
HAL Id: hal-00459195
https://hal.science/hal-00459195

Submitted on 23 Feb 2010

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Value Withdrawal Explanations: a Theoretical Tool for
Programming Environments

Willy Lesaint

To cite this version:
Willy Lesaint. Value Withdrawal Explanations: a Theoretical Tool for Programming Environments.
12th Workshop on Logic Programming Environments, 2002, Denmark. pp.17-33. �hal-00459195�

https://hal.science/hal-00459195
https://hal.archives-ouvertes.fr

Value withdrawal explanations: a theoretial toolfor programming environmentsWilly LesaintLaboratoire d'Informatique Fondamentale d'Orl�eansrue L�eonard de Vini { BP 6759 { F-45067 Orl�eans Cedex 2 { FraneWilly.Lesaint�lifo.univ-orleans.frAbstrat. Constraint logi programming ombines delarativity and ef-�ieny thanks to onstraint solvers implemented for spei� domains.Value withdrawal explanations have been eÆiently used in several on-straints programming environments but there does not exist any formal-ization of them. This paper is an attempt to �ll this lak. Furthermore,we hope that this theoretial tool ould help to validate some program-ming environments. A value withdrawal explanation is a tree desribingthe withdrawal of a value during a domain redution by loal onsistenynotions and labeling. Domain redution is formalized by a searh tree us-ing two kinds of operators: for loal onsisteny notions and for labeling.These operators are de�ned by sets of rules. Proof trees are built withrespet to these rules. For eah removed value, there exists suh a prooftree whih is the withdrawal explanation of this value.1 IntrodutionConstraint logi programming is one of the most important omputing paradigmsof the last years. It ombines delarativity and eÆieny thanks to onstraintsolvers implemented for spei� domains. The needs in programming environ-ments is growing. But logi programming environments are not always suÆ-ient to deal with the onstraint side of onstraint logi programming. Valuewithdrawal explanations have been eÆiently used in several onstraints pro-gramming environments but there does not exist any formalization of them.This paper is an attempt to �ll this lak. This work is supported by the frenhRNTL1 projet OADymPPaC2 whose aim is to provide onstraint programmingenvironments.A value withdrawal explanation is a tree desribing the withdrawal of a valueduring a domain redution. This desription is done in the framework of domainredution of �nite domains by notions of loal onsisteny and labeling. A �rstwork [7℄ dealt with explanations in the framework of domain redution by loalonsisteny notions only. A value withdrawal explanation ontains the whole1 R�eseau National des Tehnologies Logiielles2 Outils pour l'Analyse Dynamique et la mise au Point de Programmes ave Con-traintes http://ontraintes.inria.fr/OADymPPaC/

2information about a removal and may therefore be a useful tool for programmingenvironments. Indeed it allows performing:{ failure analysis: a failure explanation being a set of value withdrawal expla-nations;{ onstraint retration: explanations provide the values whih have been with-drawn diretly or indiretly by the onstraint and then allow to easily repairthe domains;{ debugging: an explanation being a kind of delarative trae of a value with-drawal, it an be used to �nd an error from a symptom.The �rst and seond item have been implemented in the PaLM system [8℄. PaLMis based on the onstraint solver hoo [9℄ where labeling is replaed by theuse of explanations. Note that the onstraint retration algorithm of PaLM hasbeen proved orret thanks to our de�nition of explanations, and more gener-ally a large family of onstraint retration algorithms are also inluded in thisframework.The main motivation of this work is not only to provide a ommon model forthe partners of the OADymPPaC projet but also to use explanations for thedebugging of onstraints programs. Nevertheless, the aim of this paper is not todesribe the appliations of value withdrawal explanations but to formally de�nethis notion of explanation.The de�nition of a Constraint Satisfation Problem is given in the preliminarysetion. In third and fourth setions a theoretial framework for the omputationof solutions is desribed in setions 3 and 4. A omputation is viewed as a searhtree where eah branh is an iteration of operators. Finally, explanations arepresented in the last setion thanks to the de�nition of rules assoiated to theseoperators.2 PreliminariesFollowing [10℄, a Constraint Satisfation Problem (CSP) is made of two parts:a syntati part and a semanti part. The syntati part is a �nite set V ofvariables, a �nite set C of onstraints and a funtion var : C ! P(V), whihassoiates a set of related variables to eah onstraint. Indeed, a onstraint mayinvolve only a subset of V .For the semanti part, we need to introdue some preliminary onepts. Weonsider various families f = (fi)i2I . Suh a family is referred to by the funtioni 7! fi or by the set f(i; fi) j i 2 Ig.Eah variable is assoiated with a set of possible values. Therefore, we on-sider a family (Dx)x2V where eah Dx is a �nite non empty set.We de�ne the domain by D = Sx2V (fxg � Dx). This domain allows sim-ple and uniform de�nitions of (loal onsisteny) operators on a power-set. Fordomain redution, we onsider subsets d of D . Suh a subset is alled an envi-ronment. We denote by djW the restrition of a set d � D to a set of variablesW � V , that is, djW = f(x; e) 2 d j x 2 Wg. Any d � D is atually a family

3(dx)x2V with dx � Dx: for x 2 V , we de�ne dx = fe 2 Dx j (x; e) 2 dg and allit the environment of x.Constraints are de�ned by their set of allowed tuples. A tuple t on W � Vis a partiular environment suh that eah variable of W appears only one:t � D jW and 8x 2 W; 9e 2 Dx; tjfxg = f(x; e)g. For eah 2 C, T is a set oftuples on var(), alled the solutions of .We an now formally de�ne a CSP.De�nition 1. A Constraint Satisfation Problem (CSP) is de�ned by:{ a �nite set V of variables;{ a �nite set C of onstraints;{ a funtion var : C ! P(V);{ the family (Dx)x2V (the domains);{ a family (T)2C (the onstraints semantis).Note that a tuple t 2 T is equivalent to the family (ex)x2var() and that t isidenti�ed with f(x; ex) j x 2 var()g.A user is interested in partiular tuples (on V) whih assoiate a value toeah variable, suh that all the onstraints are satis�ed.De�nition 2. A tuple t on V is a solution of the CSP if 8 2 C; tjvar() 2 T.Example 1. Conferene problemMike, Peter and Alan want to give a talk about their work to eah otherduring three half-days. Peter knows Alan's work and vie versa. There are fourtalks (and so four variables): Mike to Peter (MP), Peter to Mike (PM), Mike toAlan (MA) and Alan to Mike (AM). Note that Mike an not listen to Alan andPeter simultaneously (AM 6= PM). Mike wants to know the works of Peter andAlan before talking (MA > AM, MA > PM, MP > AM, MP > PM).This an be written in GNU-Prolog [4℄ (with a labeling on PM) by:onf(AM,MP,PM,MA):-fd_domain([MP,PM,MA,AM℄,1,3),MA #> AM,MA #> PM,MP #> AM,MP #> PM,AM #\= PM,fd_labeling(PM).The values 1; 2; 3 orresponds to the �rst, seond and third half-days. Note thatthe labeling on PM is suÆient to obtain the solutions. Without this labeling,the solver provides redued domains only (no solution).This example will be ontinued throughout the paper. �The aim of a solver is to provide one (or more) solutions. In order to obtainthem, two methods are interleaved: domain redution thanks to loal onsisteny

4notions and labeling. The �rst one is orret with respet to the solutions, that isit only removes values whih annot belong to any solution, whereas the seondone is used to restrit the searh spae. Note that to do a labeling amounts toutting a problem in several sub-problems.In the next setion, we do not onsider the whole labeling (that is the passagefrom a problem to a set of sub-problems) but only the passage from a problemto one of its sub-problems. The whole labeling will be onsider in setion 4 withthe well-known notion of searh tree.3 Domain redution mehanismIn pratie, operators are assoiated with the onstraints and are applied withrespet to a propagation queue. This method is interleaved with some restrition(due to labeling). In this setion, this omputation of a redued environment isformalized thanks to a haoti iteration of operators. The redution operatorsan be of two types: operators assoiated with a onstraint and a notion of loalonsisteny, and operators assoiated with a restrition. The resulting environ-ment is desribed in terms of losure ensuring onuene.Domain redution with respet to notions of onsisteny an be expressed interms of operators. Suh an operator omputes a set of onsistent values for aset of variables Wout aording to the environments of another set of variablesWin .De�nition 3. A loal onsisteny operator of type (Win ;Wout), with Win ;Wout� V is a monotoni funtion f : P(D) ! P(D) suh that: 8d � D ,{ f(d)jV nWout = D jV nWout ,{ f(d) = f(djWin)Note that the �rst item ensures that the operator is only onerned by thevariables Wout . The seond one ensures that this result only depends on thevariable Win .These operators are assoiated with onstraints of the CSP. So eah operatormust not remove solutions of its assoiated onstraint (and of ourse of the CSP).These notions of orretion are detailed in [6℄.Example 2. In GNU-Prolog, two loal onsisteny operators are assoiatedwith the onstraint MA #> PM: the operator whih redues the domain of MAwith respet to PM and the one whih redues the domain of PM with respetto MA. �From now on, we denote by L a set of loal onsisteny operators (the set ofloal onsisteny operators assoiated with the onstraints of the CSP).Domain redution by notions of onsisteny alone is not always suÆient.The resulting environment is an approximation of the solutions (that is all thesolutions are inluded in this environment). This environment must be restrited

5(for example, by the hoie of a value for a variable). Of ourse, suh a restri-tion (formalized by the appliation of a restrition operator) does not have theproperties of orretness of a loal onsisteny operator: the appliation of suhan operator may remove solutions. But, in the next setion, these operators willbe onsidered as a set (orresponding to the whole labeling on a variable). In-tuitively, if we onsider a labeling searh tree, this setion deals with only onebranh of this tree.In the same way loal onsisteny operators have been de�ned, restritionoperators are now introdued.De�nition 4. A restrition operator on x 2 V is a onstant funtion f :P(D) ! P(D) suh that: 8d � D ; f(d)jV nfxg = D jV nfxg.Example 3. The funtion f suh that 8d 2 D ; f(d) = D jV nfPMg [f(PM; 1)g isa restrition operator. �From now on we denote by R a set of restrition operators.These two kind of operators are suessively applied to the environment. Theenvironment is replaed by its intersetion with the result of the appliation ofthe operator. We denote by F the set of operators L [R.De�nition 5. The redution operator assoiated with the operator f 2 F is themonotoni and ontrating funtion d 7! d \ f(d).A ommon �x-point of the redution operators assoiated with F startingfrom an environment d is an environment d0 � d suh that 8f 2 F; d0 = d0 \f(d0), that is 8f 2 F; d0 � f(d0). The greatest ommon �x-point is this greatestenvironment d. To be more preise:De�nition 6. The downward losure of d by F is maxfd0 � D j d0 � d ^ 8f 2F; d0 � f(d0)g and is denoted by CL # (d; F).Note that CL # (d; ;) = d and CL # (d; F) � CL # (d; F 0) if F 0 � F .In pratie, the order of appliation of these operators is determined by apropagation queue. It is implemented to ensures to never forget any operatorand to always reah the losure CL # (d; F). From a theoretial point of view,this losure an also be omputed by haoti iterations introdued for this aimin [5℄. The following de�nition is taken from Apt [2℄.De�nition 7. A run is an in�nite sequene of operators of F , that is, a runassoiates with eah i 2 IN (i � 1) an element of F denoted by f i. A run isfair if eah f 2 F appears in it in�nitely often, that is, 8f 2 F; fi j f = f ig isin�nite.The iteration of the set of operators F from the environment d � D withrespet to an in�nite sequene of operators of F : f1; f2; : : : is the in�nite sequened0; d1; d2; : : : indutively de�ned by:1. d0 = d;

62. for eah i 2 IN, di+1 = di \ f i+1(di).Its limit is \i2INdi.A haoti iteration is an iteration with respet to a sequene of operators ofF (with respet to F , in short) where eah f 2 F appears in�nitely often.Note that an iteration may start from a domain d whih an be di�erentfrom D . This is more general and onvenient for a lot of appliations (dynamiaspets of onstraint programming, for example).The next well-known result of onuene [3, 5℄ ensures that any haoti iter-ation reahes the losure. Note that, sine � is a well-founded ordering (i.e. Dis a �nite set), every iteration from d � D is stationary, that is, 9i 2 IN;8j �i; dj = di.Lemma 1. The limit dF of every haoti iteration of a set of operators F fromd � D is the downward losure of d by F .Proof. Let d0; d1; d2; : : : be a haoti iteration of F from d with respet tof1; f2; : : :[CL # (d; F) � dF ℄ For eah i, CL # (d; F) � di, by indution: CL # (d; F) �d0 = d. Assume CL # (d; F) � di, CL # (d; F) � f i+1(CL # (d; F)) � f i+1(di)by monotoniity. Thus, CL # (d; F) � di \ f i+1(di) = di+1.[dF � CL # (d; F)℄ There exists k 2 IN suh that dF = dk beause � is awell-founded ordering. The iteration is haoti, hene dk is a ommon �x-pointof the set of operators assoiated with F , thus dk � CL # (d; F) (the greatestommon �x-point).In order to obtain a losure, it is not neessary to have a haoti iteration.Indeed, sine restrition operators are onstant funtions, they an be apply onlyone.Lemma 2. dL[R = CL # (CL # (d;R); L)Proof. dL[R = CL # (d; L [R) by lemma 1 and CL # (d; L [R) = CL # (CL #(d;R); L) beause operators of R are onstant funtions.As said above, we have onsidered in this setion a omputation in a singlebranh of a labeling searh tree. This formalization is extended in the nextsetion in order to take the whole searh tree into aount.4 Searh treeA labeling on a variable an be viewed as the passage from a problem to a setof problems. The previous setion has treated the passage from this problem toone of its sub-problems thanks to a restrition operator. In order to onsider thewhole set of possible values for the labeling on a variable, restrition operatorson a same variable must be grouped together. The union of the environmentsof the variable (the variable onerned by the labeling) of eah sub-problemobtained by the appliation of eah of these operators must be a partition of theenvironment of the variable in the initial problem.

7De�nition 8. A set fdi j 1 � i � ng is a partition of d on x if:{ 8i; 1 � i � n; djV nfxg � dijV nfxg,{ djfxg � [1�i�ndijfxg,{ 8i; j; 1 � i � n; 1 � j � n; i 6= j; dijfxg \ dj jfxg = ;.In pratie, environment redutions by loal onsisteny operators and label-ing are interleaved to be the most eÆient.A labeling on x 2 V an be a omplete enumeration (eah environment ofthe partition is redued to a singleton) or a splitting. Note that the partitionsalways verify: 8i; 1 � i � n; dijfxg 6= ;.Example 4. fD jV nfPMg[f(PM; 1)g; D jV nfPMg[f(PM; 2)g; D jV nfPMg[f(PM; 3)gis a partition of D . �Next lemma ensures that no solution is lost during a labeling step (eahsolution will remain in exatly one branh of the searh tree de�ned later).Lemma 3. If t � d is a solution of the CSP and fdi j 1 � i � ng is a partitionof d then t � [1�i�nCL # (di; L).Proof. straightforward.Eah node of a searh tree an be haraterized by a quadruple ontaining theenvironment d (whih have been omputed up to now), the depth p in the tree,the operator f (loal onsisteny operator or restrition operator) onnetingit with its father and the restrited environment e. The restrited environmentis obtained from the initial environment when only the restrited operators areapplied.De�nition 9. A searh node is a quadruple (d; e; f; p) with d; e 2 P(D), f 2F [f?g and p 2 IN.The depth and the restrited environment allow to loalize the node in thesearh tree.There exists two kinds of transition in a searh tree: those aused by a loalonsisteny operator whih ensure the passage to one only son and the transi-tions aused by a labeling whih ensure the passage to some sons (as many asenvironments in the partition).De�nition 10. A searh tree is a tree for whih eah node is a searh stepindutively de�ned by:{ (D ; D ;?; 0) is the root of the tree,{ if (d; e; op; p) is a non leave node then it has:� one son: (d \ f(d); e; f; p+ 1) with f 2 L;� n sons: (d\ fi(d); e\ fi(d); fi; p+1) with ffi(d) j 1 � i � ng a partitionof d and fi 2 R.De�nition 11. A searh tree is said omplete if eah leaf (d; e; f; p) is suhthat: d = CL # (e; L).This setion has formally desribed the omputation of solvers in terms ofsearh trees. Eah branh is an iteration of operators.

85 Value withdrawal explanationsThis setion is devoted to value withdrawal explanations. These explanationsare de�ned as trees whih an be extrated from a omputation. First, rulesare assoiated with loal onsisteny operators, restrition operators and thelabeling proess. Explanations are then de�ned from a system of suh rules [1℄.From now on we onsider a �xed CSP and a �xed omputation. The setof loal onsisteny operators is denoted by L and the set of restrition opera-tors by R. The labeling introdues a notion of ontext based on the restritedenvironments of the searh node. The following notation is used: � ` h with� � P(D) and h 2 D . � is named a ontext.Intuitively, � ` h means 8e 2 �; h 62 CL # (e; L [R). A � is an union ofrestrited environments, that is eah e 2 � orresponds to a branh of the searhtree. If an element h is removed in di�erent branhes of the searh tree, then aontext for h may ontain all these branhes.5.1 RulesThe de�nition of explanations is based on three kinds of rules. These rules explainthe removal of a value as the onsequene of other value removals or as theonsequene of a labeling.First kind of rule is assoiated with a loal onsisteny operator. Indeed, suhan operator an be de�ned by a system of rules [1℄. If the type of this operatoris (Win ;Wout), eah rule explains the removal of a value in the environment ofWout as the onsequene of the lak of values in the environment of Win .De�nition 12. The set of loal onsisteny rules assoiated with l 2 L is:� ` h1 : : : � ` hnRl = f j � � P(D);8d � D ; h1 ; : : : ; hn 62 d) h 62 l(d)g� ` hIntuitively, these rules explain the propagation mehanism. Using its nota-tion, the de�nition 12 justi�es the removal of h by the removals of h1; : : : ; hn.Example 5. 8e 2 D , the rulefeg ` (PM; 2) feg ` (PM; 3)feg ` (AM; 1)is assoiated with the loal onsisteny operator of type (fPMg; fAMg) (for theonstraint AM 6= PM). �As said above, the ontext is only onerned by labeling. So, here, the ruledoes not modify it. Note that if we restrit ourselves to solving by onsistenytehniques alone (that is without any labeling), then the ontext will always bethe initial environment and an be forgotten [7℄.From now on, we onsider RL = [l2LRl.

9The seond kind of rules is assoiated with restrition operators. In this asethe removal of a value is not the onsequene of any other removal and so theserules are fats.De�nition 13. The set of restrition rules assoiated with r 2 R is:Rr = f j h 62 r(D); d � r(D)gfdg ` hThese rules provide the values whih are removed by a restrition.Example 6. The set of restrition rules assoiated with the restrition operatorr suh that 8d 2 D ; r(d) = D jV nfPMg [f(PM; 1)g is:f , g with e1 � r(D).fe1g ` (PM; 2) fe1g ` (PM; 3) �This restrition ensures the omputation goes to in a branh of the searhtree and must be memorized beause future removals may be true only in thisbranh. The ontext is modi�ed in order to remember that the omputation isin this branh.From now on, we onsider RR = [r2RRr.The last kind of rule orresponds to the reunion of information oming fromseveral branhes of the searh tree.De�nition 14. The set of labeling rules for h 2 D is de�ned by:�1 ` h : : : �n ` hRh = f j �1; : : : ; �n � P(D)g�1 [: : : [�n ` hIntuitively, if the value h has been removed in several branhes, orrespondingto the ontexts �1; : : : ; �n, then a unique ontext an be assoiated with h: thisontext is the union of these ontexts.Example 7. For all e1; e2; e3 2 D , fe1g ` (MP; 2) fe2g ` (MP; 2) fe3g ` (MP; 2)fe1g [fe2g [fe3g ` (MP; 2) isa labeling rule.From now on, we onsider RD = [h2DRh.The system of rules RL [RR [RD an now be used to build explanations ofvalue withdrawal.5.2 Proof treesIn this setion, proof trees are desribed from the rules of the previous setion.It is proved that there exists suh a proof tree for eah element whih is removedduring a omputation. And �nally, it is shown how to obtain these proof trees.

10De�nition 15. A proof tree with respet to a set of rules RL [RR [RD is a�nite tree suh that, for eah node labeled by � ` h, if B is the set of labels ofits hildren, then B 2 RL [RR [RD .� ` hNext theorem ensures that there exists a proof tree for eah element whihis removed during a omputation.Theorem 1. � ` h is the root of a proof tree if and only if 8e 2 �; h 62 CL #(e;R).Proof.): indutively on eah kind of rule:{ for loal onsisteny rules, if 8i; 1 � i � n; hi 62 CL # (ei; R) then hi 62CL # (e1 \ : : : \ en; R) and so (beause h fh1; : : : ; hng 2 R) h 62 CL #(fe1 \ : : : \ eng; R);{ for restrition rules, h 62 e so h 62 CL # (e;R);{ straightforward for labeling rules.(: if 8i; 1 � i � n; h 62 CL # (ei; R) then ([6℄) there exists a proof tree rootedby h for eah ei. So, with ontext notion, 8i; 1 � i � n; feig ` h is the root ofa proof tree. Thus, thanks to the labeling rule, fe1; : : : ; eng ` h is the root of aproof tree.Last part of the setion is devoted to show how to obtain these trees from aomputation, that is from a searh tree.Let us reall that ons(h; T) is the tree rooted by h and with the set ofsub-trees T . The traversal of the searh tree in depth �rst. Eah branh anthen be onsidered separately. The desent in eah branh an be viewed as aniteration of loal onsisteny operators and restrition operators. During thisdesent, proof trees are indutively built thanks to the rules assoiated withthese two kind of operators (labeling rules are not neessary for the moment).Eah node being identi�ed by its depth, the set of trees assoiated with the node(dp; ep; fp; p) is denoted by Sp#.These sets are indutively de�ned as follows:{ S0#= ;;{ if fp+1 2 R then: froot(t) j t 2 TgSp+1#= Sp# [fons(fepg ` h; T) j T � Sp#; h 2 dp; 2 Rfp+1gfepg ` h{ if fp+1 2 L then:Sp+1#= Sp# [fons(fep+1g ` h; ;) j h 2 dp; 2 Rfp+1gfep+1g ` h

11To eah node (d; e; f; p) is then assoiated a set of proof tree denoted byS# (d; e; f; p).A seond phase onsists in limbing these sets to the root, grouping togetherthe trees rooted by a same element but with di�erent ontexts. To eah node(d; e; f; p) is assoiated a new set of proof trees S" (d; e; f; p). This set is indu-tively de�ned:{ if (d; e; f; p) is a leaf then S" (d; e; f; p) = S# (d; e; f; p);{ if l 2 L then S" (d; e; f; p) = S# (d [l(d); e; l; p+ 1);{ if fri(d) j 1 � i � ng is a partition of d then S" (d; e; f; p) = S [S0 withS = [1�i�nS" (d \ ri(d); e \ ri(); ri; p+ 1) andfroot(t) j t 2 TgS0 = fons(� ` h; T) j 2 RD ; T � Sg.� ` hCorollary 1. If the searh tree rooted by (D ; D ;?; 0) is omplete then froot(t) jt 2 S" (D ; D ;?; 0)g = f� ` h j 8e 2 �; h 62 CL # (e; L)g.Proof. by theorem 1.These proof trees are explanations for the removal of their root.Example 8. An explanation for the withdrawal of the value 2 from the domainof MP an be:fe1g ` (PM; 2) fe1g ` (PM; 3)fe1g ` (AM; 1) fe2g ` (PM; 1) fe3g ` (PM; 1)fe1g ` (MP; 2) fe2g ` (MP; 2) fe3g ` (MP; 2)fe1g [fe2g [fe3g ` (MP; 2)with e1, e2 and e3 suh that:{ e1 = D jV nfPMg [f(PM; 1)g{ e2 = D jV nfPMg [f(PM; 2)g{ e3 = D jV nfPMg [f(PM; 3)gThis tree must be understood as follows: the restrition of the searh spae toe1 eliminates the values 2 and 3 of PM. Sine AM 6= PM, the value 1 is removedof AM. And sine MP > AM, the value 2 is removed of MP. In the same way,the value 2 is also removed of MP with the restrition e2 and e3. And �nally,the root ensures that this value is removed in eah of these branhes. �The size of explanations strongly depends on the onsisteny used, the sizeof the domains and the type of onstraint. Note that even if the width of expla-nations is large, their height remains orret in general. It is important to reallthat these explanations are a theoretial tool. So, an implementation ould bemore eÆient.

126 Interest for Programming EnvironmentsThe understanding of solvers omputation provided by the explanations is an in-teresting soure of information for onstraint (logi) programming environments.Moreover, explanations have already been used in several ones. The theoretialmodel of value withdrawal explanation given in the paper an therefore be aninteresting tool for onstraint (logi) programming environments.The main appliation using explanations onerns over-onstrained problems.In these problems, the user is interesting in information about the failure, thatis to visualize the set of onstraints responsible for this failure. He an thereforerelax one of them and may obtain a solution.In the PaLM system, a onstraint retration algorithm have been imple-mented thanks to explanations. Indeed, for eah value removed from the envi-ronment, there exists an explanation set ontaining the operators responsiblefor the removal. So, to retrat a onstraint onsists in two main steps: to re-introdue the values whih ontain an operator assoiated with the retratedonstraint in their explanation, and to wake up all the operators whih an re-move a re-introdued value, that is whih are de�ned by a rule having suh avalue as head. The theoretial approah of the explanations have permitted toprove the orretness of this algorithm based on explanations. There did notexist any proof of it whereas the one we propose is immediate. Furthermore, thisapproah have proved the orretness of a large family of onstraints retrationalgorithms used in others onstraints environments and not only the one basedon explanations.The interest for explanations in debugging is growing. Indeed, to debug aprogram is to look for something whih is not orret in a solver omputation.So, the information about the omputation given by the explanations an bevery preious.They have already been used for failure analysis. In onstraint programming,a failure is haraterized by an empty domain. A failure explanation is then aset of explanations (one explanation for eah value of the empty domain). Notethat in the PaLM system, labeling has been replaed by dynami baktrakingbased on the ombination of failure explanation and onstraint retration.An interesting perspetive seems to be the use of explanations for the delar-ative debugging of onstraint programs. Indeed, when a symptom of error (amissing solution) appears after a onstraint solving, explanations an help to�nd the error (the onstraint responsible for the symptom). For example, if auser expets a solution ontaining the value v for a variable x but does not obtainany suh solution, an explanation for the removal of (x; v) is a useful struture toloalize the error. The idea is to go up in the tree from the root (the symptom)to a node (the minimal symptom) for whih eah son is orret. The error isthen the onstraint whih ensures the passage between the node and its sons.The theoretial model given in the paper will, I wish, bring new ideas andsolutions for the debugging in onstraint programming and other environments.

137 ConlusionThe paper was devoted to the de�nition of value withdrawal explanations. Theprevious notions of explanations (theoretially desribed in [7℄) only dealt withdomain redution by loal onsisteny notions. Here, the notion of labeling havebeen fully integrated in the model.A solver omputation is formalized by a searh tree where eah branh isan iteration of operators. These operators an be loal onsisteny operators orrestrition operators. Eah operator is de�ned by a set of rules desribing theremoval of a value as the onsequene of the removal of other values. Finally,proof trees are built thanks to these rules. These proof trees are explanationsfor the removal of a value (their root).The interest in explanations for onstraint (logi) programming environmentis undoubtedly. The theoretial model proposed here have already validate somealgorithms used in some environments and will, I wish, bring new ideas and solu-tions for onstraint (logi) programming environments, in partiular debuggingof onstraint programs.Referenes1. P. Azel. An introdution to indutive de�nitions. In J. Barwise, editor, Hand-book of Mathematial Logi, volume 90 of Studies in Logi and the Foundations ofMathematis, hapter C.7, pages 739{782. North-Holland Publishing Cie, 1977.2. K. R. Apt. The essene of onstraint propagation. Theoretial Computer Siene,221(1{2):179{210, 1999.3. P. Cousot and R. Cousot. Automati synthesis of optimal invariant assertionsmathematial foundation. In Symposium on Arti�ial Intelligene and Program-ming Languages, volume 12(8) of ACM SIGPLAN Not., pages 1{12, 1977.4. D. Diaz and P. Codognet. The GNU-Prolog system and its implementation. InACM Symposium on Applied Computing, volume 2, pages 728{732, 2000.5. F. Fages, J. Fowler, and T. Sola. A reative onstraint logi programming sheme.In International Conferene on Logi Programming. MIT Press, 1995.6. G. Ferrand, W. Lesaint, and A. Tessier. Theoretial foundations of value with-drawal explanations in onstraints solving by domain redution. Tehnial Report2001-05, LIFO, University of Orl�eans, November 2001.7. G. Ferrand, W. Lesaint, and A. Tessier. Theoretial foundations of value with-drawal explanations for domain redution. In M. Falashi, editor, 11th Interna-tional Workshop on Funtional and (Constraint) Logi Programming, Grado, Italy,June 2002.8. N. Jussien and V. Barihard. The PaLM system: explanation-based onstraintprogramming. In Proeedings of TRICS: Tehniques foR Implementing Constraintprogramming Systems, a workshop of CP 2000, pages 118{133, 2000.9. F. Laburthe and the OCRE projet. Choo: implementing a CP kernel. In TRICS,Tehniques foR Implementing Constraint programming Systems, a post-onfereneworkshop of CP 2000, Tehnial report TRA9/00, Singapore, 2000.10. E. Tsang. Foundations of Constraint Satisfation. Aademi Press, 1993.

