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ABSTRACT

Production-grid users experience many system faults as well
as high and variable latencies due to the scale, complex-
ity and sharing of such infrastructures. To improve perfor-
mance, they adopt different submission strategies, that are
potentially aggressive for the infrastructure.

This work studies the impact of three different strategies.
It is based on a probabilistic modeling of these strategies
which are evaluated according to their performance, mea-
sured as the reduction of the latency expectation, and the
infrastructure overhead, measured as the additional number
of submitted jobs. A strategy cost criterion is then derived.

Experiments are performed using real workload traces col-
lected from the EGEE production infrastructure. Under
these conditions, a good balance between high performance
and low overhead can be found.

Categories and Subject Descriptors

C.4 [PERFORMANCE OF SYSTEMS]: Modeling tech-
niques

General Terms

Performance
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1. INTRODUCTION
Production grids are world-wide distributed systems, cov-

ering various network domains connected by WANs. They
are highly variable environments federating sites with het-
erogeneous resources, configuration rules and access poli-
cies and servicing many users concurrently. Consequently,
grids are characterized by high and non-stationary work-
loads. From a user point of view, the grid appears as a
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plethora of queues operated through different batch man-
agement systems, with different prioritization policies, that
are difficult to exploit efficiently.

Unlike supercomputers no single grid scheduler can obtain
a global view of the complete grid infrastructure. Instead,
meta-schedulers coordinate the action of site schedulers, us-
ing heuristic that try to cope with (i) partial information
and (ii) local independent scheduling policies that may inter-
fere with the meta-scheduling objective. Moreover, job life-
cycles include much more steps than scheduling and queuing
(among others: credentials delegation, match-making, job
submission language formats translation, logical-to-physical
file names resolution, file replica selection, job monitoring
system, grid information system). In the order of 10 ma-
chines, that all have to be reachable, may be involved in the
job submission process.

The job submission system is subject to failures that can
originate from network/connectivity problems, local con-
figuration issues (authorization issues, differences in mid-
dleware versions, local environment, etc), workload varia-
tions (impacting all the components, not only the job queu-
ing time), data access (data catalog querying, data trans-
fer queuing, and the transfer itself), and scheduling issues.
Nobody currently has a proven classification of all possible
issues. Such a list is far from being trivial given the hetero-
geneity of the grid and the interoperation of complex stack
of services.

As a consequence, grid jobs latency, measured as the dura-
tion between the beginning of a job submission and the time
it starts executing, can be very high and prone to large vari-
ations. High fault ratios are often reported, as for example
in [2]. High latency and faults impact the performance of
applications, sometimes making grids unworthily for their
tasks. Assuming that a single entity could achieve flaw-
less scheduling on a world-wide scale production grid seems
quite hazardous and we claim that a client-side error control
is required as part of the scheduling, similarly to transport
protocols implementing fault-tolerance mechanisms to deal
with routing errors on the Internet.

As a matter of fact, it has been commonly observed on
production systems that despite the middleware best efforts
to address these problems internally, users do adopt differ-
ent submission strategies controlled on the client side such
as canceling jobs with too long latencies before resubmission
or submitting several copies of the same job. These strate-
gies are often empirical and not objectively evaluated. The
motivation for this work is to provide an objective insight on
these strategies. Strategies with a proven impact on applica-



tion performance and causing no critical overload of the job
management system could then be integrated in the client
side of the middleware to release the users of this burden.

The more variable the job latency, the more efficient mul-
tiple submission strategies. Although multiple submission
strategies are effective from the user point of view, they are
usually not appreciated from administrators since they are
increasing the workload endured by the grid resource bro-
kers and schedulers. Yet, little can be done to regulate their
usage, especially on a wide scale distributed grid. Quantify-
ing the impact of submission strategies on real-size grids is
a difficult problem due to the complexity of such systems.
In this paper, we adopt a probabilistic approach to model
the grid responsiveness. Execution statistics are collected
on the real-scale EGEE production grid over long periods
of time to estimate probability laws of the job latencies.
Several submission strategies are studied using these grid
workload models: the single resubmission (section 4), the
multiple submission (section 5) and a novel strategy that we
call delayed resubmission (section 6).

These strategies are assessed considering two criteria: the
performance improvement from users point of view (reduc-
tion in latency time) and the infrastructure load (number
of tasks to manage). The delayed resubmission strategy
demonstrates a very good balance between high performance
and low load.

2. RELATED WORK
Many works study the scheduling of jobs on distributed

systems at different levels. The algorithms are directly im-
plemented in schedulers. For example, Subramani et al [16]
compare two different scheduling schemes with respect to the
slowdown computed as the ratio of (latency + runtime) over
runtime. One is the “K-distributed scheme” which consists
in submitting each job to the K least loaded sites. When
the first job starts running, the other (K-1) jobs are can-
celed. The second one is the “K-Dual Model” which is an
improvement of the K-distributed one, giving priority to lo-
cally submitted jobs, using two different queues. The perfor-
mance analysis shows that the slowdown is better reduced by
the K-Distributed than the K-Dual Queue. However, when
considering lightly loaded sites and heavily loaded sites sep-
arately, there is an inversion with the K-Distributed scheme
which does not occur with the K-Dual Queue one. Different
values of K have been studied from 1 to 4, showing a de-
crease in the average slowdown. Authors also demonstrate
that the impact of inaccuracies in user estimates of runtime
is in favor of the proposed schemes and that they also per-
form better than the other schemes when considering the
communication overheads.

Sabin et al [14] study the scheduling in a heterogeneous
multi-sites environment. They evaluate different strategies
including multiple submissions (k=4), conservative versus
aggressive backfilling and the relative job efficacy for queu-
ing priority. Different experimentations based on job traces
showed that in the case of heterogeneous multi-sites (which
is the case in a production grid), conservative backfilling is
better than aggressive and that using the relative job efficacy
for queuing priority improves performances.

Casanova [3] studies the multi-submission of jobs, consid-
ering that when the first job starts running, all other jobs
waiting in queue are canceled. He observes that submitting
all jobs several times increases their average performance;

the users that are penalized are those that do not use multi-
ple submission. The load on batch schedulers or network will
not be critical if the number of multiple jobs is less than 30,
assuming that submissions are uniformly distributed among
sites and that the job inter-arrival is always 5 seconds. How-
ever, the author observes that the 2006 version of GRAM
conducts to a bottleneck when using more than 3 multiple
submissions during peak job submission.

In this paper we focus on large scale infrastructure charac-
terized by highly variable latencies, such as the EGEE pro-
duction grid1 on which experiments were conducted [7, 11].
Due to its unique scale, it enables challengingly large appli-
cations but it is known to be prone to faults and variable
queuing times [9, 2, 1]. Yet, variability has also been ac-
knowledged as a critical factor on other types of platforms,
such as the knowARC grid2: for instance, the experiment
reported in [13] shows variations up to 40 minutes in the
grid time of an embarrassingly parallel applications and the
work presented in [12] shows overheads ranging from 0 to
45 min. Earlier works conducted before the emergence of
large-scale grids in the 2000s already pointed out the impor-
tance of variability, such as [15]: authors were then dealing
with seconds-to-minutes variability values and the impor-
tance of this issue has dramatically increased in current grid
infrastructures.

To address the complexity of modeling an heterogeneous
grid infrastructure, we adopt a probabilistic approach. Sta-
tistical studies carried out in [4] and [6] and earlier works
such as [10] or [5] are important contributions to workload
modeling. However, those works mostly consider latencies
from the perspective of a specific grid scheduler (if not a local
site queue) and the actual match with the latency observed
by an application still has to be validated. As explained
above, several additional steps such as data transfers and
proxy delegations are likely to disturb measures carried-out
at the grid or local batch scheduler levels. Consequently, the
monitoring approach adopted in this work relies on round-
trip times of probes submitted to the grid from the user
client, thus getting much closer to real application job sub-
mission conditions.

3. DEFINITIONS, ASSUMPTIONS AND REF-

ERENCE DATA
We define the latency as the duration between the in-

stant job submission instant and the beginning of its exe-
cution on a computation resource. It is modeled through
a random variable R. On the EGEE production grid, the
latency distribution has been observed to be heavy-tailed,
as reported, e.g., in [8]. We denote the fault (or outlier)
ratio that commonly occur on a production grid as the real
value ρ ∈ [0, 1]. Figure 1 plots FR, the cumulative density
function (cdf) of the heavy-tailed random variable R and

F̃R(t) = (1−ρ)FR(t), the cumulative histogram of all laten-
cies (normalized with respect to all submitted jobs, including
outliers).

The probability for the latency of a job to be lower than
a given threshold t depends on the probability of the job to
not be an outlier (probability 1 − ρ) and FR(t):

P (R < t) = (1 − ρ)FR(t) = F̃R(t)

1EGEE: http://www.eu-egee.org
2knowARC: http://www.knowarc.eu/

http://www.eu-egee.org
http://www.knowarc.eu/
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Figure 1: Cumulative density of latency (s)

Conversely, the latency is longer than t if the job is an outlier
(probability ρ) or it is not an outlier (probability 1− ρ) and
it terminates before t (probability 1 − FR(t)):

P (R > t) = ρ+(1−ρ)(1−FR(t)) = 1−(1−ρ)FR(t) = 1−F̃R(t)

It has to be noted that although P (R < t) = F̃R(t), F̃R is
not a cdf (it does not converge towards 1) and it cannot be
considered as such in the subsequent calculations.

3.1 Experimental measurements
Our reference experimental data has been obtained on the

biomed Virtual Organization (VO) of the EGEE production
grid. With 80,000 CPU cores dispatched world-wide in more
than 240 computing centers, EGEE represents an interesting
case study as it exhibits highly variable and quickly evolv-
ing load patterns that depend on the concurrent activity of
thousands of potential users. A given user has access only
to a subset of the resources, as granted to her VO. When she
submits jobs from her workstation, she uses an EGEE client
known as a User Interface. A Workload Management Server
receives and queues the jobs submitted before dispatching
them to the connected computing centers. The gateway to
each computing center is one or more Computing Element
which hosts a batch manager to distribute the workload over
the center computing resources. Different batch systems are
operated in different centers. Each site is configured inde-
pendently with site-specific policies determining the number
of queues available and queues maximal wall-clock times.

3.2 Latency measures
Latency measures were collected by submitting a very

large number of probe jobs. These jobs, consisting in the
execution of an almost null duration /bin/hostname com-
mand, are only impacted by the grid latency. In the remain-
der we assume that the job execution time is known and we
only focus on the grid latency that can significantly vary be-
tween different runs of a same computation task. To avoid
variations of the system load due to monitoring, a constant
number of probes was maintained inside the system: a new
probe was submitted each time another one completed. For
each probe job, the job submission date, the job final status
and the total duration were logged. The probe jobs were

assigned a fixed 10,000 seconds timeout beyond which they
were considered as outliers and canceled. This value is far
greater than the average latency observed (≈500 seconds).

Twelve traces sets collected at different times of the year
and with different duration are exploited in this paper [7,
11]. They gather 10,893 probe jobs. A first trace acquired
in September 2006 is denoted 2006-IX. The 11 other traces,
acquired from end of year 2007 to beginning of year 2008
over one week each are denoted “year”-”week number”. In
the future, we plan to make more systematic experiments by
exploiting logs of the Grid Observatory3 that was recently
set up. It gives practical foundations to the investigations
conducted in this paper and it is a key to the systematic
implementation of our methods in real applications.

3.3 Evaluation criteria
The submission strategies explored in the following are

evaluated against two kinds of metric: the jobs performance
(user point of view) and the number of submissions needed
to achieve it (infrastructure point of view). The performance
is assessed through the average latency time. In our proba-
bilistic framework, an expression of the latency expectation
(and its standard deviation) can be developed and then es-
timated from the traces mentioned above. This gives little
insight when considering individual jobs but it makes per-
fect sense when considering applications involving a large
number of jobs. The infrastructure load is assessed through
the average number of jobs that is needed to achieve a given
performance. Increasing the number of jobs in the system
may impact the latency at some point. In our framework,
we assume that the additional jobs have no measurable im-
pact on the grid workload given its size and number of jobs
processed (≥ 150 Kjobs / day on EGEE). As it will be
demonstrated, this assumption makes sense as it is possi-
ble to achieve significant performance improvements for a
small average number of additional jobs.

4. SINGLE RESUBMISSION
When facing high and highly variable latencies, a sim-

ple resubmission strategy consists in waiting until a timeout
value t∞ and then canceling the job and resubmitting it, it-
erating this strategy until one job completes before t∞. The
modeling of the total latency J , including resubmissions, has
already been studied in [8] and its expectation can be ex-
pressed as a function of individual jobs latency (R) and the
timeout value (t∞):

EJ(t∞) =
1

F̃R(t∞)

Z t∞

0

(1 − F̃R(u))du (1)

Minimizing this equation with respect to t∞ gives the op-
timal timeout value.

The standard deviation σJ is computed using the fact that

3http://www.grid-observatory.org/

http://www.grid-observatory.org/


week mean mean EJ σR σJ ∆σ

number < 105s with 105s < 105s
2006-IX 570s 1042s 471s 886s 331s -63%
2007/08 469s 2089s 500s 723s 358s -51%
2007-36 446s 2739s 510s 748s 370s -51%
2007-37 506s 3639s 617s 848s 486s -43%
2007-38 447s 2739s 531s 682s 399s -42%
2007-39 489s 3533s 596s 741s 482s -35%
2007-50 660s 2341s 628s 1046s 475s -55%
2007-51 478s 1716s 517s 510s 353s -31%
2007-52 443s 1685s 476s 582s 334s -43%
2007-53 449s 1977s 482s 678s 330s -51%
2008-01 434s 1678s 499s 317s 339s +07%
2008-02 418s 1568s 441s 547s 278s -49%
2008-03 538s 1484s 419s 1196s 269s -78%

Table 1: Mean and standard variation of latency (R)
and latency including resubmissions (J). The column
“mean < 105” corresponds to the mean of latencies
lower than 10,000 seconds. The column “mean with
105” is a low bound of the actual latency mean con-
sidering that latencies greater than 10,000s equal
10,000s.

σ2(X) = E(X2) − E(X)2:

σ2
J(t∞) = −

1

F̃ 2
R(t∞)

„

Z t∞

0

(1 − F̃R(u))du

«2

+
2

F̃R(t∞)

Z t∞

0

u(1 − F̃R(u))du

+
2t∞(1 − F̃R(t∞))

F̃R(t∞)2

Z t∞

0

(1 − F̃R(u))du

(2)
In table 1, different computations of means and standard

deviations corresponding to the reference data presented in
section 3 are displayed. We observe that the expected la-
tency including resubmissions is of the same order of magni-
tude as the mean of all latencies smaller than 10,000 seconds
(i.e. without outliers). For comparison, a low bound of the
mean latency was computed, assuming that latencies greater
than 10,000s were equal to 10,000s. This submission strat-
egy allows to have a total latency in the same order of mag-
nitude as if there were no outliers. On the other hand, we
can observe that the standard deviation of latency including
resubmission (σJ) is smaller than the standard deviation of
latencies smaller than 10,000s, except for one set of data
where the value is almost similar (2008-01). It shows that
for most periods this strategy reduces both the variability
of the latency and the impact of outliers.

5. MULTIPLE SUBMISSIONS
In order to further improve performance and to reduce

chance of failure, multiple submission is often considered.
A multiple submission strategy can easily be implemented
within the EGEE Workload Management System (WMS)
through burst submissions: for each job to be executed, a
collection of b copies of this job is submitted. As soon as one
job of the collection is running, all the other ones are can-
celed. If none of the jobs starts executing before the timeout
value (t∞), the whole collection is canceled and resubmitted.
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Figure 2: Expectation of execution time for differ-
ent collection of b jobs, with respect to the timeout
value.

We are now interested in the minimal execution time of
the b parallel submissions. The probability of a job to finish
before t is given by F̃R(t). Thus, the probability of all the b

jobs to finish after t is given by (1−F̃R(t))b. The probability
of having at least one job running before t is thus given by
1 − (1 − F̃R(t))b.

The new expected execution time can then be computed
from equation 1 by replacing F̃R by 1 − (1 − F̃R(t))b:

EJ(t∞) =
1

1 − (1 − F̃R(t∞))b

Z t∞

0

(1 − F̃R(u))b
du (3)

and the standard deviation:

σ2
J(t∞) =

2

1 − (1 − F̃R(t∞))b

Z t∞

0

u(1 − F̃R(u))b
du

+
2t∞(1 − F̃R(t∞))b

(1 − (1 − F̃R(t∞))b)2

Z t∞

0

(1 − F̃R(u))b
du

−
1

(1 − (1 − F̃R(t∞))b)2

„

Z t∞

0

(1 − F̃R(u))b
du

«2

(4)
Figure 2 plots the profile of EJ (from equation 3) for differ-

ent values of b, using data 2006-IX. As expected, the higher
the value of b, the smaller the minimal expectation of the
job execution time. We also observe that the slope of EJ

after its minimal value is decreasing with b, leading to vari-
ations in the optimal t∞ values. The optimal values for t∞
and the minimal values of EJ for values of b from 1 to 20
are displayed in table 2. In the second group of columns, EJ

variations are compared with the case b = 1 (which corre-
sponds to the single resubmission strategy). Very significant
performance improvements are obtained, even for low val-
ues of b: for only 5 redundant submissions, EJ already drops
by a factor 2. Moreover, the standard deviation σJ is also
decreasing, concentrating the values of J around EJ . Yet,
these decrease slow down when b increases further. In the
third group of columns we compare results obtained for a
given value of b to the ones obtained for b − 1 in order to



b opt. best ∆EJ ∆b ∆EJ ∆b

t∞ EJ σJ /(b=1) /(b=1) /(b-1) /(b-1)

1 596s 471s 331s
2 880s 314s 148s -33% 200% -33.4% 100%
3 881s 268s 92s -43% 300% -14.6% 50%
4 881s 245s 73s -48% 400% -8.6% 33.3%
5 887s 230s 63s -51% 500% -6.0% 25%
6 1071s 220s 57s -53% 600% -4.6% 20%
7 1071s 212s 51s -55% 700% -3.7% 16.7%
8 1071s 205s 47s -57% 800% -3.0% 14.3%
9 1071s 200s 43s -58% 900% -2.6% 12.5%

10 1247s 196s 40s -59% 1000% -2.2% 11.1%
11 1247s 192s 38s -59% 1100% -1.9% 10%
12 1247s 189s 35s -60% 1200% -1.6% 9.1%
13 2643s 186s 33s -61% 1300% -1.4% 8.3%
14 1740s 184s 32s -61% 1400% -1.3% 7.7%
15 1199s 182s 30s -62% 1500% -1.1% 7.1%
16 980s 180s 29s -62% 1600% -1.0% 6.7%
17 853s 178s 27s -62% 1700% -0.9% 6.3%
18 792s 177s 26s -63% 1800% -0.9% 5.9%
19 730s 175s 25s -63% 1900% -0.8% 5.6%
20 688s 174s 24s -63% 2000% -0.7% 5.3%

Table 2: Different values of the number of jobs in
the collection (b) leads to different values of opti-
mal timeout and best expectation of execution time.
A significant speed-up is achieved by the multi-
submission strategy, even for low values of b.

measure the improvement of EJ with one unit of b. EJ is
decreasing, significantly faster for smaller values of b than
greater ones. This result is intuitive: adding one job to the
collection has much more impact if the collection is very
small than if it already contains many jobs.

In figure 3, the optimal values of EJ and associated standard-
deviation σJ are plotted for different periods of time with
respect to the number of jobs in parallel. The decreasing
curves confirm the previous observations.

6. DELAYED RESUBMISSION STRATEGY
The multiple submission strategy is efficient but aggres-

sive for the infrastructure. An alternate delayed resubmis-
sion strategy, derived from the single resubmission is pre-
sented here. As illustrated in figure 4, it consists in sub-
mitting a single job, waiting until t0 and then, if it is not
running yet, launching a copy of this job without canceling
the first one before t∞, and iterating this process until one
job is running.

In order not to have more than 2 identical jobs in the
system at the same time, we impose 0 < t0 < t∞ and (t∞ −
t0) < t0 (this ensures that job 1 is canceled before job 3 is
submitted, as illustrated on figure 4). The probability for a

single job to timeout is given by q = 1 − F̃R(t∞). If a job
starts running at time t in the interval [nt0, (n− 1)t0 + t∞]
(I0 on figure 4), this means that exactly (n − 1) jobs have
timed-out (probability qn−1) and that either latency of job

n is between t0 and (t − (n − 1)t0) (probability (F̃R(t −

(n − 1)t0) − F̃R(t0))) or latency of job n + 1 is lower than

(t − nt0) (probability F̃R(t − nt0)). Since these last two
events may both occur, the probability that at least one of
them occurs is equal to the probability of their union minus

 150

 200

 250

 300

 350

 400

 450

 500

 550

 600

 650

 1  2  3  4  5  6  7  8  9  10

m
in

im
a

l 
E

J

number of jobs in parallel

2006-IX
2007-2008

2007-36
2007-37
2007-38
2007-39
2007-50
2007-51
2007-52
2007-53
2008-01
2008-02
2008-03

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 1  2  3  4  5  6  7  8  9  10

s
ta

n
d

a
rd

 v
a

ri
a

ti
o

n
 σ

J

number of jobs in parallel

2006-IX
2007-2008

2007-36
2007-37
2007-38
2007-39
2007-50
2007-51
2007-52
2007-53
2008-01
2008-02
2008-03

Figure 3: Evolution of minimal values of EJ and the
associated σJ values with respect to the number of
jobs in the multi-submission (b). Each curve corre-
sponds to a set of data.

Figure 4: Principle of the delayed resubmission
strategy: a single job is first submitted. At t0, if
the job has not started, a copy of this job is submit-
ted. If the first job is still not completed at t∞, it
is canceled. This strategy is iterated until a job is
completed.



the probability of their intersection, i.e.:

FJ(t) = P (J < t|t ∈ [nt0, (n − 1)t0 + t∞])

= P (J < nt0) + (1 − F̃R(t∞))n−1

.
“

F̃R(t − (n − 1)t0) − F̃R(t0) + F̃R(t − nt0)

−(F̃R(t − (n − 1)t0) − F̃R(t0))F̃R(t − nt0)
”

Otherwise, if a job starts running at time t in the interval
[(n − 1)t0 + t∞, (n + 1)t0] (I1 on figure 4), this means that
exactly n jobs have timeouted (with probability qn) and that
the latency of job (n+1) is lower than (t−nt0) (probability

F̃R(t − nt0)).

FJ(t) = P (J < t|t ∈ [(n − 1)t0 + t∞, (n + 1)t0])

= P (J < (n − 1)t0 + t∞) + (1 − F̃R(t∞))nF̃R(t − nt0)

Deriving these last 2 equations leads to:

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

∀t ∈ [nt0, (n − 1)t0 + t∞]

fJ(t) = qn−1
“

f̃R(t − (n − 1)t0)

+(1 + F̃R(t0))f̃R(t − nt0)

−f̃R(t − (n − 1)t0).f̃R(t − nt0)
”

∀t ∈ [(n − 1)t0 + t∞, (n + 1)t0]fJ(t) = qnf̃R(t − nt0)

Finally, by integration, and replacing the integration vari-
able t by u = t − nt0 or v = t − (n − 1)t0, we get:

EJ =

Z

∞

0

tfJ(t)dt

=

Z t0

0

tfJ(t)dt

+

∞
X

n=1

 

Z (n−1)t0+t∞

nt0

tfJ(t)dt +

Z (n+1)t0

(n−1)t0+t∞

tfJ(t)dt

!

=

Z t0

0

tf̃R(t)dt +
∞
X

n=1

q
n−1

Z t∞

t0

(v + (n − 1)t0)f̃R(v)dv

+ (1 + F̃R(t0))

∞
X

n=1

q
n−1

Z t∞−t0

0

(u + nt0)f̃R(u)du

+

∞
X

n=1

q
n

Z t0

t∞−t0

(u + nt0)f̃R(u)du

−

∞
X

n=1

q
n−1

Z t∞−t0

0

(u + nt0)f̃R(u + t0).f̃R(u)du

Grouping terms and replacing the integer series by their
values leads to:

EJ =

Z t0

0

tf̃R(t)dt

+
1

1 − q

Z t∞

t0

vf̃R(v)dv +
qt0

(1 − q)2
(F̃R(t∞) − F̃R(t0))

+
1 + F̃R(t0)

1 − q

Z t∞−t0

0

uf̃R(u)du

+
t0(1 + F̃R(t0))

(1 − q)2
F̃R(t∞ − t0) +

q

1 − q

Z t0

t∞−t0

uf̃R(u)du

+
qt0

(1 − q)2
(F̃R(t0) − F̃R(t∞ − t0))

−
t0

(1 − q)2

Z t∞−t0

0

f̃R(u + t0).f̃R(u)du

−
1

1 − q

Z t∞−t0

0

uf̃R(u + t0).f̃R(u)du
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Figure 5: Expectation of execution time with re-
spect to t0 and t∞, in the case of delayed resubmis-
sion strategy. The surface presents a minimum.

And finally:

EJ(t0, t∞) =
1

F̃R(t∞)

Z t∞

0

uf̃R(u)du

+
F̃R(t0)

F̃R(t∞)

Z t∞−t0

0

uf̃R(u)du +
t0

F̃R(t∞)

+ t0
F̃R(t∞ − t0)

F̃R(t∞)
+ t0

F̃R(t0)F̃R(t∞ − t0)

F̃R
2
(t∞)

− t0 +

Z t∞−t0

0

uf̃R(u)du

−
t0

F̃R(t∞)2

Z t∞−t0

0

f̃R(u + t0).f̃R(u)du

−
1

F̃R(t∞)

Z t∞−t0

0

uf̃R(u + t0).f̃R(u)du

(5)
This expression has to be minimized numerically with re-

spect to t0 and t∞. In figure 5 the surface profile of EJ has
been computed using dataset 2006-IX. This dataset leads to
a best t0 value of 339s, a best t∞ value of 485s and a min-
imum value for the expected execution time of 431s, which
is smaller than the single resubmission strategy but higher
than the multiple resubmission strategy for b ≥ 2. Although
minimizing EJ leads to the best performance from a user
point of view, it might also load the infrastructure by in-
creasing the number of redundant jobs, which we study in
the following.

6.1 Number of parallel jobs
With the delayed resubmission strategy, a variable num-

ber of jobs may be running on the infrastructure at any
time. Let N// denote the average number of jobs needed,
computed as the normalized sum of the number of parallel
jobs running at each instant. N// is to be compared with
the value of b in the case of multiple resubmissions. Let
l be the latency of a job with parameters t0 and t∞. We
can notice that, after the first period [0; t0], the number of
jobs in parallel is periodic with a t0-period of time. In the
following, let n be an integer such that l is in [nt0, (n+1)t0[.



Three cases have to be distinguished:
n = 0; Then, obviously, N// = 1.
n = 1; Two different cases have to be considered:

• if l < t∞ : only one job is running until t0. Then,
a second job is running in parallel with the first one
during a period of (l − t0) which leads to :

N// =
t0 + 2(l − t0)

l
= 2 −

t0

l

• if l ≥ t∞ : only one job is running until t0. Then, two
jobs are running in parallel during a period of (t∞−t0).
After that, the first job is canceled and there will be
only one job running during (l − t∞) leading to :

N// =
t0 + 2(t∞ − t0) + (l − t∞)

l

n > 1; For both cases detailed below, only one job is running
until t0. Then, for (n − 1) period of t0 time, we will have
two jobs in parallel during |I0| = (t∞ − t0) and only one job
during |I1| = (2t0 − t∞).

• if l ∈ [nt0; (n − 1)t0 + t∞[ (I0 on figure 4): after the
(n− 1)t0 first periods, two jobs are running in parallel
during (l − nt0) which leads to :

N// =
t0 + (n − 1)t∞ + 2(l − nt0)

l

• if l ∈ [(n − 1)t0 + t∞; (n + 1)t0[ (I1 on figure 4): after
the (n − 1)t0 first periods, two jobs are running in
parallel during |I0| = (t∞ − t0) and then only one job
during (l − ((n − 1)t0 + t∞)) which leads to :

N// =
t0 + (n − 1)t∞ + 2(t∞ − t0) + (l − (n − 1)t0 − t∞)

l

It can be verified that limn→∞ N// = t∞
t0

. However, con-
sidering realistic values of l and t∞, n will usually be small.
We can demonstrate that N// ∈ [1; 2 − 1

n+1
], thus leading

to a maximum of 1.5 in the case of n = 1. In the following,
we will experiment different values of N// in order to study
the variations of the minimal value of l.

6.2 Imposing the ratio t∞
t0

.
Although this ratio can easily be imposed, it only corre-

sponds to the asymptotic behavior of N// and not to N//’s
actual value. N// is thus computed in each case, using the
minimal EJ values computed using equation 5.

In table 3, the results of the minimization of equation 5
for different values of the ratio t∞

t0
are presented, leading

to different values of N//. The minimal values of EJ cor-
respond either to n = 0 (EJ < t0), where N// = 1, or to
n = 1 (N// between 1 and 1.45).

The minimal values of EJ are compared with the number
of jobs in parallel on figure 6. The minimal value for the
delayed resubmission strategy, obtained from a global mini-
mization of equation 5, is EJ = 431s for a mean of 1.2 jobs in
parallel. This minimal value is lower than the one obtained
with the single resubmission strategy by 8.3%. However, we
obtain a lower value with the multiple submission strategy
with at least two jobs in parallel. To fairly compare different
strategies, a measure of the cost induced by an increase of
the mean number of jobs in parallel is needed.

t∞
t0

N// best t∞ best t0 min EJ ∆(100%)

471s
1.1 1 556s 505s 458s -2.7%
1.2 1 556s 463s 447s -5.0%
1.3 1.07 528s 406s 438s -6.9%
1.4 1.18 496s 354s 432s -8.2%
1.5 1.32 445s 297s 434s -7.7%
1.6 1.37 435s 272s 444s -5.6%
1.7 1.39 431s 254s 457s -2.9%
1.8 1.41 426s 237s 462s -1.9%
1.9 1.47 425s 224s 466s -1%
2 1.45 423s 211s 469s -0.5%

Table 3: Delayed resubmission strategy: for each
ratio t∞

t0
, the minimal EJ is computed. All EJ values

are below EJ from the single resubmission strategy
(471s). These results are computed on the 2006-IX

dataset.
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Figure 6: Minimal expected execution time accord-
ing to delayed resubmission strategy (plain curve) or
multiple submission strategy (dashed curve), with
respect to the mean number of job copies running
in parallel.
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Figure 7: Multiple submission strategies can also re-
duce the global load of the infrastructure when they
yield sufficient time gain. Top: the single resubmis-
sion strategy leads to an average number of jobs of
1 on [0,T]. Bottom: a multiple submission strategy
reduces it to 0.5 on this time period.
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7. DISCUSSION ON THE STRATEGIES COST
Although submitting twice the same job increases the grid

load, it still leads to a global benefit for the infrastructure
if the gain in time is higher than 2. Indeed, in this case, the
expectation of the number of jobs in the system decreases,
as illustrated on figure 7. This idea can be extended to any
number of jobs, trying to satisfy this relation:

EJ( delayed sub. with N//) <
EJ( single resub. with b = 1)

N//

The cost of the strategy is then:

∆cost = N// ∗
EJ(withN//)

EJ( with b = 1)
(6)

for different job numbers.
Using this definition, the cost of the single resubmission

strategy detailed in Section 4 is 1. In table 4, different sam-
ples of N//, EJ and ∆cost are displayed for the different
strategies studied in this paper. Obviously, in the multiple
submission strategy, we have N// = b. Figure 8 presents
the values of ∆cost with respect to N//. For integer values
of N// (corresponding to the multiple submission strategy),
values of ∆cost values are increasing and greater than 1. For
values of N// smaller than 2, the values of ∆cost, starting
from 1, are decreasing until a minimal value of 0.94, and
then increasing beyond 1. All values of ∆cost smaller than
1 indicate that the load on the grid is lower than a single
running job (the strategy of single resubmission). Using the
smallest value of ∆cost leads to the smallest occupation of
the grid while reducing the latency. The results that are
displayed in table 4 are those, given a value of t∞

t0
, that

minimize EJ . Considering the minimization with respect of
the ∆cost value, the minimum is reached for ∆cost = 0.93,
t0 = 439s and t∞ = 579s leading to EJ = 439s (less than
EJ(b=1) = 471s). Moreover, a consequence of reducing the
grid load might be a reduction of the latencies. This has not
been studied in this paper and it is subject for future work.

7.1 Results on data from 2007-2008

N//
t∞
t0

min EJ ∆cost N// min EJ ∆cost

1 471s 1 2 314s 1.3
1 1.1 458s 0.97 3 268s 1.7
1 1.15 453s 0.96 4 245s 2.1
1 1.2 447s 0.95 5 230s 2.4

1 1.25 443s 0.94 6 220s 2.8
1.07 1.3 438s 1.00 7 212s 3.1
1.18 1.4 432s 1.09 8 205s 3.5
1.32 1.5 434s 1.22 9 200s 3.8
1.36 1.6 445s 1.29 10 196s 4.2
1.40 1.7 458s 1.36 20 174s 7.4
1.41 1.8 462s 1.38 40 161s 14
1.43 1.9 466s 1.42 60 156s 20
1.45 2.0 469s 1.44 80 154s 26

100 152s 32

Table 4: In the case of the delayed resubmission
strategy, for each t∞

t0
value, the minimal EJ is com-

puted. Corresponding values of N// and ∆cost are
thus given. We observe that a ratio t∞

t0
of 1.25 ap-

pears to be the optimal solution with respect to the
∆cost value. For other strategies, minimal EJ is com-
puted from N//. For higher number of jobs, the cost
is increasing. These results have been computed on
the 2006-IX dataset.

Left part of table 5 presents, for each week of the dataset
from 2007-2008, the minimum value of ∆cost obtained using
the delayed resubmission strategy. For the 5 first weeks,
the minimal value of ∆cost is higher than 1 while, for the
other 6 weeks, including the whole period, ∆cost presents
a minimum less than 1, as it was the case for the dataset
studied in the previous section. This shows that, depending
on the grid workload, the delayed strategy is not always
optimal in term of ∆cost: the single submission is to be
chosen instead.

For each period of time, the values of t0 and t∞ corre-
sponding to the minimal value of ∆cost are given. We have
also tested the stability of such minimal values by adding
variations up to ± 5 seconds to each of t0 and t∞. The study
was limited to integer values of t0 and t∞ because having
higher precision of resubmission is not realistic in practice.
The maximal values of ∆cost and the maximum relative dif-
ference with respect to the minimum are given on right of
table 5 for all minima less than 1. Some ∆cost stay below 1
while others grow more than 1 but still below 1.1 where the
highest relative difference is of 14%. This shows a relative
stability that needs to be enforced by a good estimation of
both optimals t0 and t∞.

7.2 Practical implementation
Up to now, traces were studied a posteriori. However, ex-

ploiting the ∆cost optimization strategy in practice requires
to collect data for estimating t0 and t∞ prior to the jobs
execution. In the experiment reported in table 6, the varia-
tions of ∆cost for the different values of t0 and t∞ that have
been obtained on each time period are studied. Assuming
that ∆cost was computed from the measurements collected
during any of the periods considered at random, the value
of ∆cost is shown (the optimal value, corresponding to the



week opt. opt. opt. EJ max max
t0 t∞ ∆cost ∆cost ∆%

2007-36 422 423 1.001 510
2007-37 421 422 1.000 616
2007-38 427 428 1.001 530
2007-39 435 436 1.001 595
2007-50 466 467 1.001 627
2007-51 499 662 0.954 494 1.09 14 %
2007-52 455 595 0.955 455 0.97 1.2 %
2007-53 463 613 0.961 463 0.97 1.4 %
2008-01 489 525 0.981 489 1.03 4.7 %
2008-02 420 575 0.953 420 1.09 14 %
2008-03 395 530 0.943 395 0.95 1.3 %
2007/08 481 635 0.963 481 1.09 13 %

Table 5: Minimal ∆cost values for the different peri-
ods with corresponding values of t0, t∞ and EJ . All
EJ values are below the ones obtained with the sin-
gle resubmission strategy (see table 1)For the cases
where the minimum is lower than 1.0, variations of
∆cost around optimal t0 and t∞ values (radius 5):
maximal value and relative difference with the max-
imal value.

studied period’s measurements, is underlined). These re-
sults show a maximal variation of 13% (mean variation of
9%). Assuming now that ∆cost was computed from the mea-
surements collected the week before, the last column in the
table displays the variation due to the use of the t0 and t∞
optimal values from the week before in the computation of
∆cost. In that case, the relative difference is never larger
than 6% and when ∆cost is higher than 1, it is at a precision
of 10−3.

8. CONCLUSION
In this paper we have studied 3 different job submission

strategies that users can adopt in order to reduce the la-
tency they experience on production grids. For each of those
strategies, we have established a model of the expectation of
the total latency (including resubmission) and its standard
deviation. We have shown that all these strategies reduce
the latency. Moreover, the delayed resubmission strategy re-
duces the latency requiring less than 2 jobs in parallel while
the multiple submission strategy gives the higher latency
reduction but at a higher cost.

We have then proposed a cost criterion which character-
izes the conditions under which it is possible to obtain both
a latency smaller than in the case of single resubmission and
fewer parallel jobs.

Future work will concern the validation of this approach
with real applications. The impact of each strategy on grid-
applications makespan can be measured and averaged to
take into account evolutive experimental conditions. In a
second step, the impact of all grid users exploiting the same
strategy can be simulated in a controlled environment.
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