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A GARSIDE PRESENTATION FOR ARTIN-TITS GROUPS OF TYPE C̃n

F. DIGNE

Abstract. We prove that an Artin-Tits group of type C̃ is the group of fractions of a Garside
monoid, analogous to the known dual monoids associated with Artin-Tits groups of spherical
type and obtained by the “generated group” method. This answers, in this particular case, a
general question on Artin-Tits groups, gives a new presentation of an Artin-Tits group of type
C̃, and has consequences for the word problem, the computation of some centralizers or the
triviality of the center. A key point of the proof is to show that this group is a group of fixed
points in an Artin-Tits group of type Ã under an involution. Another important point is the
study of the Hurwitz action of the usual braid group on the decomposition of a Coxeter element
into a product of reflections.

1. Introduction

The aim of this paper is to define a Garside structure on the Artin-Tits group of type
C̃n. A Garside structure on a group means that this group is the group of fractions of a
Garside monoid. A Garside monoid is a monoid for which the two posets given by right or
left divisibility have nice properties. In particular these two posets are lattices: there exist
least common multiples and greatest common divisors, and moreover these two lattices have a
common sublattice which generates the monoid and has a greatest element for both orders, the
Garside element (see Definition 2.3 below). It is known that all Artin-Tits groups of spherical
type have two nice Garside structures given respectively by the classical monoid, obtained by
generating the Artin-Tits group by lifts of the simple reflections, and the dual monoid (see [2]),
obtained by generating the Artin-Tits group by elements lifting all reflections which divide (see
below beginning of Section 3) a given Coxeter element. In the case of non-spherical Artin-Tits
groups the classical Artin-Tits monoid exists but is only locally Garside (i.e., two elements have
not always a common multiple, in particular there is no Garside element). An open question
in general is the existence of a dual Garside structure for general Artin-Tits groups. Such a
structure is known for type Ã and it has been conjectured by John Crisp and Jon McCammond
that no Artin-Tits group of affine type other than type Ã and maybe C̃ can have such a
structure. A Garside structure provides normal forms for the elements of the group and is a
tool for solving the word problem. It also allows to compute centralisers of periodic elements
(roots of powers of the Garside element).

To get a dual Garside structure for an Artin-Tits group of type C̃n, we shall view this group
as the group of fixed points under an involution in an Artin-Tits group of type Ã2n−1. In [10]
this last group has been shown to be the group of fractions of several monoids only one of which,
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2 F. DIGNE

up to automorphism, is Garside, but unfortunately this one is not stable by the involution. On
the other hand only one of these non-Garside monoids, up to automorphism, is stable by the
involution. We show that by taking fixed points in this last monoid one gets a Garside structure
for C̃n.

The paper is organised as follows. In Section 2 we introduce Garside monoids and give
methods for getting a Garside monoid from a partially defined product on a subset called a
germ. In Section 3 we recall and improve results from [10] on presentations of Artin-Tits groups
of type Ã. In Section 4 we get a Garside structure from the fixed points of an involution in
a Garside group of type Ã. In Section 5 we show that an Artin-Tits group of type C̃ can be
seen as a group of fixed points in an Artin-Tits group of type Ã. In Section 6 we show that the
Garside structure we have got in Section 4 can be obtained by the method of the “generated
group” of [2, 0.4]. In Section 7 we prove that the group of fractions of our Garside monoid is the
Artin-Tits group of type C̃n and we give a a dual presentation of this group similar to what has
been done in [2], [3] and [10] for the other known dual monoids, where the generators are in one-
to-one correspondence with a set of reflections in the Coxeter group. One of the intermediate
results is that the Hurwitz action is transitive on the set of shortest decompositions of a Coxeter
element of W (C̃n) into a product of reflections. The analogous property is known for all finite
Coxeter groups ([2, 2.1.4]), for all well-generated complex reflexion groups ([1, 7.5]), for Coxeter

groups of type Ã ([10, 3.4]) and is conjectured to be true for all Coxeter groups. In section 8
we deduce from the Garside structure the centralizer of a power of a lift of a Coxeter element
in the Artin-Tits group.

I thank Eddy Godelle for having carefully read a preliminary version of this paper, allowing
me to fix an error in one of the proofs.

2. Germs, Garside groups

In this section we recall some definition and results on Garside monoids and groups.

Definition 2.1 ([11]). (i) A germ of monoid is a set P endowed with a partially defined
product (x, y) 7→ xy, which has a unit, i.e., an element 1 such that 1p and p1 are
defined and equal to p for any p ∈ P .

(ii) A germ is associative if for any a, b, c in P such that one of the products a(bc) or (ab)c
is defined then the other one is also defined and both products are equal.

(iii) A germ is left (resp. right) cancellative if ab = ac (resp. ba = ca) implies b = c. It is
cancellative if it is cancellative on both sides.

We say that an element a of a germ P left divides an element b ∈ P if there exists c ∈ P
such that b = ac. Right divisibility is defined similarly. In an associative germ right and left
divisibility are preorder relations. They are order relations if moreover the germ is cancellative
and there is no invertible element different from 1.

Definition 2.2. An associative germ is said to be left (resp. right) Noetherian if there is no
strictly decreasing infinite sequence for left (resp. right) divisibility. It is called Noetherian if it
is both left and right Noetherian.

Note that in a Noetherian germ there is no non-trivial invertible element. Note also that
to be left (resp. right) Noetherian is equivalent to the fact that there is no strictly increasing
bounded infinite sequence for right (resp. left) divisibility.
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A morphism from a germ to a monoid is a map which sends the (partial) product on P to
the product in the monoid, and the unit of P to the unit of the monoid. The monoid M(P )
(resp. group G(P )) defined by a germ P is the monoid (resp. group) which has the universal
property that it factorizes any morphism from P to a monoid (resp. group). In other words it
is the monoid (resp. group) generated by P with only relations the relations given by equalities
of products in P . It is known ([11, 3.5]) that P injects into M(P ) and is stable by left and
right divisibility in M(P ). The following definition is the definition of Garsideness that we will
use in the present paper (for small variations and generalizations of this definition see [9], [8]
and [11]).

Definition 2.3. • We say that a monoid is Garside if it is cancellative, Noetherian, if it
is a lattice for both left and right divisibility and if there exists an element ∆ (called a
Garside element) whose sets of right and left divisors coincide and generate the monoid.

• A group is Garside if it is generated by a submonoid which is a Garside monoid.

Note that here we do not assume the set of divisors of ∆ to be finite. When this set is
infinite what we call here a Garside monoid (resp. group) is what is usually called a quasi-
Garside monoid (resp. group). A general reference for Garside monoids can be [11]. The
following result is a combination of [11, 3.31, 5.4 and 5.5].

Proposition 2.4. Let P be an associative Noetherian germ satisfying the following properties:

(i) two elements of P have a least right common multiple in P ;
(ii) for all m ∈ M(P ), and a, b in P , if am = bm or ma = mb, then a = b;
(iii) the elements of P have a both left and right common multiple ∆ ∈ P .

then M(P ) is a Garside monoid with Garside element ∆.

Conversely, in a Garside monoid M the divisors of the Garside element form a germ P
satisfying the above properties and such that the canonical mapM(P ) → M is an isomorphism.

Definition 2.5. A germ satisfying the assumptions of 2.4 is called a Garside germ.

Given a Garside germ P , elements in M(P ) have normal forms: any element can be written
uniquely p1p2 . . . pk with pi ∈ P such that pi is the greatest element for left divisibility dividing
pipi+1 . . . pk. In the (Garside) group of a Garside monoid M with Garside element ∆ any
element can be written as ∆kx with x ∈ M and k ∈ Z.

We will use proposition 2.4 through its following corollary. Before stating this corollary we
need:

Definition 2.6. An automorphism of a germ P is a bijection f : P → P mapping the unit to the
unit and such that ab is defined if and only if f(a)f(b) is defined, in which case f(ab) = f(a)f(b).

Corollary 2.7. Let P be an associative and Noetherian germ having a (unique) both left and
right common multiple ∆; assume that M(P ) is cancellative and that P has an automorphism
σ such that any two elements of P have a unique minimal σ-stable common right multiple; then
P σ is a Garside germ.

Proof. It is clear that P σ is an associative and Noetherian germ. We get the result by proving
that P σ satisfies the assumptions of Proposition 2.4. Since P is cancellative, if x, y ∈ P σ are
such that x divides y in P then x divides y in P σ. Hence the assumption of the corollary implies
that any two elements of P σ have an lcm in P σ, whence (i).
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The inclusion P σ → M(P ) extends to a morphismM(P σ) → M(P ). If am = bm orma = mb
as in (ii), taking the images in M(P ) we get a = b, since M(P ) is cancellative, whence (ii).

Unicity of ∆ as the maximal element of P implies ∆ ∈ P σ, hence ∆ is a common right and
left multiple of P σ, whence (iii). �

3. The monoids of type Ã2n−1

Before applying the previous results to Artin-Tits groups of type C̃n, we need to recall the
presentation of an Artin-Tits group of type Ã given in [10] as group of fractions of the monoid
M(P ) generated by an associative germ P .

We recall first a general method for constructing a germ. Given a group G generated as a
monoid by a set S, i.e., any element of G is a product of elements of S, without inverses, we
let lS be the length on G with respect to S: the length of g ∈ G is the length of a shortest
expression of g as a product of elements of S. We say that a ∈ G left divides b ∈ G, denoted by
a 4G b if lS(a) + lS(a

−1b) = lS(b), and similarly for right divisibility. Starting with a balanced
element δ (an element which has the same set of right and left divisors), we call D the set of (left
or right) divisors of δ. Then D is a germ, the product of a and b in D being defined and equal
to ab if ab ∈ D and lS(ab) = lS(a) + lS(b). Associated to this germ we have a monoid M(D)
and a group G(D). If D is a lattice then M(D) is a Garside monoid with Garside element δ
(result due to J. Michel, see [2, Theorem 0.5.2]). We call this construction the method of the
“generated group”. This construction starting with any finite Coxeter group, its set of Coxeter
generators and taking the longest element for δ, gives the associated Artin-Tits monoid (or
group). Starting with a finite Coxeter group with set of generators all reflections it gives the
dual monoid if we take for δ any Coxeter element. Starting with a Coxeter element and all
reflections in a Coxeter group of type Ã it gives the monoids M(P ) that we describe in this
section. For these results see [2],[10] and [11].

We see a Coxeter group of type Ã as a subgroup of the periodic permutations of Z. We need
some notation.

Definition 3.1. (i) A permutation w of Z is said to be n-periodic if w(i+ n) = w(i) + n
for any i ∈ Z.

(ii) A cycle is an n-periodic permutation which has precisely one orbit up to translation by
n. We say that a cycle is finite if its orbits are finite. We call length of a cycle the
cardinality of one of its orbits. We call support of a permutation w the union of its
non-trivial orbits.

Any n-periodic permutation of Z can be written uniquely as a product of disjoint cycles.
There are two types of cycles: either all the orbits are finite, or all the non-trivial orbits are
infinite. In the former case we will represent the cycle by one of its non-trivial orbits; in the
latter case we will represent a cycle as (a1, a2, . . . , ak)[h], with all ai distinct modulo n, meaning
that the image of ai is ai+1 for 0 ≤ i < k and the image of ak is a1 + nh (this cycle has |h|
non trivial orbits). To each n-periodic permutation w of Z we can associate its total shift
1

n

∑x=n
x=1 (w(x)− x). We recall the following facts:

Proposition 3.2. The Coxeter group W (Ãn−1) of type Ãn−1 is isomorphic to the group of

n-periodic permutations of Z with total shift equal to 0. The reflections of W (Ãn−1) correspond
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to the permutations (a, b) with a and b distinct modulo n. The simple reflections are the permu-
tations si = (i, i + 1) for i = 1, 2, . . . , n. The reflections si and sj commute unless i− j = ±1
(mod n) in which case their product has order 3.

In [10] a germ generating the Artin-Tits group of type Ãn−1 is defined for each partition of Z
into two non-empty subsets X and Ξ stable by translation by n; such a partition corresponds
to the choice of a Coxeter element. To recall this construction we need the following definitions.
A graphical representation of these definitions will be given after Definition 3.6 We make the
convention that Latin letters denote elements of X and Greek letters elements of Ξ.

Definition 3.3. We say that a cycle is positive and self non-crossing if it has one of the
following forms: (a1, a2, . . . , ak, α1, α2, . . . , αl) or (a1, a2, . . . , ak)[1] or (α1, α2, . . . , αl)[−1] with
ai ∈ X, αj ∈ Ξ satisfying the conditions a1 < a2 < . . . < ak < a1+n and α1 > α2 > . . . > αl >
α1 − n.

Definition 3.4. We say that two positive self non-crossing cycles are non-crossing if they
satisfy one of the following:

(i) One of them is of the form (a1, a2, . . . , ak) or (a1, a2, . . . , ak)[1] and the other one
(α1, α2, . . . , αl) or (α1, α2, . . . , αl)[−1].

(ii) One of them is of the form (a1, a2, . . . , ak, α1, α2, . . . , αl), and the other (b1, . . . , bq, β1, . . . , βr)
with k, l, q, r > 0, ak < bi < a1 + n for all i and αl < βi < α1 + n for all i.

(iii) One of them is of the form (a1, a2, . . . , ak, α1, α2, . . . , αl) with k, l ≥ 0, and the other
one (b1, . . . , bm) (resp. (β1, . . . , βm)) with aj < bi < aj+1 for some j and all i (resp.
αj+1 < βi < αj for some j and all i), where in this condition we put ak+1 = a1+n and
αl+1 = α1 − n, (there is no condition on bi if k = 0 and no condition on βi if l = 0).

(iv) One of them is of the form (a1, a2, . . . , ak)[1] or (α1, α2, . . . , αk)[−1] with k > 0 and
the other one (b1, . . . , bm) (resp. (β1, . . . , βm)) with aj < bi < aj+1 for some j and all i
(resp. αj+1 < βi < αj for some j and all i), where in this condition we put ak+1 = a1+n
and αk+1 = α1 − n.

Definition 3.5. We say that a periodic permutation of Z is positive and self non-crossing if it
is the product of disjoint positive self non-crossing and pairwise non-crossing cycles.

Note that a finite cycle has total shift 0. Note also that a periodic positive self non-crossing
permutation of Z has at most 2 infinite cycles, one in X and one in Ξ and that, if it has total
shift 0, it has either 0 or 2 infinite cycles.

Definition 3.6. We call pseudo-cycle a positive self non-crossing n-periodic permutation of Z
which is the product of two infinite disjoint cycles.

A pseudo-cycle is a permutation (a1, . . . , ah)[1](α1, α2, . . . , αl)[−1] with the ai in X , the αi in
Ξ and a1 < a2 < . . . < ah < a1 + n, α1 > α2 > . . . > αn > α1 − n. A pseudo-cycle has total
shift 0.

We now give a graphical representation of the above definitions (see Figure 1 and Figure 2;
in these figures we have taken n = 9, and modulo n there are 5 elements in X and 4 in Ξ).
Consider two parallel oriented lines D and ∆ in the plane, with same orientation. On D we put
a discrete set of points in one-to-one ordered correspondence with X and on ∆ we put a discrete
set of points in one-to-one ordered correspondence with Ξ. Let S be the strip delimited in the
plane by D and ∆. We associate to a permutation w of Z a union of oriented paths (one for
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Figure 1. The 9-periodic cycle (5, 7, 8, 3, 2)
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Figure 2. The 9-periodic pseudo-cycle (5, 7, 8)[1](3, 2)[−1]

each orbit of w) contained in the strip S joining i to w(i) for all i, up to homotopy in the strip.
A cycle is positive self non-crossing if it can be represented by a union of disjoint oriented paths
such that each of them intersects X (resp. Ξ) along an increasing (resp. decreasing) or empty
subsequence. Two positive self non-crossing cycles are non-crossing if they can be represented
by two unions of paths which do not cross each other. Other figures (with n = 10) can be found
in Section 6.

Following [10] we now describe the germ P associated to the X and Ξ. The elements of P are
the n-periodic positive self non-crossing permutations. The permutation c given by xi 7→ xi+1

and ξi 7→ ξi−1 where X = (xi)i∈Z and Ξ = (ξi)i∈Z with xi < xi+1 and ξi < ξi+1, is a Coxeter

element of W (Ãn−1) and the elements of P are precisely the left (or right) divisors of c (see [10,
Proposition 2.19]). The germ is obtained by the method of the generated group described at
the beginning of this section, hence the product of two elements w and w′ of P is defined in P
if the product ww′ of the permutations is in P and if lÃn−1

(ww′) = lÃn−1
(w) + lÃn−1

(w′) where

lÃn−1
is the length in W (Ãn−1) with respect to the generating set consisting of all reflections.

We will give below an equivalent and more tractable condition.
By general results P is an associative, cancellative and Noetherian germ, the monoid M(P )

embeds in the group G(P ) and any element G(P ) can be written a−1b with a and b in M(P ).
Since the length lÃn−1

is invariant by conjugation, right and left divisibility in P coincide.

The following is proved in [10, Theorem 4.1].

Proposition 3.7. The group G(P ) is isomorphic to the Artin-Tits group of type Ãn−1.

Note that by [10, Proposition 5.5] P is a Garside germ if and only if either X or Ξ contains
exactly one element modulo n.

We now give a more tractable definition of divisibility in P . To each element w ∈ P we
associate the partition pw of Z whose parts are the finite orbits of w and the union of the two
infinite orbits of w if they exist. Such a partition is invariant by translation by n. We say that
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it is periodic. Moreover such a partition has at most one infinite part and this infinite part
must meet both X and Ξ. Also such a partition is non-crossing in the following sense:

Definition 3.8. • Two subsets A and B of X ∪ Ξ are non-crossing if for any a, a′ ∈ A
and any b, b′ ∈ B there exist in the strip S a path γ from a to a′ and a path δ from b
to b′ such that γ and δ have an empty intersection.

• We say that a partition is non-crossing if any two of its parts are non-crossing.

By [10, Corollary 2.22] w 7→ pw is a bijection from P onto the set of non-crossing periodic
partitions of Z such that any infinite part meets both X and Ξ. Such a partition can have at
most one infinite part. We order P by divisibility and the set of partitions by refinement. Note
that the largest element of P for the divisibility order is c and that pc is the partition with only
one part.

Proposition 3.9. The bijection w 7→ pw is an isomorphism of ordered sets.

Proof. Let v, w ∈ P . We write v and w as products v = v1 . . . vk and w = w1 . . . wl where each
vi and each wi is either a a positive self non-crossing finite cycle (see Definition 3.1(ii)) or is a
pseudo-cycle (see Definition 3.6) and the vi (resp. the wi) are pairwise non-crossing.

By [10, Lemma 2.20] a reflection of P divides w in W (Ãn) if and only if its support is a
subset of the support of wi for some i. Now the following lemma (see [10, Corollary 2.9]) shows
that any vi can be written as a product r1r2 . . . rh in P of reflections whose union of supports
is the support of vi and such that the supports of ri and ri+1 have a non-empty intersection.

Lemma 3.10. The two following formulas give shortest decompositions of a finite cycle and of
a pseudo-cycle respectively into products of reflections of Ãn−1.

(a1, a2, . . . , ah) = (a1, a2)(a2, a3) . . . (ah−1ah)

(a1, . . . , ah)[1](α1, α2, . . . , αl)[−1] =

(a1, a2)(a2, a3) . . . (ah−1, ah)(ah, α1)(ah, n+ α1)(α1, α2)(α2, α3) . . . (αl−1, αl)

Proof. By [10, 2.8] we know that lÃn−1
((a1, . . . , ah)[1](α1, α2, . . . , αl)[−1]) = h + l and that

lÃn−1
((a1, a2, . . . , ah)) = h− 1. �

Assume that v = v1 . . . vk divides w in P ; fix i and let us we write vi = r1 . . . rh as above.
Then every rj divides w so its support must be a subset of the support of some ws. But since
the supports of rj and rj+1 have a non-empty intersection, they have to be included in the
support of the same ws, so that the whole support of vi is a subset of the support of some ws.
This, being true for all i, means that pv is finer than pw.

Conversely, assume that pv is finer than pw. We prove by induction on lÃn−1
(v) that v divides

w in P . If v is trivial the result is true. If v is not trivial, there exists a reflection s dividing
v, so that the support of s is included in the support of some vi. Hence the support of s is
also included in the support of some wj, so that s divides w. Put v = sv′ and w = sw′; then
v divides w if and only if v′ divides w′. We will be done by induction if we prove that pv′ is
finer than pw′. We have seen that s divides a cycle or a pseudo-cycle vi of v and a cycle or
pseudo-cycle wj of w. Since disjoint cycles and pseudo-cycles commute we may assume that
s divides v1 and w1. We have only to show that pv′

1
is finer than pw′

1
where v1 = sv′1 and

w1 = sw′
1. This will be a consequence of the following lemma:
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Lemma 3.11. Let u ∈ P be a finite cycle or a pseudo-cycle and let s be a reflection dividing
u in P . We put u = su′.

• If u = (a1, a2, . . . , ah) ∈ P is a finite cycle (with ai ∈ X ∪ Ξ) and s = (a1, aj), then
u′ = (a1, a2, . . . , aj−1)(aj , aj+1, . . . , ah).

• If u = (a1, . . . , ah)[1](α1, α2, . . . , αl)[−1] with ai ∈ X and αi ∈ Ξ is a pseudo-cycle and
s = (a1, aj) then u′ = (a1, a2, . . . , aj−1)(aj , aj+1, . . . , ah)[1](α1, α2, . . . , αl)[−1].

• If u = (a1, . . . , ah)[1](α1, α2, . . . , αl)[−1] with ai ∈ X and αi ∈ Ξ is a pseudo-cycle and
s = (α1, αj) then u′ = (a1, a2, . . . , . . . , ah)[1](α1, α2, . . . , αj−1)(αj, . . . , αl)[−1].

• If u = (a1, . . . , ah)[1](α1, α2, . . . , αl)[−1] with ai ∈ X and αi ∈ Ξ is a pseudo-cycle and
s = (a1, α1) then u′ = (a1, a2, . . . , . . . , ah, α1 + n, α2 + n, . . . , αl + n).

This lemma is an easy computation (see also [10, Lemma 2.5]).
Applying the lemma with u = v1 and with u = w1 shows that pv′

1
is finer than pw′

1
. �

4. Fixed points in Ã2n−1

It is well known that the Coxeter group of type C̃n is the group of fixed points under the
involution of W (Ã2n−1) which maps si to s2n−i, with the notation of Proposition 3.2, the
subscript i being taken modulo 2n (see e.g., [13]). This involution can be lifted to the Artin-
Tits group using the same formula. We shall see in Section 5 that similarly the Artin-Tits group
of type C̃n is the group of fixed points under this lifted involution in the Artin-Tits group of
type Ã2n−1.

To get a Garside germ for an Artin-Tits group of type C̃n we shall start with a particular
choice of X and Ξ in the construction of the previous section, compatible with this involution.
We takeX to be the the set of odd integers and Ξ to be the set of even integers. This corresponds
to choosing the Coxeter element c = (2, 3)(4, 5) . . . (2n, 2n + 1)(1, 2)(3, 4) . . . (2n − 1, 2n) =
s2s4 . . . s2ns1s3 . . . s2n−1 in the previous section. Then the germ P has an automorphism σ
coming from the map i 7→ 1 − i which interchanges X and Ξ. This involution lifts to the
Artin-Tits group the involution si 7→ s2n−i of the Coxeter group. We still denote by σ this
involution of X ∪ Ξ.

Theorem 4.1. The germ P σ is Garside

Proof. We show that P and σ satisfy the assumptions of Corollary 2.7.
First P has a unique both right and left multiple of all its elements, which is c. Note that

with our choice of X and Ξ, the element c seen as a 2n-periodic permutation of Z is

i 7→

{
i+ 2 for odd i,

i− 2 for even i.

We have to show that any two elements v and w in P have a unique minimal σ-stable common
multiple z. By Proposition 3.9, this amounts to show the existence of a unique minimal σ-stable
non-crossing periodic partition of the form pz coarser than pv and pw. Note that a σ-stable
non-crossing partition has precisely 0, one or two infinite parts. Hence the condition for such
a partition to be of the form pz, i.e., that any infinite part has a non empty intersection with
both X and Ξ is equivalent to the condition for the partition to have at most one infinite part.

A σ-stable partition coarser than pv and pw is also coarser than the partitions σpv and σpw.
We claim that it is sufficient to show the existence of a unique minimal non-crossing partition
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coarser than these 4 partitions: such a partition will be periodic and σ-stable by unicity.
Moreover since it is non-crossing and symmetric it will have precisely 0, one or two infinite
parts. If it has zero or one infinite part it is of the form pz and we are done. If it has two
infinite parts these parts are interchanged by σ, in which case there is exactly one minimal
coarser partition with one infinite part meeting both X and Ξ, obtained by putting together
the two infinite parts. This partition is σ-stable and periodic. By Proposition 3.9 it corresponds
to a minimal σ-stable common multiple of v and w and we are done also in this case.

The theorem is thus a consequence of the following lemma which ensures by induction the
existence of a unique non-crossing partition coarser than any (finite) given number of partitions
of X ∪ Ξ.

Lemma 4.2. There exists a unique minimal non-crossing partition coarser than any two given
partitions of X ∪ Ξ.

Proof of the lemma. Consider a graph whose vertices are the parts of the given partitions and
such that there is an edge between two vertices if the corresponding parts cross each other
(this includes the case where two parts have an intersection). Then the desired partition is the
partition whose parts are the union of all the parts lying in the same connected component of
our graph. �

�

5. The Artin-Tits group of type C̃n

We denote by G(Ã2n−1) the Artin-Tits group of type Ã2n−1 and by G(C̃n) the Artin-Tits

group of type C̃n. They are the groups of fractions of the corresponding classical Artin-Tits
monoids, respectively M(Ã2n−1) and M(C̃n). The monoid M(Ã2n−1) has a presentation with
generators s1, . . . , s2n and relations sisj = sjsi if |i−j| 6= 1 mod 2n and sisi+1si = si+1sisi+1 for

all i, where the indices are taken modulo 2n; the monoid M(C̃n) of type C̃n has a presentation
with generators σ0, . . . ,σn and relations the braid relations given by the Coxeter diagram

©
σ0

©
σ1

©
σ2

· · ·©
σn−2

©
σn−1

©
σn

Like any Artin-Tits monoid, by [16], the monoids M(Ã2n−1) and M(C̃n) embed in their respec-
tive groups G(Ã2n−1) and G(C̃n).

By Proposition 3.7 the group G(Ã2n−1) is isomorphic to the group of fractions of the monoid
M(P ) generated by the germ P defined in Section 4. This isomorphism maps the generator si
of M(Ã2n−1) to the element (i, i + 1) ∈ P , so that M(Ã2n−1) is a submonoid of M(P ). The
involution σ considered in Section 4 restricts to M(Ã2n−1) in the diagram automorphism of

Ã2n−1 which maps si to s2n−i where the indices are taken modulo 2n.
By [15, 4.4] the monoid of fixed points M(Ã2n−1)

σ is isomorphic to M(C̃n). We will identify
these two monoids. Under this identification we have σ0 = s2n, σ1 = s1s2n−1, . . . , σn−1 =
sn−1sn+1, σn = sn.
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We summarise all these facts in the commutative diagram:

(5.1) M(C̃n)
∼

//
� _

��

M(Ã2n−1)
σ � � //

� _

��

M(Ã2n−1)� _

��

M(P )σ � � //
� _

��

M(P )
� _

��

G(C̃n) // G(Ã2n−1)
σ � � // G(Ã2n−1) = G(P )

The aim of this section is to prove the following theorem. I thank John Crisp and Dave
Margalit for having pointed out that this theorem can be easily deduced from the results of
Birman-Hilden and Maclachlan-Harvey.

Theorem 5.2. The morphism G(C̃n) → G(Ã2n−1)
σ of Diagram 5.1, which maps σ0 to s2n, σi

to sis2n−i for i = 1, . . . , n− 1 and σn to sn is an isomorphism.

We need first to recall how the Artin-Tits groups of type Ã and C̃ can be embedded into
mapping class groups. Let E and F be two finite subsets of a 2-sphere S2. We denote by
M(S2, E, F ) the subgroup of the mapping class group of the 2-sphere with punctures the
points of E ∪F , represented by the diffeomorphisms which fix each point of F and stabilize E.
The following result appears in [7, Section 2]:

Proposition 5.3 (Charney-Crisp). (i) Let E = {P1, . . . , Pn} and F = {P ′, P ′′}) be two
sets of points of S2; the group G(Ãn−1) embeds into the group M(S2, E, F ). This embed-

ding maps the standard generator si of G(Ãn−1) to the positive braid twist exchanging
Pi and Pi+1, for 1 ≤ i ≤ n, where the indices are taken modulo n.

(ii) Let E = {P1, . . . , Pn} and F = {P0, Q
′, Q′′} be subsets of S2 then the group G(C̃n) is

isomorphic to M(S2, E, F ). This isomorphism maps the standard generator (numbered
as in the beginning of Section 5) σi of G(C̃n) to the positive braid twist exchanging Pi

and Pi+1 for 1 ≤ i ≤ n− 1 and maps σ0 (resp. σn) to the square of the positive braid
twist exchanging P0 and P1 (resp. Pn and Q′′).

We need also the following result of Birman and Hilden (see [5] and [14]).

Theorem 5.4 (Birman-Hilden). Let E1 and E2 be two finite sets of points of a 2-sphere S2,
let π : S2 → S2/G be a ramified covering realizing the quotient of S2 by a finite group G of
diffeomorphisms stabilizing E1 and E2 and let F ⊂ S2/G be the set of ramification points. Then
the projection induces an isomorphism from the normalizer of G in the mapping class group
M(S2, E1, E2) to the mapping class group M(S2/G, π(E1), π(E2) ∪ F ).

Proof of Theorem 5.2. Consider a set E consisting of 2n points P1, . . . , P2n regularly placed
on the equator of a sphere S2 and let P ′ and P ′′ be the north and south poles. We apply
Proposition 5.3(i), for embedding the groupG(Ã2n−1) into the mapping class groupM(S2, E, F )
where F = {P ′, P ′′}. We then apply Theorem 5.4 with G the group of order 2 generated by
the symmetry σ which exchanges P ′ and P ′′ and exchanges Pi and P2n−i for all i. We can view
S2/G as a sphere so that π : S2 → S2/G is a ramified covering of a 2-sphere with 2 ramification
points A′, A′′ ∈ S2/G which are antipodal on the equator. The points π(Pi) = π(P2n−i) are
regularly placed on one half of the equator and the point P = π(P ′) = π(P ′′) is on the other
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half of this equator. We get an isomorphism M(S2, E, F )σ ≃ M(S2/G, π(E), {P,A′, A′′}).
Since π(E) has cardinality n, we get by Proposition 5.3(ii) that M(S2/G, π(E), {P,A′, A′′}) is
isomorphic to G(C̃n). Since σ maps the product of braid twists sisn−i to the braid twist σi

for i = 1, . . . , n− 1 and maps the braid twist sn (resp. s2n) to the square σ0 (resp. σn) of the
positive braid twist exchanging A′ and π(P1) (resp. π(Pn) and A′′), we get that the isomorphism
restricted to G(Ã2n−1)

σ is onto which means that G(Ã2n−1)
σ is in fact equal to M(S2, E, F )σ.

Moreover we also see that the above isomorphism coincides with the morphism of Theorem 5.2,
whence the result. �

6. A generated group

Our aim in this section is to show that the germ P σ is obtained from the Coxeter group of
type C̃n by the method of the generated group described at the beginning of Section 3. We
denote the Coxeter group of type C̃n by W (C̃n) and see it as the group of fixed points under
the involution σ : si 7→ s2n−i in the Coxeter group W (Ã2n−1) of type Ã2n−1 (see the beginning
of Section 4).

Lemma 6.1. The reflections of W (C̃n) are the σ-stable reflections of W (Ã2n−1) and the prod-
ucts r.σr where r is a reflection of W (Ã2n−1) which is not σ-stable.

Proof. This is well known. We recall a proof. By [13], if σ is an automorphism of a Coxeter
group permuting the simple reflections, the group of σ-fixed elements is a Coxeter group with
simple reflections the longest elements of the parabolic subgroups generated by the σ-orbits of
spherical type of simple reflections. The simple reflections of W (C̃n) are thus sn, s2n and the

products si.
σsi = sis2n−i for 1 ≤ i ≤ n − 1. An arbitrary reflection of W (C̃n) is a conjugate

under W (C̃n) to a simple reflection, whence the result since this conjugation commutes with
σ. �

We put c = s2s4 . . . s2ns1s3 . . . s2n−1 as in Section 4. We denote the simple reflections of
W (C̃n) by σ0 = s2n, σ1 = s1s2n−1, σ2 = s2s2n−2,. . . , σn−1 = sn−1sn+1 and σn = sn. We have

c = σ0σ2σ4 . . . σ1σ3σ5 . . ., hence c is both a σ-fixed Coxeter element of W (Ã2n−1) and a Coxeter
element of W (C̃n). We denote by 4W (Ã2n−1)

(resp. 4W (C̃n)
) the divisibility in W (Ã2n−1) (resp.

W (C̃n)) with respect to the reflection length. Beware that the reflection length in W (C̃n) is
not the restriction of the reflection length in W (Ã2n−1), in particular the reflection length of c

is n + 1 in W (C̃n) and 2n in W (Ã2n−1), since a Coxeter element in a Coxeter group of rank h
has reflection length equal to h (see e.g., [12]). Recall that divisibility for the reflection length
in a Coxeter group can be defined by saying that w divides w′ if for one, or for any, shortest
decomposition of w into a product of reflections, there exists a shortest decomposition of w′

as a product of reflections which begins with that decomposition of w. We now show that
divisibility in W (Ã2n−1) restricts to divisibility in W (C̃n) for the divisors of c. Recall that by

the results of [10] P is the set of divisors of c in W (Ã2n−1), so that P σ is the set of elements of

W (C̃n) which divide c in W (Ã2n−1).

Proposition 6.2. Let w and w′ be two elements of W (C̃n); then w 4W (C̃n)
w′ 4W (C̃n)

c if and

only if w 4W (Ã2n−1)
w′ 4W (Ã2n−1)

c.
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Figure 3. A σ-stable cycle in Ã9
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Figure 4. A non-crossing product of a cycle and its image by σ in Ã9

Proof. We first prove that divisibility in W (C̃n) implies divisibility in W (Ã2n−1) for divisors of
c in W (C̃n).

We claim that in any decomposition of c into a product of reflections of W (C̃n) there is at
least one reflection conjugate to σ0 and one reflection conjugate to σn. Indeed the quotient
of W (C̃n) by its commutator subgroup is the direct product of 3 groups of order 2, generated
respectively by the image of σ0, the image of σn and the image of any one of σ1, . . . , σn−1

which have all same image since they are conjugate. Hence the image of c in this quotient must
involve the images of σ0 and σn. Whence the result since two conjugate reflections have same
image in this quotient.

Let c = r0 . . . rn be a decomposition of c into a product of n+1 reflections in W (C̃n). Let k be
the number of reflections in that decomposition which are conjugate to either σ0 or σn. These k
reflections are also reflections in W (Ã2n−1) and the other n+1−k reflections are products of 2

reflections inW (Ã2n−1). So this product is the product of k+2(n+1−k) = 2n+2−k reflections
in W (Ã2n−1). But c cannot be written with less than 2n reflections in W (Ã2n−1), whence
k ≤ 2. Since we know that k ≥ 2, we have k = 2. We have proved that, replacing a reflection of
W (C̃n) by its image in the embeddingW (C̃n) →֒ W (Ã2n−1), any shortest decomposition of c as a

product of reflection of W (C̃n) becomes a shortest decomposition of c as a product of reflections

of W (Ã2n−1). This gives that if w 4W (C̃n)
w′ 4W (C̃n)

c then w 4W (Ã2n−1)
w′ 4W (Ã2n−1)

c.

To prove the converse we first prove a formula for the reflection length lW (C̃n)
in W (C̃n) of

the elements of P σ. An element of P σ can be written uniquely as a commuting product of
elements of three types: either σ-stable non-crossing finite cycles, or products of a finite cycle
and its image by σ, or σ-stable pseudo-cycles. There can be at most one pseudo-cycle and any
two of these factors are non-crossing. In Figures 3, 4 and 5 we have given examples in C̃5, i.e.,
the partitions are 10-periodic and σ comes from i 7→ 1− i modulo 10.



A GARSIDE PRESENTATION FOR C̃n 13

•
19

•
17

•
15

•
13

•
11

•
9

•
7

•
5

•
3

•
1

•
20

•
18

•
16

•
14

•
12

•
10

•
8

•
6

•
4

•
2

rr

11 00

rr

11 00 ∆_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _oo

D_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _oo

Figure 5. A σ-stable pseudo-cycle in Ã9

Lemma 6.3. Let w = w1 . . . wr be a decomposition as above of w ∈ P σ; then lW (C̃n)
(w) =∑i=r

i=1 lW (C̃n)
(wi) and

lW (C̃n)
(wi) =





k if wi is a σ-stable cycle of length 2k

k − 1 if wi is the product of a cycle of length k and its image by σ

k + 1 if wi is a pseudo-cycle whose support modulo 2n has cardinality 2k

Proof. We denote by f(w) the formula of the lemma. We have to prove that lW (C̃n)
(w) = f(w).

First, it is clear that f(w) = 0 if and only if w = 1. We now prove:

Lemma 6.4. For any w 6= 1 in P σ and any reflection ρ ∈ W (C̃n) such that ρ 4W (Ã2n−1)
w we

have f(ρw) = f(w)− 1.

Proof. Recall that σ is induced by the bijection a 7→ 1−a of Z so that by Lemma 6.1 a reflection
in W (C̃n) is either equal to (a, 2kn + 1 − a) for some a and k in Z or (a, b)(1 − a, 1 − b) for
some a and b in Z with a + b 6≡ 1 mod 2n. Decompose w into a product w = w1w2 . . . wr as
in lemma 6.3. Let ρ be a reflection of W (C̃n) which divides w in W (Ã2n−1). By Proposition
3.9, if ρ = (a, 2kn+ 1− a) for some a, then a and 2kn+ 1− a have to be in the support of the
same wi and if ρ = (a, b)(1 − a, 1 − b), then a and b have to be in the support of the same wi

and 1 − a and 1 − b are then in the support of σwi. Lemma 6.4 is then a consequence of the
following formulas, obtained by an immediate computation. In each of these formulas the left
hand side has the form ρwi with wi as above and one checks easily that f has value f(wi)− 1
on the the right hand side.

(a1, 2kn+ 1− a1)(a1, a2, . . . , ah, 2kn+ 1− a1, 2kn+ 1− a2, . . . , 2kn+ 1− ah) =

(a1, a2, . . . , ah)(1− a1, . . . , 1− ah)

(a1, 2kn+ 1− a1)(a1, . . . , ah)[1](1− a1, . . . , 1− ah)[−1] =

(a1, . . . , ah, (2k + 1)n+ 1− a1, . . . , (2k + 1)n+ 1− ah)

(a1, b1)(1− a1, 1− b1)(a1, . . . , ah, b1, . . . , bk)(1− a1, . . . , 1− ah, 1− b1, . . . , 1− bk) =

(a1, . . . , ah)(b1, . . . , bk)(1− a1, . . . , 1− ah)(1− b1, . . . , 1− bk)

(a1, b1)(1− a1, 1− b1)(a1, . . . , ah, b1, . . . , bk)[1](1− a1, . . . , 1− ah, 1− b1, . . . , 1− bk)[−1] =

(a1, . . . , ah)(1− a1, . . . , 1− ah)(b1, . . . , bk)[1](1− b1, . . . , 1− bk)[−1]

(a1, b1)(1− a1, 1− b1)(a1, . . . , ah, 1− b1, . . . , 1− bk)[1](1− a1, . . . , 1− ah, b1, . . . , bk)[−1] =

(a1, . . . , ah, 1− a1, . . . , 1− ah)(b1, . . . , bk, 2n+ 1− b1, . . . , 2n+ 1− bk)
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�

We can now finish the proof of Lemma 6.3 by induction on lW (C̃n)
(w). If w = ρ1ρ2 . . . ρl is a

decomposition of w as a product of reflections in W (C̃n), with l = lW (C̃n)
(w), then ρ1 4W (C̃n)

w,

so that ρ1 4W (Ã2n−1)
w and by Lemma 6.4 we have f(ρ1w) = f(w) − 1. Since f(ρ1w) =

lW (C̃n)
(ρ1w) by induction and lW (C̃n)

(ρ1w) = lW (C̃n)
(w)− 1, we get the result. �

We now end the proof of Proposition 6.2. First, since lW (C̃n)
= f on P σ, Lemma 6.4 shows

that for any w ∈ P σ and any reflection ρ ∈ W (C̃n) such that ρ 4W (Ã2n−1)
w we have ρ 4W (C̃n)

w.

Assume now that w 4W (Ã2n−1)
w′ 4W (Ã2n−1)

c with w 6= 1 and w,w′ ∈ W (C̃n), so that w,w
′ ∈

P σ; choose a reflection ρ in W (C̃n) such that ρ 4W (C̃n)
w, hence ρ 4W (Ã2n−1)

w 4W (Ã2n−1)
w′

and ρw 4W (Ã2n−1)
ρw′, so that in particular ρ 4W (C̃n)

w′ by what we have just proved. We

can assume by induction on lW (Ã2n−1)
(w) that ρw 4W (C̃n)

ρw′. Since lW (C̃n)
(ρw) = lW (C̃n)

(w)−

1 and lW (C̃n)
(ρw′) = lW (C̃n)

(w′) − 1, we get lW (C̃n)
(w) + lW (C̃n)

(w−1w′) = 1 + lW (C̃n)
(ρw) +

lW (C̃n)
((ρw−1)(ρw′)) = 1 + lW (C̃n)

(ρw′) = lW (C̃n)
(w′) so that w 4W (C̃n)

w′. �

Corollary 6.5. (i) The germ P σ is in one-to-one correspondence with {w ∈ W (C̃n) |
w 4W (C̃n)

c} and this correspondence is compatible with divisibility.

(ii) The monoid M(P σ) has a presentation with set of generator R in one-to-one cor-
respondence r 7→ r with the set R of reflections r ∈ W (C̃n) such that r 4W (C̃n)

c

and relations r0r1 . . . rn = r′0r
′
1 . . . r

′
n for any two n-tuples of reflections such that

r0 . . . rn = r′0 . . . r
′
n = c.

Assertion (i) says that the germ P σ is obtained from W (C̃n) and the balanced element c by
the method of the “generated group”.

Proof. Assertion (i) is precisely the content of Proposition 6.2.
Assertion (ii) is always true for a monoid obtained by the method of the generated group. We

give a proof for the sake of completeness. If w ∈ W (C̃n) is such that w 4W (C̃n)
c, we denote by

w the corresponding element of the germ P σ. For such a w there exist a sequence of reflections
r0, . . . , rn and a non-negative integer k ≤ n such that w = r0r1 . . . rk and c = r0 . . . rn, so
that we have w = r0 . . . rk. A defining relation of M(P σ) such as w.w′ = ww′ can be written
r0 . . . rn = c if w = r0 . . . rk, w

′ = rk+1 . . . rl and c = ww′rl+1 . . . rn, using the cancellability of
the germ. This means that we can reduce the set of generators to R and have the presentation
given in (ii). �

Definition 6.6. We call dual monoid of type C̃n the monoid M(P σ).

Remark 6.7. Note that since all Coxeter elements are conjugate in W (C̃n) changing the Coxeter
element in the presentation of the dual monoid given in Corollary 6.5(ii) leads to isomorphic
monoids.

7. Hurwitz action; presentations

In this section we show that the Artin-Tits group of type C̃n is a Garside group: more
precisely it is the group of fractions G(P σ) of the Garside monoid M(P σ). We also get simpler
presentations for the monoid and the group than in Corollary 6.5(ii). For this we study the
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Hurwitz action on reduced decomposition of elements of P σ. Recall if g is an element of some
group G, the braid group with n stands acts on the set of decompositions of g into a product
of n elements of G in the following way: if (g1, . . . , gn) is such that g = g1g2 . . . gn, the action
of the elementary braid si maps (g1, . . . , gn) onto (g1, . . . , gi−1, gigi+1g

−1
i , gi, gi+2, . . . , gn). This

action is called the Hurwitz action. Our first aim is to prove the following result where we call
“reduced decomposition” of an element w ∈ W (C̃n) a decomposition of w into a product of
lW (C̃n)

(w) reflections.

Theorem 7.1. Let c be a Coxeter element of W (C̃n) and w be a divisor of c; then the Hurwitz
action is transitive on the set of reduced decompositions of w.

Proof. Note first that, since a conjugate of a reflection is a reflection, the Hurwitz action on
reduced decompositions of an element w is well defined.

By induction on lW (C̃n)
(w) it is sufficient to show that, starting with some fixed reduced

decomposition of w, if ρ is a reflection which divides w we can get by the Hurwitz action a
decomposition of w which begins with ρ.

Since by the Hurwitz action we can bring to the first place any reflection which appears in a
reduced decomposition of w, it is enough to show that for any reflection ρ which divides w in
W (C̃n) we can get by the Hurwitz action a reduced decomposition of w involving ρ.

Since all Coxeter elements are conjugate in W (C̃n) (see [6, §6, n◦1, Lemme 1]) and since the
Hurwitz action is compatible with conjugation, we may assume that c = σ0σ2σ4 . . . σ1σ3σ5 . . .
with the same notation as in Section 6. We view W (C̃n) as W (Ã2n−1)

σ
as before. We write

w = w1 . . . wr with wi as in 6.3. We get a reduced decomposition of w by concatenation of
reduced decompositions of the wi. A reflection which divides w divides some wi, so it is sufficient
to show the result for w = wi which we now assume.

The element w is either a σ-stable finite cycle, or the product of a finite cycle and its image
by σ or a σ-stable pseudo-cycle. In the first case w can be written (a1, . . . , ap, 2kn + 1 −
a1, . . . , 2kn + 1 − ap), with k ∈ Z, all ai odd and a1 < a2 < · · · < ap < a1 + 2n, so is a
Coxeter element of the Coxeter group of type Cp generated by (ai, ai+1)(2kn + 1 − ai, 2kn +
1 − ai+1) for i = 1, . . . p − 1 and (a1, 2kn + 1 − a1). In the second case w can be written
(a1, . . . , ar, . . . , ap)(1 − a1, . . . , 1 − ar, . . . , 1 − ap) with ai odd for i ≤ r and ai even for i > r,
and the inequalities a1 < a2 < · · · < ar < a1 + 2n and ar+1 > . . . > ap > ar+1 − 2n, so that w
is a Coxeter element of the Coxeter group of type Ap−1 generated by (ai, ai+1)(1− ai, 1− ai+1)
for i = 1, . . . p − 1. In the third case w can be written (a1, a3 . . . , a2p−1)[1](a2, a4, . . . , a2p)[−1]

with the a2i−1 odd and ai + a2p+1−i = 2n + 1, so that w is a Coxeter element of the Coxeter

group of type C̃p generated by (a1, a2p), the products (ai, ai+1)(a2p−i, a2p+1−i) for i = 1, . . . , p−1

and (ap, ap+1). Hence w is a Coxeter element of a Coxeter subgroup W of type B, C or C̃;

the reflections of W are reflections of W (C̃n) and a reflection of W (C̃n) divides w in W (C̃n)
if and only if it divides w in W . A reduced decomposition of w in W (C̃n) is thus a reduced
decomposition of w in that Coxeter subgroup.

Since we know that the Hurwitz action is transitive on the reduced decomposition of an
element in groups of type A or C (see [2, Proposition 1.6.1]), the only case which remains is
the case of a Coxeter element of a group of type C̃: we have only to study the case where w is c
itself. We start with the reduced decomposition of c given by (σ0, σ2, σ4, . . . , σ1, σ3, σ5, . . .). We
remark that if we delete σ0 (resp. σn) from this decomposition we get a reduced decomposition
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of a Coxeter element of the Coxeter group W ′ of type Cn generated by σ1, σ2, . . . , σn (resp. of
the Coxeter group W ′′ of type Cn generated by σ0, σ1,. . . ,σn−1). Using the transitivity of the
Hurwitz action for Coxeter groups of type Cn, we know that by the Hurwitz action we can
make appear any reflection of W ′ or W ′′ in some reduced decomposition of c.

We remark that if c = ρ1 . . . ρn+1 is a reduced decomposition, the Hurwitz orbit of (ρ1, . . . , ρn+1)
contains (ρ2, . . . , ρn+1, c

−1ρ1c) so that by the Hurwitz action for any n ∈ Z and any i ∈
{1, . . . , n + 1} we can get a reduced decomposition of c involving cnρic

−n. So we will get our
result if we prove that any reflection appearing in a reduced decomposition of c is conjugate by
some power of c to a reflection of W ′ or of W ′′.

The action of c by conjugation on permutations of Z is induced by the translations 2i 7→ 2i−2
and 2i+ 1 7→ 2i+ 3 for all i. The reflections of W ′ are

{
(a, b)(1− a, 1− b) with 1 ≤ a < b ≤ 2n and a + b 6= 2n + 1,

(a, 2n+ 1− a) with 1 ≤ a ≤ 2n.

The reflections of W ′′ are{
(a, b)(1− a, 1− b) with 1− n ≤ a < b ≤ n and a+ b 6= 1,

(a, 1− a) with 1− n ≤ a ≤ n.

If a and b have same parity with a < b ≤ a + 2n, we can conjugate (a, b)(1 − a)(1 − b) ∈
P σ by a power of c to (1, b + 1 − a)(0, a − b) which is a reflection of W ′. If a and b have
different parities and a + b 6= 1 mod 2n we can conjugate (a, b)(1 − a, 1 − b) by a power of
c to (a+b−1

2
, a+b+1

2
)(1−a−b

2
, 3−a−b

2
) which is a reflection of W ′. Last of all we can conjugate

(a, 2kn+ 1− a) where k is arbitrary to (kn, kn+ 1) which is equal either to (n, n+ 1) which is
in W ′ or to (0, 1) which is in W ′′. �

Remark 7.2. (i) One can conjecture that the Hurwitz action is transitive on the reduced
decompositions of a Coxeter element in any Coxeter group.

(ii) We have seen in the proof of Theorem 7.1 that a divisor of a Coxeter element of W (C̃n)
is a Coxeter element of a Coxeter subgroup which is a direct product of groups of type
A, C or C̃ (there can be at most one component of type C̃ and there cannot be at the
same time a component of type C and a component of type C̃).

Using Theorem 7.1 we can simplify the relations in the presentations of M(P σ) and G(P σ)
given in Corollary 6.5(ii). As in Corollary 6.5(ii) and in its proof we denote by w the element

of P σ corresponding to an element w ∈ W (C̃n) dividing c. From this presentation we deduce
one of our main result, which is that the Artin-Tits group G(C̃n) is isomorphic to G(P σ). We
use the notations R and R as defined in Corollary 6.5.

Theorem 7.3. (i) The monoid M(P σ) has the following monoid presentation by genera-
tors and relations:

M(P σ) =< R | r.t = rtr.r if r, t ∈ R and rt 4W (C̃n)
c >+

(ii) The Artin-Tits group of type C̃n is isomorphic to G(P σ); in particular it is the Garside

group of the Garside monoid M(P σ) and has the group presentation G(C̃n) =< R |
r.t = rtr.r if r, t ∈ R and rt 4W (C̃n)

c >.
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Proof. By Corollary 6.5(ii) the monoid M(P σ) has a presentation with set of generators R and
relations given by the equalities between the lifts of any two reduced decompositions of c. We
have to prove that one can pass from a reduced decomposition of c to another one by applying
only relations of the form r.t = (rtr).r. But this is precisely the transitivity of the Hurwitz
action, whence (i).

Since all the simple reflections of W (C̃n) are in R, we have elements σi ∈ R for i = 0, . . . , n,

where as in Section 6 the simple reflections of W (C̃n) = W (Ã2n−1)
σ
are σi = sis2n−i for

i = 2, . . . , n − 1, σn = sn and σ0 = s2n. The natural morphism M(P σ) → M(P )σ extends to

a group morphism f : G(P σ) → G(P )σ. We know that G(P ) is the group G(Ã2n−1) so that
G(P )σ is the group G(C̃n) by Theorem 5.2. The morphism f maps σi to σi for i = 2, . . . , n−1
and maps σn to σn and σ0 to σ0.

We claim that σ0,. . . , σn satisfy the braid relations of type C̃n. Indeed, for any pair of
distinct simple reflections σi and σj, we have σiσj 4W (C̃n)

c, up to swapping i and j; if σi and
σj , commute, then σiσj 4W (C̃n)

c so that σiσj = σjσi in P σ; if σi and σj satisfy a braid relation
of length 3 we have σj .σi.σj = σj.σiσjσi.σi = σjσiσjσiσj .σj .σi = σi.σj.σi; if σi and σj satisfy

a braid relation of length 4 we have σi.σj .σi.σj = σi.σj.σiσjσi.σi = σi.σjσiσjσiσj .σj .σi =

σiσjσiσjσiσjσi.σi.σj.σi = σj .σi.σj .σi. Hence there exists a morphism g : G(C̃n) → G(P σ)

which maps σi to σi for i = 0, . . . , n. We have then f ◦ g = Id since G(C̃n) is generated by
{σi, i = 0 . . . , n}.

On the other hand the transitivity of the Hurwitz action and the presentation of G(P σ)
imply that one can express any r where r 4W (C̃n)

c as a conjugate of some σi by a product of

elements of the form σ±1
j , so that G(P σ) is generated by {σi, i = 0, . . . , n}. This implies that

g is surjective, so that f and g are isomorphisms. �

8. Some consequences

Among consequences of our results we can recover the known fact that the center of B(C̃n)
is trivial. The Garside structure gives also a solution to the word problem in this group. As an
illustration of the use of a Garside structure we compute the centralizer of powers of a Coxeter
element in an Artin-Tits group of type C̃n.

Proposition 8.1. With the notation of section 5, let c = σ0σ1 . . .σn; then for any h ∈ Z−{0},

the centralizer of ch in the Artin-Tits group G(C̃n) is isomorphic to the Artin-Tits group of type
Cgcd(h,n).

Proof. It is a general result (see e.g., [4, Proposition 2.26]) that the monoid of fixed points Mϕ

under an automorphism ϕ of a Garside monoid M fixing the Garside element ∆ is a Garside
monoid with same Garside element (this can also be seen as a particular case of Corollary 2.7):
if P is the set of divisors of ∆ in M then the set of divisors of ∆ in Mϕ is P ϕ. In this situation
the group of fixed points of ϕ in the group G of fractions of M is the group of fractions of
Mϕ. We apply this to M = M(P σ) and G = G(P σ), taking for ϕ the conjugation by ch. As

in section 4 we identify the elements of P σ with the elements of W (C̃n) corresponding to the
2n-periodic, non-crossing σ-stable partitions of X ∪ Ξ, where X = 1 + 2Z and Ξ = 2Z. Recall
that c is the permutation given by x 7→ x+ 2 for x ∈ X and ξ 7→ ξ − 2 for ξ ∈ Ξ.

Let p be a σ-stable non-crossing partition stable by the action of ch. If A is a part of p
contained in X or in Ξ, then A+ 2kh is also a part of p for all k ∈ Z. If A is a part of p which
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intersects both X and Ξ and is not ch-stable, then A crosses its image under the action of ch,
which is impossible since two distinct parts of p are non-crossing. Hence any part A of p has
to be invariant by the action of ch which is equivalent to A = A + 2kh for all k ∈ Z. Hence
a part of a partition pw associated to an element w ∈ (P σ)c

h

(see Proposition 3.9) is either
an infinite part both 2n and 2h periodic (and there is at most one such part in pw) or a finite
part A contained in X or in Ξ and such that A + 2kh and A + 2kn are parts of pw for any k.
Conversely if all the parts of a σ-stable non-crossing partition pw are of one of these form then
w is centralized by ch.

From the above study we see that the centralizer of ch is equal to the centralizer of cgcd(n,h).
Hence to prove the proposition we are reduced to the case where h divides n.

We first study the case h = n.

Lemma 8.2. The centralizer of cn is an Artin-Tits group of type Cn.

Proof. From the above discussion we see that an element w ∈ (P σ)c
n

is a product of pair-
wise commuting and non-crossing elements of the form either (2a1 + 1, 2a2 + 1, . . . , 2ar +
1)(−2a1,−2a2, . . . ,−2as, . . . ,−2ar) with a1 < a2 < . . . < ar < a1 + n, or (2a1 + 1, 2a2 +
1, . . . , 2ar + 1)[1](−2a1,−2a2, . . . ,−2ar)[−1] with 0 < a1 < a2 < . . . < ar ≤ n. Hence all ele-
ments of (P σ)c

n

can be written x.σx where x is a permutation of the set X of odd integers and
σx is a permutation of the set Ξ of even integers. Since a permutation of X and a permutation
of Ξ are always non-crossing, two such elements x.σx and y.σy in (P σ)c

n

are non-crossing if
and only if x and y are non-crossing. In [10, Proof of 5.10] we have described the germ for
the dual presentation of an Artin-Tits group of type Cn as the set of n-periodic, non-crossing
permutations of Z. From this description we see that under the bijection 2k + 1 7→ k from X
to Z, the map x.σx 7→ x defines an isomorphism of germs from (P σ)c

n

to the dual germ for the
Artin-Tits group of type Cn. �

We deduce the proposition using the fact that the centralizer of ch for a divisor h of n is the
centralizer of ch in the centralizer of cn so that it is the centralizer of ch in an Artin group of
type Cn, which is known to be an Artin-Tits group of type Ch (see [4]). �
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