Almost sure asymptotics for the random binary search tree - Archive ouverte HAL
Communication Dans Un Congrès Discrete Mathematics and Theoretical Computer Science Année : 2010

Almost sure asymptotics for the random binary search tree

Résumé

We consider a (random permutation model) binary search tree with $n$ nodes and give asymptotics on the $\log$ $\log$ scale for the height $H_n$ and saturation level $h_n$ of the tree as $n \to \infty$, both almost surely and in probability. We then consider the number $F_n$ of particles at level $H_n$ at time $n$, and show that $F_n$ is unbounded almost surely.
Fichier principal
Vignette du fichier
dmAM0139.pdf (346.26 Ko) Télécharger le fichier
Origine Fichiers éditeurs autorisés sur une archive ouverte
Loading...

Dates et versions

hal-00459166 , version 1 (20-08-2015)

Identifiants

Citer

Matthew I. Roberts. Almost sure asymptotics for the random binary search tree. 21st International Meeting on Probabilistic, Combinatorial, and Asymptotic Methods in the Analysis of Algorithms (AofA'10), 2010, Vienna, Austria. pp.565-576, ⟨10.46298/dmtcs.2775⟩. ⟨hal-00459166⟩
146 Consultations
681 Téléchargements

Altmetric

Partager

More