 g wg a3 zg zg g3f1s1clt3R2ul7Z2a2 8
132 | 6 [0 zg  zg w7 -xzg zg g1f251c1t3R3ul7Z2a2 40
133 | © [0 g5 zg @y zg 0 g2f1s1c1t5R3ul7Z2a2 192
134 | © [0 g5 zg @y zg zg g1lflslclt3R2ullZ2a2 32
135 | 6 [0 0 g @y zg 0 g1f352c1t12R1u24Z3a2 3
136 | © [0 z5  zg 0 -xzg zg g1f251c1t11R3ul7Z2a2 40
137 | © [0 g ag 0 zg zp glflslclt11R2u10Z2a2 32
138 | © [0 g ag x7  -zg zp | glflslclt12R2ul7Z2a2 84
130 | 6 | [ 0  wg -xz3 zg zg | glf2s1clt3R3ulZ2a2 16
140 | 6 | [e 0 ag x7  -zg zg | glf1s2c1t3R2ulZ2a2 16
141 | 6 | [« 0 ag x7  -zg zg | g1f2s2c1t6R2u5Z3a2 16
142 | © xq zy  ag x7 zg 0 glflslclt11R2u10Z2a2 48
143 | © @] 5 zg zy  -xzg 0 g1f1s2c1t11R2ul3Z2a2 16
144 | 6 @] 0 g w7 0 zg g1f3s1c1t10R2ulZ2a2 8
145 | 6 @] z]  zg w7 zg 0 g1flslclt12R2ul3Z2a2 126
146 | © @] z5 =g w3 zg zg g1f1s1clt10R2ul0Z1a2 144
147 | 6 @] zg5  zg 3 -xzg zg g1lflslclt11R2ullZla2 144
148 | © xq 0 0 x7 zg zg glflslclt5R3ul2Z2a2 1536
149 | 6 | [e g wg  -wg  -zg zg | glflslclt3R2ul0Z1a2 358
150 | 6 | [« g wg a3 zg zq | g2f1slcl1t5R2ul0Z2a2 12
151 | 6 | [« 0  wg -xz3 0 zg | g1f2s1c1t10R3ulZ2a2 16
152 | 6 | [« 0w -xz3 zg zq | glflslelt12R2ulZ2a2 42
153 | © xq 0 ag w7 0 xq glflslclt10R2u19Z2a2 16
154 | 6 @] zq 0 @y zg 0 g1fls1clt10R2ullZ2a2 48
155 | 6 @] vy wg -3 -xzg zq g2f1s1clt3R2ulZ2a2 24
156 | 6 @y z5  zg 0 0 0 glflslclt9R3ul2Z2a2 1428
157 | 7 T0 5 ag z7 Tg zg glflslcotlIR2ul7Z2a2 370
158 | 7 [0 g ag @7 zg zg | glflslc2t3R2ul1Z2a2 2480
150 | 7 [0 0 ag x7 zg zg | glfls1c2t10R2u17Z2a2 912
160 | 7 [0 g ag 0 zg zg glf2s1clt11R2u19Z2a2 536
161 | 7 [0 g5 wg zy  -xzg zg g1f2s1c1t12R2ul7Z2a2 84
162 | 7 [0 zg5  zg @y zg 0 £2f1s1c1t10R2ul7Z2a2 318
163 | 7 @] 0 g w7 zg zg g1f151c2t3R2ul0Z2a2 640
164 | 7 @] 5 zg @y zg 0 g1f152c1t11R2ul0Z2a2 584
165 | 7 @] 0 g w7 zg zg g1fls1c2t10R2ulZ2a2 48
166 | 7 xq zy  ag x7 zg zg glfls1c2t10R2ul1Z1a2 1104
167 | 7 | [e1 g wg a3 zg zg | glflslclt10R2u10Z2a2 32
168 | 7 | [« g ag x7  -zg zg | glflslcltl1R2ul1Z2a2 32
169 | 7 | [« g wg a3 zg zg | g2f2s1c1t5R2u10Z2a2 12
170 | 7 xq 0  wg -xz3 zg zg glf2slclt12R2ulZ2a2 42
171 | 7 @] 0 g w7 0 zg g1f152c1t10R2ul9Z2a2 168
172 | 7 @] zg 0 @y zg 0 g1f152c1t10R2ullZ2a2 120
173 | 7 @] vy wg -3 -xzg zg g1fls1clt3R2ul0Z2a2 104
174 | 7 @] z5 =g w3 zg 0 £2f1s1c1t10R2ul3Z2a2 32
175 | 7 @y x5 wg w3 zg z] g2f1s1clt10R2ulZ2a2 262
176 | 8 10 5 ag z7 Tg zg g1flslcotlIR2ul0Z2a2 5220
177 | 8 xq g ag x7 zg zg g1fls1c2t10R2u10Z1a2 1232
178 | 8 @] 5 zg w7 zg zg g1f1s1c2t3R2ul9Z1a2 1564
179 | 8 @] -wy wg w7 zg zg g1f151c2t9R3ul0Z2a2 96
180 | 8 @] 0 g w7 zg zg g1f151c2t10R2ul9Z2a2 1104
181 | 8 @] z]  zg w7 zg zg g1f1s1c2t10R2ullZ2a2 384
182 | 8 @] z5 =g w3 zg zg £2f151c1t10R2ul0Z1a2 774
183 | 8 @] zg5  zg w3 zg zg g2f1slclt11R2ullZ1la2 288
184 | 8 xq g ag 7  -zg zg glfls2c1t11R2ul1Z1a2 352
185 | 8 | [e g ag @7 zg zg | g1f1s2c1t10R2u10Z1a2 144
186 | 8 | [e g ag w7 xg  -xp | g2flslclt5R3ullZ2a2 32
187 | 8 | [e g ag w7 zg 0] g1f1s2c1t12R2u13Z2a2 1078
188 | 8 [ [ g ag x7 zg zq | g2f1s1c1t10R2u19Z2a2 128

APPENDIX C
Details on the computations of paragraphs 3.4 and 3.5
Here we denote by @ the “AND” symbol and by brackets [| an interval (unix-like
notation). For example, plg[1-2] & p2g3 represents the set of the 3 cases: plgl,

plg2 and p2g3.
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Considering the simplification rules given in paragraph 3.4, there only remains,
from the intrinsic part : plglf[1-3]s2b1B1c[1-3] & p2glf[1-3|s2b[1-3|B[1-3]c[1-3] & p3g[1-

3]f[1-3]s2b1B1c[1-3]

that is 117 cases. And from the extrinsic parameters part :

Rir1a2ulW3T1t1D3%3 & Rirla2ul W3T2t[1-12]D[1-3]Z3 & R[2-3]r1a2u[1-24]W[1-3]T1t1D3Z3 &
R[2-3]|r1a2u[1-24]W[1-3] T2t[1-12]D[1-3]Z[1-3] & Rdrla[1-2]u[1-24]W[1-3]T1t1D3Z3 &

Rdrlalu[1-24|W[1-3]T2t[4;8;12]D2Z[1-3] & Rdrla2u[1-24]W|1-3]T2t[1-12|D[1;3]Z[1-3]

that is 21709 cases, leading to a total of 2539953 particular cases. This is approxi-

mately 100 times less than previously determined.

Continuing on paragraph 3.5, the homographic relation cases are :

plglf[1-3]s1b1B1c[1-3].MVTortho
p2g1f[1-3]s1b[2-3]B[1-2]c[1-3]. MV Tpara

p3g[1-3]f[1-3]s1b1B1c[1-3].MV Tpersp

where :

MVTpersp = Rlrla2ulW3T1t1D3Z3
R[2-3|rla2u[1-24]W3T1t1D3Z3

Rarla[1-2]u[1-24]W3T1t1D3Z3

MVTpara =  R[2-3]r1a2u[10-12;14-16]W2T1t1D2Z3
R[2-3[r1a2u[10-12;14-16]W2T2t[10-12]D2Z2
R[2-3|r1a2u[10-12;14-16]W2T2¢[1-12]D2Z(1;3]
Rarla[1-2Ju[10-12;14-16]W2T1t1D273
Rdrlalu[10-12;14-16|W2T2t[10-12|D2Z2

Rdrla2u[10-12;14-16]W2T2t[1-12]D2Z[1;3]
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MVTortho = Rlrla2ulW3T1t1D3Z3
R1rla2u1W3T2t[1;3;5;7]|D3Z3
R[2-3]r1a2u[9;13]W3T1t1D3Z3
R|[2-3|r1a2u[9;13]|W3T2t[1;3;5;7]D3Z3
Rarla[1-2]u[9;13]W3T1t1D3Z3
RArlalu[9;13]|W3T2t12D3Z3

RArla2u[9;13|W3T2t[1;3;5;7]D3Z3

that is 351 cases of orthographic homographic relations, 18360 cases of para-
perspective homographic relations and 2619 cases of perspective homographic rela-
tions, leading to a total 21330 cases of homographic relations.but

We will not study para-perspective and orthographic projection for fundamental
matrices since the domain of validity of such projection approximations is included
in conditions of existence of homographic relation. In the case of perspective pro-
jection, (p3): t # 0 thus wp = £1 or u; = *1.

As previously determined :

MVTpersp = Rlrla2ulW3T2t[1-12]D3Z3
R[2-3]r1a2u[1-24]W3T2t[1-12|D37Z[1-3]
R4rlalu[1-24]W3T2t[4;8;12]D3Z2

Rdrla2u[1-24]W3T2t[1-12]D3Z[1-3]

inducing 72252 cases of fundamental relations.
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