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Value withdrawal explanations: a theoreti
al toolfor programming environmentsWilly LesaintLaboratoire d'Informatique Fondamentale d'Orl�eansrue L�eonard de Vin
i { BP 6759 { F-45067 Orl�eans Cedex 2 { Fran
eWilly.Lesaint�lifo.univ-orleans.frAbstra
t. Constraint logi
 programming 
ombines de
larativity and ef-�
ien
y thanks to 
onstraint solvers implemented for spe
i�
 domains.Value withdrawal explanations have been eÆ
iently used in several 
on-straints programming environments but there does not exist any formal-ization of them. This paper is an attempt to �ll this la
k. Furthermore,we hope that this theoreti
al tool 
ould help to validate some program-ming environments. A value withdrawal explanation is a tree des
ribingthe withdrawal of a value during a domain redu
tion by lo
al 
onsisten
ynotions and labeling. Domain redu
tion is formalized by a sear
h tree us-ing two kinds of operators: for lo
al 
onsisten
y notions and for labeling.These operators are de�ned by sets of rules. Proof trees are built withrespe
t to these rules. For ea
h removed value, there exists su
h a prooftree whi
h is the withdrawal explanation of this value.1 Introdu
tionConstraint logi
 programming is one of the most important 
omputing paradigmsof the last years. It 
ombines de
larativity and eÆ
ien
y thanks to 
onstraintsolvers implemented for spe
i�
 domains. The needs in programming environ-ments is growing. But logi
 programming environments are not always suÆ-
ient to deal with the 
onstraint side of 
onstraint logi
 programming. Valuewithdrawal explanations have been eÆ
iently used in several 
onstraints pro-gramming environments but there does not exist any formalization of them.This paper is an attempt to �ll this la
k. This work is supported by the fren
hRNTL1 proje
t OADymPPaC2 whose aim is to provide 
onstraint programmingenvironments.A value withdrawal explanation is a tree des
ribing the withdrawal of a valueduring a domain redu
tion. This des
ription is done in the framework of domainredu
tion of �nite domains by notions of lo
al 
onsisten
y and labeling. A �rstwork [7℄ dealt with explanations in the framework of domain redu
tion by lo
al
onsisten
y notions only. A value withdrawal explanation 
ontains the whole1 R�eseau National des Te
hnologies Logi
ielles2 Outils pour l'Analyse Dynamique et la mise au Point de Programmes ave
 Con-traintes http://
ontraintes.inria.fr/OADymPPaC/



2information about a removal and may therefore be a useful tool for programmingenvironments. Indeed it allows performing:{ failure analysis: a failure explanation being a set of value withdrawal expla-nations;{ 
onstraint retra
tion: explanations provide the values whi
h have been with-drawn dire
tly or indire
tly by the 
onstraint and then allow to easily repairthe domains;{ debugging: an explanation being a kind of de
larative tra
e of a value with-drawal, it 
an be used to �nd an error from a symptom.The �rst and se
ond item have been implemented in the PaLM system [8℄. PaLMis based on the 
onstraint solver 
ho
o [9℄ where labeling is repla
ed by theuse of explanations. Note that the 
onstraint retra
tion algorithm of PaLM hasbeen proved 
orre
t thanks to our de�nition of explanations, and more gener-ally a large family of 
onstraint retra
tion algorithms are also in
luded in thisframework.The main motivation of this work is not only to provide a 
ommon model forthe partners of the OADymPPaC proje
t but also to use explanations for thedebugging of 
onstraints programs. Nevertheless, the aim of this paper is not todes
ribe the appli
ations of value withdrawal explanations but to formally de�nethis notion of explanation.The de�nition of a Constraint Satisfa
tion Problem is given in the preliminaryse
tion. In third and fourth se
tions a theoreti
al framework for the 
omputationof solutions is des
ribed in se
tions 3 and 4. A 
omputation is viewed as a sear
htree where ea
h bran
h is an iteration of operators. Finally, explanations arepresented in the last se
tion thanks to the de�nition of rules asso
iated to theseoperators.2 PreliminariesFollowing [10℄, a Constraint Satisfa
tion Problem (CSP) is made of two parts:a synta
ti
 part and a semanti
 part. The synta
ti
 part is a �nite set V ofvariables, a �nite set C of 
onstraints and a fun
tion var : C ! P(V ), whi
hasso
iates a set of related variables to ea
h 
onstraint. Indeed, a 
onstraint mayinvolve only a subset of V .For the semanti
 part, we need to introdu
e some preliminary 
on
epts. We
onsider various families f = (fi)i2I . Su
h a family is referred to by the fun
tioni 7! fi or by the set f(i; fi) j i 2 Ig.Ea
h variable is asso
iated with a set of possible values. Therefore, we 
on-sider a family (Dx)x2V where ea
h Dx is a �nite non empty set.We de�ne the domain by D = Sx2V (fxg � Dx). This domain allows sim-ple and uniform de�nitions of (lo
al 
onsisten
y) operators on a power-set. Fordomain redu
tion, we 
onsider subsets d of D . Su
h a subset is 
alled an envi-ronment. We denote by djW the restri
tion of a set d � D to a set of variablesW � V , that is, djW = f(x; e) 2 d j x 2 Wg. Any d � D is a
tually a family



3(dx)x2V with dx � Dx: for x 2 V , we de�ne dx = fe 2 Dx j (x; e) 2 dg and 
allit the environment of x.Constraints are de�ned by their set of allowed tuples. A tuple t on W � Vis a parti
ular environment su
h that ea
h variable of W appears only on
e:t � D jW and 8x 2 W; 9e 2 Dx; tjfxg = f(x; e)g. For ea
h 
 2 C, T
 is a set oftuples on var(
), 
alled the solutions of 
.We 
an now formally de�ne a CSP.De�nition 1. A Constraint Satisfa
tion Problem (CSP) is de�ned by:{ a �nite set V of variables;{ a �nite set C of 
onstraints;{ a fun
tion var : C ! P(V );{ the family (Dx)x2V (the domains);{ a family (T
)
2C (the 
onstraints semanti
s).Note that a tuple t 2 T
 is equivalent to the family (ex)x2var(
) and that t isidenti�ed with f(x; ex) j x 2 var(
)g.A user is interested in parti
ular tuples (on V ) whi
h asso
iate a value toea
h variable, su
h that all the 
onstraints are satis�ed.De�nition 2. A tuple t on V is a solution of the CSP if 8
 2 C; tjvar(
) 2 T
.Example 1. Conferen
e problemMike, Peter and Alan want to give a talk about their work to ea
h otherduring three half-days. Peter knows Alan's work and vi
e versa. There are fourtalks (and so four variables): Mike to Peter (MP), Peter to Mike (PM), Mike toAlan (MA) and Alan to Mike (AM). Note that Mike 
an not listen to Alan andPeter simultaneously (AM 6= PM). Mike wants to know the works of Peter andAlan before talking (MA > AM, MA > PM, MP > AM, MP > PM).This 
an be written in GNU-Prolog [4℄ (with a labeling on PM) by:
onf(AM,MP,PM,MA):-fd_domain([MP,PM,MA,AM℄,1,3),MA #> AM,MA #> PM,MP #> AM,MP #> PM,AM #\= PM,fd_labeling(PM).The values 1; 2; 3 
orresponds to the �rst, se
ond and third half-days. Note thatthe labeling on PM is suÆ
ient to obtain the solutions. Without this labeling,the solver provides redu
ed domains only (no solution).This example will be 
ontinued throughout the paper. �The aim of a solver is to provide one (or more) solutions. In order to obtainthem, two methods are interleaved: domain redu
tion thanks to lo
al 
onsisten
y



4notions and labeling. The �rst one is 
orre
t with respe
t to the solutions, that isit only removes values whi
h 
annot belong to any solution, whereas the se
ondone is used to restri
t the sear
h spa
e. Note that to do a labeling amounts to
utting a problem in several sub-problems.In the next se
tion, we do not 
onsider the whole labeling (that is the passagefrom a problem to a set of sub-problems) but only the passage from a problemto one of its sub-problems. The whole labeling will be 
onsider in se
tion 4 withthe well-known notion of sear
h tree.3 Domain redu
tion me
hanismIn pra
ti
e, operators are asso
iated with the 
onstraints and are applied withrespe
t to a propagation queue. This method is interleaved with some restri
tion(due to labeling). In this se
tion, this 
omputation of a redu
ed environment isformalized thanks to a 
haoti
 iteration of operators. The redu
tion operators
an be of two types: operators asso
iated with a 
onstraint and a notion of lo
al
onsisten
y, and operators asso
iated with a restri
tion. The resulting environ-ment is des
ribed in terms of 
losure ensuring 
on
uen
e.Domain redu
tion with respe
t to notions of 
onsisten
y 
an be expressed interms of operators. Su
h an operator 
omputes a set of 
onsistent values for aset of variables Wout a

ording to the environments of another set of variablesWin .De�nition 3. A lo
al 
onsisten
y operator of type (Win ;Wout ), with Win ;Wout� V is a monotoni
 fun
tion f : P(D ) ! P(D ) su
h that: 8d � D ,{ f(d)jV nWout = D jV nWout ,{ f(d) = f(djWin )Note that the �rst item ensures that the operator is only 
on
erned by thevariables Wout . The se
ond one ensures that this result only depends on thevariable Win .These operators are asso
iated with 
onstraints of the CSP. So ea
h operatormust not remove solutions of its asso
iated 
onstraint (and of 
ourse of the CSP).These notions of 
orre
tion are detailed in [6℄.Example 2. In GNU-Prolog, two lo
al 
onsisten
y operators are asso
iatedwith the 
onstraint MA #> PM: the operator whi
h redu
es the domain of MAwith respe
t to PM and the one whi
h redu
es the domain of PM with respe
tto MA. �From now on, we denote by L a set of lo
al 
onsisten
y operators (the set oflo
al 
onsisten
y operators asso
iated with the 
onstraints of the CSP).Domain redu
tion by notions of 
onsisten
y alone is not always suÆ
ient.The resulting environment is an approximation of the solutions (that is all thesolutions are in
luded in this environment). This environment must be restri
ted



5(for example, by the 
hoi
e of a value for a variable). Of 
ourse, su
h a restri
-tion (formalized by the appli
ation of a restri
tion operator) does not have theproperties of 
orre
tness of a lo
al 
onsisten
y operator: the appli
ation of su
han operator may remove solutions. But, in the next se
tion, these operators willbe 
onsidered as a set (
orresponding to the whole labeling on a variable). In-tuitively, if we 
onsider a labeling sear
h tree, this se
tion deals with only onebran
h of this tree.In the same way lo
al 
onsisten
y operators have been de�ned, restri
tionoperators are now introdu
ed.De�nition 4. A restri
tion operator on x 2 V is a 
onstant fun
tion f :P(D ) ! P(D ) su
h that: 8d � D ; f(d)jV nfxg = D jV nfxg.Example 3. The fun
tion f su
h that 8d 2 D ; f(d) = D jV nfPMg [ f(PM; 1)g isa restri
tion operator. �From now on we denote by R a set of restri
tion operators.These two kind of operators are su

essively applied to the environment. Theenvironment is repla
ed by its interse
tion with the result of the appli
ation ofthe operator. We denote by F the set of operators L [ R.De�nition 5. The redu
tion operator asso
iated with the operator f 2 F is themonotoni
 and 
ontra
ting fun
tion d 7! d \ f(d).A 
ommon �x-point of the redu
tion operators asso
iated with F startingfrom an environment d is an environment d0 � d su
h that 8f 2 F; d0 = d0 \f(d0), that is 8f 2 F; d0 � f(d0). The greatest 
ommon �x-point is this greatestenvironment d. To be more pre
ise:De�nition 6. The downward 
losure of d by F is maxfd0 � D j d0 � d ^ 8f 2F; d0 � f(d0)g and is denoted by CL # (d; F ).Note that CL # (d; ;) = d and CL # (d; F ) � CL # (d; F 0) if F 0 � F .In pra
ti
e, the order of appli
ation of these operators is determined by apropagation queue. It is implemented to ensures to never forget any operatorand to always rea
h the 
losure CL # (d; F ). From a theoreti
al point of view,this 
losure 
an also be 
omputed by 
haoti
 iterations introdu
ed for this aimin [5℄. The following de�nition is taken from Apt [2℄.De�nition 7. A run is an in�nite sequen
e of operators of F , that is, a runasso
iates with ea
h i 2 IN (i � 1) an element of F denoted by f i. A run isfair if ea
h f 2 F appears in it in�nitely often, that is, 8f 2 F; fi j f = f ig isin�nite.The iteration of the set of operators F from the environment d � D withrespe
t to an in�nite sequen
e of operators of F : f1; f2; : : : is the in�nite sequen
ed0; d1; d2; : : : indu
tively de�ned by:1. d0 = d;



62. for ea
h i 2 IN, di+1 = di \ f i+1(di).Its limit is \i2INdi.A 
haoti
 iteration is an iteration with respe
t to a sequen
e of operators ofF (with respe
t to F , in short) where ea
h f 2 F appears in�nitely often.Note that an iteration may start from a domain d whi
h 
an be di�erentfrom D . This is more general and 
onvenient for a lot of appli
ations (dynami
aspe
ts of 
onstraint programming, for example).The next well-known result of 
on
uen
e [3, 5℄ ensures that any 
haoti
 iter-ation rea
hes the 
losure. Note that, sin
e � is a well-founded ordering (i.e. Dis a �nite set), every iteration from d � D is stationary, that is, 9i 2 IN;8j �i; dj = di.Lemma 1. The limit dF of every 
haoti
 iteration of a set of operators F fromd � D is the downward 
losure of d by F .Proof. Let d0; d1; d2; : : : be a 
haoti
 iteration of F from d with respe
t tof1; f2; : : :[CL # (d; F ) � dF ℄ For ea
h i, CL # (d; F ) � di, by indu
tion: CL # (d; F ) �d0 = d. Assume CL # (d; F ) � di, CL # (d; F ) � f i+1(CL # (d; F )) � f i+1(di)by monotoni
ity. Thus, CL # (d; F ) � di \ f i+1(di) = di+1.[dF � CL # (d; F )℄ There exists k 2 IN su
h that dF = dk be
ause � is awell-founded ordering. The iteration is 
haoti
, hen
e dk is a 
ommon �x-pointof the set of operators asso
iated with F , thus dk � CL # (d; F ) (the greatest
ommon �x-point).In order to obtain a 
losure, it is not ne
essary to have a 
haoti
 iteration.Indeed, sin
e restri
tion operators are 
onstant fun
tions, they 
an be apply onlyon
e.Lemma 2. dL[R = CL # (CL # (d;R); L)Proof. dL[R = CL # (d; L [ R) by lemma 1 and CL # (d; L [ R) = CL # (CL #(d;R); L) be
ause operators of R are 
onstant fun
tions.As said above, we have 
onsidered in this se
tion a 
omputation in a singlebran
h of a labeling sear
h tree. This formalization is extended in the nextse
tion in order to take the whole sear
h tree into a

ount.4 Sear
h treeA labeling on a variable 
an be viewed as the passage from a problem to a setof problems. The previous se
tion has treated the passage from this problem toone of its sub-problems thanks to a restri
tion operator. In order to 
onsider thewhole set of possible values for the labeling on a variable, restri
tion operatorson a same variable must be grouped together. The union of the environmentsof the variable (the variable 
on
erned by the labeling) of ea
h sub-problemobtained by the appli
ation of ea
h of these operators must be a partition of theenvironment of the variable in the initial problem.



7De�nition 8. A set fdi j 1 � i � ng is a partition of d on x if:{ 8i; 1 � i � n; djV nfxg � dijV nfxg,{ djfxg � [1�i�ndijfxg,{ 8i; j; 1 � i � n; 1 � j � n; i 6= j; dijfxg \ dj jfxg = ;.In pra
ti
e, environment redu
tions by lo
al 
onsisten
y operators and label-ing are interleaved to be the most eÆ
ient.A labeling on x 2 V 
an be a 
omplete enumeration (ea
h environment ofthe partition is redu
ed to a singleton) or a splitting. Note that the partitionsalways verify: 8i; 1 � i � n; dijfxg 6= ;.Example 4. fD jV nfPMg[f(PM; 1)g; D jV nfPMg[f(PM; 2)g; D jV nfPMg[f(PM; 3)gis a partition of D . �Next lemma ensures that no solution is lost during a labeling step (ea
hsolution will remain in exa
tly one bran
h of the sear
h tree de�ned later).Lemma 3. If t � d is a solution of the CSP and fdi j 1 � i � ng is a partitionof d then t � [1�i�nCL # (di; L).Proof. straightforward.Ea
h node of a sear
h tree 
an be 
hara
terized by a quadruple 
ontaining theenvironment d (whi
h have been 
omputed up to now), the depth p in the tree,the operator f (lo
al 
onsisten
y operator or restri
tion operator) 
onne
tingit with its father and the restri
ted environment e. The restri
ted environmentis obtained from the initial environment when only the restri
ted operators areapplied.De�nition 9. A sear
h node is a quadruple (d; e; f; p) with d; e 2 P(D ), f 2F [ f?g and p 2 IN.The depth and the restri
ted environment allow to lo
alize the node in thesear
h tree.There exists two kinds of transition in a sear
h tree: those 
aused by a lo
al
onsisten
y operator whi
h ensure the passage to one only son and the transi-tions 
aused by a labeling whi
h ensure the passage to some sons (as many asenvironments in the partition).De�nition 10. A sear
h tree is a tree for whi
h ea
h node is a sear
h stepindu
tively de�ned by:{ (D ; D ;?; 0) is the root of the tree,{ if (d; e; op; p) is a non leave node then it has:� one son: (d \ f(d); e; f; p+ 1) with f 2 L;� n sons: (d\ fi(d); e\ fi(d); fi; p+1) with ffi(d) j 1 � i � ng a partitionof d and fi 2 R.De�nition 11. A sear
h tree is said 
omplete if ea
h leaf (d; e; f; p) is su
hthat: d = CL # (e; L).This se
tion has formally des
ribed the 
omputation of solvers in terms ofsear
h trees. Ea
h bran
h is an iteration of operators.



85 Value withdrawal explanationsThis se
tion is devoted to value withdrawal explanations. These explanationsare de�ned as trees whi
h 
an be extra
ted from a 
omputation. First, rulesare asso
iated with lo
al 
onsisten
y operators, restri
tion operators and thelabeling pro
ess. Explanations are then de�ned from a system of su
h rules [1℄.From now on we 
onsider a �xed CSP and a �xed 
omputation. The setof lo
al 
onsisten
y operators is denoted by L and the set of restri
tion opera-tors by R. The labeling introdu
es a notion of 
ontext based on the restri
tedenvironments of the sear
h node. The following notation is used: � ` h with� � P(D ) and h 2 D . � is named a 
ontext.Intuitively, � ` h means 8e 2 �; h 62 CL # (e; L [ R). A � is an union ofrestri
ted environments, that is ea
h e 2 � 
orresponds to a bran
h of the sear
htree. If an element h is removed in di�erent bran
hes of the sear
h tree, then a
ontext for h may 
ontain all these bran
hes.5.1 RulesThe de�nition of explanations is based on three kinds of rules. These rules explainthe removal of a value as the 
onsequen
e of other value removals or as the
onsequen
e of a labeling.First kind of rule is asso
iated with a lo
al 
onsisten
y operator. Indeed, su
han operator 
an be de�ned by a system of rules [1℄. If the type of this operatoris (Win ;Wout), ea
h rule explains the removal of a value in the environment ofWout as the 
onsequen
e of the la
k of values in the environment of Win .De�nition 12. The set of lo
al 
onsisten
y rules asso
iated with l 2 L is:� ` h1 : : : � ` hnRl = f j � � P(D );8d � D ; h1 ; : : : ; hn 62 d) h 62 l(d)g� ` hIntuitively, these rules explain the propagation me
hanism. Using its nota-tion, the de�nition 12 justi�es the removal of h by the removals of h1; : : : ; hn.Example 5. 8e 2 D , the rulefeg ` (PM; 2) feg ` (PM; 3)feg ` (AM; 1)is asso
iated with the lo
al 
onsisten
y operator of type (fPMg; fAMg) (for the
onstraint AM 6= PM). �As said above, the 
ontext is only 
on
erned by labeling. So, here, the ruledoes not modify it. Note that if we restri
t ourselves to solving by 
onsisten
yte
hniques alone (that is without any labeling), then the 
ontext will always bethe initial environment and 
an be forgotten [7℄.From now on, we 
onsider RL = [l2LRl.



9The se
ond kind of rules is asso
iated with restri
tion operators. In this 
asethe removal of a value is not the 
onsequen
e of any other removal and so theserules are fa
ts.De�nition 13. The set of restri
tion rules asso
iated with r 2 R is:Rr = f j h 62 r(D ); d � r(D )gfdg ` hThese rules provide the values whi
h are removed by a restri
tion.Example 6. The set of restri
tion rules asso
iated with the restri
tion operatorr su
h that 8d 2 D ; r(d) = D jV nfPMg [ f(PM; 1)g is:f , g with e1 � r(D ).fe1g ` (PM; 2) fe1g ` (PM; 3) �This restri
tion ensures the 
omputation goes to in a bran
h of the sear
htree and must be memorized be
ause future removals may be true only in thisbran
h. The 
ontext is modi�ed in order to remember that the 
omputation isin this bran
h.From now on, we 
onsider RR = [r2RRr.The last kind of rule 
orresponds to the reunion of information 
oming fromseveral bran
hes of the sear
h tree.De�nition 14. The set of labeling rules for h 2 D is de�ned by:�1 ` h : : : �n ` hRh = f j �1; : : : ; �n � P(D )g�1 [ : : : [ �n ` hIntuitively, if the value h has been removed in several bran
hes, 
orrespondingto the 
ontexts �1; : : : ; �n, then a unique 
ontext 
an be asso
iated with h: this
ontext is the union of these 
ontexts.Example 7. For all e1; e2; e3 2 D , fe1g ` (MP; 2) fe2g ` (MP; 2) fe3g ` (MP; 2)fe1g [ fe2g [ fe3g ` (MP; 2) isa labeling rule.From now on, we 
onsider RD = [h2DRh.The system of rules RL [RR [RD 
an now be used to build explanations ofvalue withdrawal.5.2 Proof treesIn this se
tion, proof trees are des
ribed from the rules of the previous se
tion.It is proved that there exists su
h a proof tree for ea
h element whi
h is removedduring a 
omputation. And �nally, it is shown how to obtain these proof trees.



10De�nition 15. A proof tree with respe
t to a set of rules RL [ RR [ RD is a�nite tree su
h that, for ea
h node labeled by � ` h, if B is the set of labels ofits 
hildren, then B 2 RL [ RR [ RD .� ` hNext theorem ensures that there exists a proof tree for ea
h element whi
his removed during a 
omputation.Theorem 1. � ` h is the root of a proof tree if and only if 8e 2 �; h 62 CL #(e;R).Proof. ): indu
tively on ea
h kind of rule:{ for lo
al 
onsisten
y rules, if 8i; 1 � i � n; hi 62 CL # (ei; R) then hi 62CL # (e1 \ : : : \ en; R) and so (be
ause h  fh1; : : : ; hng 2 R) h 62 CL #(fe1 \ : : : \ eng; R);{ for restri
tion rules, h 62 e so h 62 CL # (e;R);{ straightforward for labeling rules.(: if 8i; 1 � i � n; h 62 CL # (ei; R) then ([6℄) there exists a proof tree rootedby h for ea
h ei. So, with 
ontext notion, 8i; 1 � i � n; feig ` h is the root ofa proof tree. Thus, thanks to the labeling rule, fe1; : : : ; eng ` h is the root of aproof tree.Last part of the se
tion is devoted to show how to obtain these trees from a
omputation, that is from a sear
h tree.Let us re
all that 
ons(h; T ) is the tree rooted by h and with the set ofsub-trees T . The traversal of the sear
h tree in depth �rst. Ea
h bran
h 
anthen be 
onsidered separately. The des
ent in ea
h bran
h 
an be viewed as aniteration of lo
al 
onsisten
y operators and restri
tion operators. During thisdes
ent, proof trees are indu
tively built thanks to the rules asso
iated withthese two kind of operators (labeling rules are not ne
essary for the moment).Ea
h node being identi�ed by its depth, the set of trees asso
iated with the node(dp; ep; fp; p) is denoted by Sp#.These sets are indu
tively de�ned as follows:{ S0#= ;;{ if fp+1 2 R then: froot(t) j t 2 TgSp+1#= Sp# [f
ons(fepg ` h; T ) j T � Sp#; h 2 dp; 2 Rfp+1gfepg ` h{ if fp+1 2 L then:Sp+1#= Sp# [f
ons(fep+1g ` h; ;) j h 2 dp; 2 Rfp+1gfep+1g ` h



11To ea
h node (d; e; f; p) is then asso
iated a set of proof tree denoted byS# (d; e; f; p).A se
ond phase 
onsists in 
limbing these sets to the root, grouping togetherthe trees rooted by a same element but with di�erent 
ontexts. To ea
h node(d; e; f; p) is asso
iated a new set of proof trees S" (d; e; f; p). This set is indu
-tively de�ned:{ if (d; e; f; p) is a leaf then S" (d; e; f; p) = S# (d; e; f; p);{ if l 2 L then S" (d; e; f; p) = S# (d [ l(d); e; l; p+ 1);{ if fri(d) j 1 � i � ng is a partition of d then S" (d; e; f; p) = S [ S0 withS = [1�i�nS" (d \ ri(d); e \ ri(
); ri; p+ 1) andfroot(t) j t 2 TgS0 = f
ons(� ` h; T ) j 2 RD ; T � Sg.� ` hCorollary 1. If the sear
h tree rooted by (D ; D ;?; 0) is 
omplete then froot(t) jt 2 S" (D ; D ;?; 0)g = f� ` h j 8e 2 �; h 62 CL # (e; L)g.Proof. by theorem 1.These proof trees are explanations for the removal of their root.Example 8. An explanation for the withdrawal of the value 2 from the domainof MP 
an be:fe1g ` (PM; 2) fe1g ` (PM; 3)fe1g ` (AM; 1) fe2g ` (PM; 1) fe3g ` (PM; 1)fe1g ` (MP; 2) fe2g ` (MP; 2) fe3g ` (MP; 2)fe1g [ fe2g [ fe3g ` (MP; 2)with e1, e2 and e3 su
h that:{ e1 = D jV nfPMg [ f(PM; 1)g{ e2 = D jV nfPMg [ f(PM; 2)g{ e3 = D jV nfPMg [ f(PM; 3)gThis tree must be understood as follows: the restri
tion of the sear
h spa
e toe1 eliminates the values 2 and 3 of PM. Sin
e AM 6= PM, the value 1 is removedof AM. And sin
e MP > AM, the value 2 is removed of MP. In the same way,the value 2 is also removed of MP with the restri
tion e2 and e3. And �nally,the root ensures that this value is removed in ea
h of these bran
hes. �The size of explanations strongly depends on the 
onsisten
y used, the sizeof the domains and the type of 
onstraint. Note that even if the width of expla-nations is large, their height remains 
orre
t in general. It is important to re
allthat these explanations are a theoreti
al tool. So, an implementation 
ould bemore eÆ
ient.



126 Interest for Programming EnvironmentsThe understanding of solvers 
omputation provided by the explanations is an in-teresting sour
e of information for 
onstraint (logi
) programming environments.Moreover, explanations have already been used in several ones. The theoreti
almodel of value withdrawal explanation given in the paper 
an therefore be aninteresting tool for 
onstraint (logi
) programming environments.The main appli
ation using explanations 
on
erns over-
onstrained problems.In these problems, the user is interesting in information about the failure, thatis to visualize the set of 
onstraints responsible for this failure. He 
an thereforerelax one of them and may obtain a solution.In the PaLM system, a 
onstraint retra
tion algorithm have been imple-mented thanks to explanations. Indeed, for ea
h value removed from the envi-ronment, there exists an explanation set 
ontaining the operators responsiblefor the removal. So, to retra
t a 
onstraint 
onsists in two main steps: to re-introdu
e the values whi
h 
ontain an operator asso
iated with the retra
ted
onstraint in their explanation, and to wake up all the operators whi
h 
an re-move a re-introdu
ed value, that is whi
h are de�ned by a rule having su
h avalue as head. The theoreti
al approa
h of the explanations have permitted toprove the 
orre
tness of this algorithm based on explanations. There did notexist any proof of it whereas the one we propose is immediate. Furthermore, thisapproa
h have proved the 
orre
tness of a large family of 
onstraints retra
tionalgorithms used in others 
onstraints environments and not only the one basedon explanations.The interest for explanations in debugging is growing. Indeed, to debug aprogram is to look for something whi
h is not 
orre
t in a solver 
omputation.So, the information about the 
omputation given by the explanations 
an bevery pre
ious.They have already been used for failure analysis. In 
onstraint programming,a failure is 
hara
terized by an empty domain. A failure explanation is then aset of explanations (one explanation for ea
h value of the empty domain). Notethat in the PaLM system, labeling has been repla
ed by dynami
 ba
ktra
kingbased on the 
ombination of failure explanation and 
onstraint retra
tion.An interesting perspe
tive seems to be the use of explanations for the de
lar-ative debugging of 
onstraint programs. Indeed, when a symptom of error (amissing solution) appears after a 
onstraint solving, explanations 
an help to�nd the error (the 
onstraint responsible for the symptom). For example, if auser expe
ts a solution 
ontaining the value v for a variable x but does not obtainany su
h solution, an explanation for the removal of (x; v) is a useful stru
ture tolo
alize the error. The idea is to go up in the tree from the root (the symptom)to a node (the minimal symptom) for whi
h ea
h son is 
orre
t. The error isthen the 
onstraint whi
h ensures the passage between the node and its sons.The theoreti
al model given in the paper will, I wish, bring new ideas andsolutions for the debugging in 
onstraint programming and other environments.



137 Con
lusionThe paper was devoted to the de�nition of value withdrawal explanations. Theprevious notions of explanations (theoreti
ally des
ribed in [7℄) only dealt withdomain redu
tion by lo
al 
onsisten
y notions. Here, the notion of labeling havebeen fully integrated in the model.A solver 
omputation is formalized by a sear
h tree where ea
h bran
h isan iteration of operators. These operators 
an be lo
al 
onsisten
y operators orrestri
tion operators. Ea
h operator is de�ned by a set of rules des
ribing theremoval of a value as the 
onsequen
e of the removal of other values. Finally,proof trees are built thanks to these rules. These proof trees are explanationsfor the removal of a value (their root).The interest in explanations for 
onstraint (logi
) programming environmentis undoubtedly. The theoreti
al model proposed here have already validate somealgorithms used in some environments and will, I wish, bring new ideas and solu-tions for 
onstraint (logi
) programming environments, in parti
ular debuggingof 
onstraint programs.Referen
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