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Introduction

Entanglement is at the heart of many paradoxes of quantum mechanics and is also a useful ressource in quantum information processing. In particular, entangled states play a key role in quantum error correction and in quantum computational speedup. The characterization of entanglement of a general multipartite state remains a mathematical challenge and there exist several inequivalent measures. A comprehensive account of the most important mathematical concepts used for quantifying and manipulating entangled states may be found in [START_REF] Horodecki | Quantum entanglement[END_REF].

Some properties of entangled states may also be approached from differential geometry (two-and three-qubit Hilbert space geometry corresponds to Hopf fibrations, that are entanglement sensitive [START_REF] Mosseri | Geometry of entangled states, Bloch spheres and Hopf fibrations[END_REF]), from topological spaces (for instance the 3-qubit GHZ state corresponds to a borromean ring [START_REF] Aravind | Potentiality, entanglement and passion-at-a-distance[END_REF]), from finite geometries (by using the hyperplanes of the relevant generalized quadrangles [START_REF] Planat | On the Pauli graphs of N -qudits[END_REF] or in the black-hole analogy [START_REF] Levay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF]. Besides, group theoretical concepts have been repetitively put forward for describing classical [START_REF] Nebe | Self-dual codes and invariant theory[END_REF] and quantum error correction [START_REF] Calderbank | Quantum Error Correction via Codes over GF(4[END_REF]. In this paper, we exploit the unnoticed but organic link between real entangling gates of quantum computation and the group of automorphisms of some highly symmetric even Euclidean lattices.

Let us define an n-dimensional Euclidean lattice Λ as a discrete additive subgroup of the real vector space R n , endowed with the standard Euclidean product, and spanned by a generator matrix M with rows in R n . The automorphism group Aut(Λ) is the set of orthogonal matrices B such that under the conjugation action by the generating matrix M, one gets a unimodular matrix U = MBM -1 , that is (i) det U = ±1 and (ii) U is an integer matrix (see [START_REF] Conway | Sphere packings, lattices and groups[END_REF], p. 90). When the degree n is equal to the number of basis elements of Λ, then Aut(Λ) also acts on basis vectors and is generated with matrices B such that the sum of squared entries in a row is one, i.e. B may be seen as a quantum gate.

It will be shown that for a suitable choice of even Euclidean lattices Λ such as Z n lattices, the root lattices D 4 and E 8 , the Barnes-Wall lattice Λ 16 , the lattice D + 12 and the Leech lattice Λ 24 , one observes that the orthogonal group Aut(Λ) is a group of entangling quantum gates. It can be considered as acting on a two-, three-, four-, a twoqubit/qutrit and a three-qubit/qutrit system, respectively. In retrospect, such lattices bear out our recent work relating D 4 and E 8 Weyl groups to entangled states arising from the joint basis of specific mutually commuting set of generalized Pauli observables [START_REF] Planat | Balanced Tripartite Entanglement, the Alternating Group A4 and the Lie Algebra sl(3, C) ⊕ u(1)[END_REF][START_REF] Planat | Three-qubit entangled embeddings of CPT and Dirac groups within E 8 Weyl group[END_REF].

Entanglement arising from Z n lattices

To illustrate our topic, let us start with the Z n lattice whose lattice points are the integers and whose basis M is the identity matrix. The elementary cell is the n-dimensional hypercube and the automorphism group is a wreath product [START_REF] Harrary | The automorphism group of a hypercube[END_REF] Aut

(Z n ) ∼ = Z 2 ≀ S n = Z n 2 ⋊ S n , (1) 
of order 2 n n!, where the symbol ⋊ denotes the semidirect product and the wreath product ≀ corresponds to a permutation action of the symmetric group S n on the n copies of the two-letter group Z 2 .

It is straightforward to check that the automorphism group Aut(Z 4 ) of the fourdimensional lattice contains the gate CNOT=

     1 0 0 0 0 1 0 0 0 0 0 1 0 0 1 0     
, that is well known to create two-qubit entanglement. It has been found [START_REF] Planat | Balanced Tripartite Entanglement, the Alternating Group A4 and the Lie Algebra sl(3, C) ⊕ u(1)[END_REF] that the entanglement arising from the two-qubit Pauli group is encapsulated in the following Mermin's square

σ x ⊗ σ x σ y ⊗ σ y σ z ⊗ σ z σ y ⊗ σ z σ x ⊗ σ z σ x ⊗ σ y σ z ⊗ σ y σ z ⊗ σ x σ y ⊗ σ x , (2) 
where σ x , σ y and σ z are the ordinary Pauli spin matrices. Every row and every colum in the above square consists of mutually commuting operators sharing a basis of entangled states. The Mermin's square may be used for a proof of the Kochen-Specker theorem in a four-dimensional space by observing that the algebraic relations for the eigenvalues ±1 of the observables contradicts the one for the eigenstates [START_REF] Planat | Balanced Tripartite Entanglement, the Alternating Group A4 and the Lie Algebra sl(3, C) ⊕ u(1)[END_REF][START_REF] Mermin | Hidden variables and the two theorems of John Bell[END_REF].

Let us denote r = {σ x ⊗σ x , σ y ⊗σ y , σ z ⊗σ z } and s = {σ x ⊗σ z , σ z ⊗σ x , σ y ⊗σ y } the first row and the r.h.s. column in (2), the only ones that possess real entries. One may use the common eigenstate basis M r = {(1, 0, 0, 1), (1, 0, 0, -1), (0, 1, 1, 0), (0, 1, -1, 0)} of the set r for generating a lattice isometric to Z 4 . The natural action of the automorphism group on the basis M r reads ‡.

Aut(Z 4 ) = S = 1 2     1 -1 1 1 1 1 1 -1 1 -1 -1 -1 1 1 -1 1     , S ′ = 1 2     1 -1 1 -1 -1 1 1 -1 1 1 1 1 -1 -1 1 1     , (3) 
It is noticeable that the rows of the generators S and S ′ of Aut(Λ) encode the eigenstates of the triples of observables s and {σ x ⊗ 1 2 , 1 2 ⊗ σ x , σ x ⊗ σ x }, respectively (a partial list of the eigenstates, associated to the maximal sets of mutually commuting operators in the two-qubit Pauli group, may be found in [START_REF] Planat | Quantum entanglement and projective ring geometry[END_REF]).

Then, following a similar reasoning, we construct the Z 8 lattice by means of a generating basis built from the eigenstates of the following triple of three-qubit observables

s 3 = σ z ⊗ {σ x ⊗ σ z , σ z ⊗ σ x , σ y ⊗ σ y }, (4) 
that follows from s by applying the left tensor product σ z . The basis we select is the matrix S 3 first introduced in [1] (Eq. ( 9)]. As for the two-qubit case above, the natural action of the automorphism group on the basis is obtained as

Aut(Z 8 ) = g 1 , g 2 , ‡
The reader may use the following commands in Magma [START_REF] Bosma | The Magma algebra system I. The user language[END_REF] to check the calculations:

"Mr:=Matrix(4,4,[1,0,0,1, 1,0,0,-1, 0,1,1,0, 0,1,-1,0]); L:=LatticeWithBasis(Mr); aut:=AutomorphismGroup(L:NaturalAction); L,aut;"

with g 1 = 1 2              . . 1 1 . 1 . 1 . 1 1 . -1 . -1 -1 1 . . 1 . -1 . 1 -1 . . 1 . -1 . 1 1 . . . 1 . -1 1 1 . . . -1 . 1 . . -1 1 1 . 1 . . . 1 -1 1 . 1 .              . ( 5 
)
The matrix g 2 is not made explicit but it has a similar form and properties as g 1 . Let us now investigate the type of entanglement contained in the 3-qubit generators/gates g 1 and g 2 . We single out the state encoded by the fourth row of g

1 |ψ = 1 2 (|000 -|001 + |100 -|110 ). (6) 
A quantitative measure of tripartite entanglement is the 3-tangle [START_REF] Sharma | Four-tangle for pure states[END_REF][START_REF] Coffman | Distributed entanglement[END_REF] 

τ (3) = 4 (T 001 -T 000 ) 2 -4P 00 B 1 P 00 B 0 , (7) 
which contains the four determinants To quantify bipartite entanglement the strategy is as follows [START_REF] Coffman | Distributed entanglement[END_REF]. Take the density matrix |ψ ψ| of the 3-qubit system and trace out over the bipartite subsystems to obtain a reduced density matrix ρ. A measure of two-qubit entanglement is the tangle

T 000 =
τ = C 2 , with the concurrence C(ρ) = max{0, √ λ 1 - √ λ 2 - √ λ 3 - √ λ 4 }
, where the λ i are non-negative eigenvalues of the product ρρ arranged in decreasing order, ρ = (σ y ⊗ σ y )ρ * (σ y ⊗ σ y ) is the spin-flipped density matrix and * denotes the complex conjugate.

Two important families are the GHZ family with τ (3) = 1 and all 2-tangles τ vanishing, and the W family with τ (3) = 0 and all 2-tangles equal to 1. Both families are unequivalent under SLOCC transformations [START_REF] Coffman | Distributed entanglement[END_REF].

The 3-tangle of the state ( 6) is τ (3) = 1 4 and the reduced density matrices for

subsystems A -B, A -C and B -C are ρ AB = 1 4      2 . 1 -1 . . . . 1 . 1 -1 -1 . -1 1      , ρ AC = 1 4      1 -1 1 . -1 1 -1 . 1 -1 2 . . . . .      and ρ BC = 1 4      2 -1 -1 . -1 1 . . -1 . 1 . . . . .     
. The set of eigenvalues of ρρ

associated to subsystems A-B and A-C are { 1 16 (3+2 √ 2), 1 16 (3-2 √
2), 0, 0} leading to the tangles τ AB = τ AC = 1 4 and the set of eigenvalues of ρρ associated to the subsystem B -C is { 1 16 , 1 16 , 0, 0} leading to a vanishing tangle τ BC .

All states encoded by rows of g 1 and g 2 behaves as state [START_REF] Levay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF]. We call a tripartite entanglement characterized by the tangles τ (3) = τ AB = τ AC = 1 4 and τ BC = 0 an incomplete balanced entanglement. Fully balanced tripartite entanglement is found in [START_REF] Planat | Balanced Tripartite Entanglement, the Alternating Group A4 and the Lie Algebra sl(3, C) ⊕ u(1)[END_REF][START_REF] Planat | Three-qubit entangled embeddings of CPT and Dirac groups within E 8 Weyl group[END_REF] and in the next section below devoted to the E 8 lattice and other dense lattices.

Entanglement arising from Barnes-Wall lattices

The family of Barnes-Wall lattices L n , of even dimension 2 n , is related to self-dual codes and the real Clifford group. The first four members of the family, for n = 1 to 4, are isomorphic to the densest known lattices of the corresponding dimension, i.e. the root lattices A 2 , D 4 , E 8 and the Barnes-Wall lattice BW [START_REF] Coffman | Distributed entanglement[END_REF] .

The automorphism group of L n (in dimension 2 n , n = 3) corresponds to the real Clifford group C + n (defined as the normalizer in the general orthogonal group O(2 n ) of the generalized Pauli group on n real qubits: the notation comes from [START_REF] Planat | Three-qubit entangled embeddings of CPT and Dirac groups within E 8 Weyl group[END_REF]). For n = 3 qubits, L 3 is E 8 and C + 3 is the second largest maximal subgroup of W ′ (E 8 ), the derived subgroup of the Weyl group W (E 8 ). In the sequel, we concentrate on the entanglement arising from the lattices embodying two, three and four qubits, respectively.

Two-qubit entanglement and the lattice D 4

Among the several representations of the lattice D 4 , we select the one with basis M r = {(1, 1, 0, 0), (1, -1, 0, 0), (0, 1, -1, 0), (0, 0, 1, -1)}, that has the automorphism group

Aut(D 4 ) = 1 2     1 -1 1 1 1 1 1 -1 1 -1 -1 -1 -1 -1 1 -1     , 1 2     1 -1 1 1 -1 1 1 1 -1 -1 1 -1 1 1 1 -1     , (8) 
Going back to [START_REF] Calderbank | Quantum Error Correction via Codes over GF(4[END_REF], it is clear that the rows of the two generators of Aut(D 4 ) encode the (entangled) eigenstates of the triple s (as was the case for the generator S). Thus, two-qubit maximal entanglement is at the heart of the symmetries of this representation on the lattice D 4 . The group Aut(D 4 ), of order 1152, is (up to isomorphism) the same object than the two-qubit real Clifford group C + 2 and the Weyl group W (F 4 ) of the 24-cell.

Three-qubit entanglement and the lattice E 8

Among the several representations of the lattice D 4 , we select the one with basis M = {(2, -2, 0, 0, 0, 0, 0, 0), (0, 2, -2, 0, 0, 0, 0, 0), (0, 0, 2, -2, 0, 0, 0, 0), (0, 0, 0, 2, -2, 0, 0, 0), (0, 0, 0, 0, 2, -2, 0, 0), (0, 0, 0, 0, 0, 2, -2, 0), (0, 0, 0, 0, 0, 0, 2, -2), (1, 1, 1, 1, 1, -1, -1, -1)} that has the automorphism group

Aut(E 8 ) = g 1 , g 2 , with g 1 = 1 2              . . -1 -1 1 . 1 . 1 -1 . . . -1 . -1 . . 1 -1 1 . -1 . -1 -1 . . . 1 . -1 -1 -1 . . . -1 . 1 . . -1 1 1 . -1 . . . -1 -1 -1 . -1 . 1 -1 . . . 1 0 1              and g 2 = 1 2              1 -1 . . . 1 1 . -1 1 . . . 1 1 . . . 1 1 1 . . 1 . . -1 -1 1 . . 1 . . 1 -1 -1 . . 1 -1 -1 . . . -1 1 . . . -1 1 -1 . . 1 -1 -1 . . . 1 -1 .              . ( 9 
)
The group Aut(E 8 ) is of order 4!6!8! = 696 729 600.

Let us consider the state encoded by the first row of g

2 |ψ = 1 2 (|000 -|001 + |101 + |110 ). ( 10 
)
The tangles attached to the state [START_REF] Planat | Quantum entanglement and projective ring geometry[END_REF] are calculated, as we did for the state (6) of the previous section. They are such that τ (3) = τ AC = τ AB = τ BC = 1 4 corresponding to fully balanced tripartite entanglement. The same results holds for all states encoded by the rows of g 1 and g 2 .

One can conclude that this type of entanglement, first featured in [START_REF] Planat | Balanced Tripartite Entanglement, the Alternating Group A4 and the Lie Algebra sl(3, C) ⊕ u(1)[END_REF][START_REF] Planat | Three-qubit entangled embeddings of CPT and Dirac groups within E 8 Weyl group[END_REF], is a specific property of the lattice E 8 . As mentioned previously, the 3-qubit real Clifford group C + 3 of order 2 580 480 is a maximal subgroup of Aut ′ (E 8 ) (the second largest one); the largest maximal subgroup is the automorphism group Aut(E 7 ) of the lattice E 7 .

As a second representation of the lattice E 8 , we select the one obtained from the construction "A" on the extended Hamming code [START_REF] Calderbank | Quantum Error Correction via Codes over GF(4[END_REF][START_REF] Aravind | Potentiality, entanglement and passion-at-a-distance[END_REF][START_REF] Aravind | Potentiality, entanglement and passion-at-a-distance[END_REF] [12] §.

Aut(E 8 ) = g 1 , g 2 , with g 1 = 1 2              . 1 -1 . 1 . . 1 1 -1 . . 1 . -1 . -1 . -1 . . . -1 -1 . . . -1 . . . . 1 1 . . -1 . -1. . . . . . . -1 . . . -1 1 . -1 . . 1 1 . -1 . . . 1 -1            
 § One may use the following commands in Magma [START_REF] Bosma | The Magma algebra system I. The user language[END_REF] "C:=HammingCode(GF(2),3); C:=ExtendCode(C); L:=Lattice(C,"A"); aut:=AutomorphismGroup(L:NaturalAction);aut;" and g 2 = 1 2

             . 1 . . . 1 -1 -1 1 . -1 -1 1 . . . 1 . . . -1 -1 . -1 -1 -1 . -1 . . . -1 . . . 1 1 . 1 -1 . -1 -1 1 . . -1 . 1 -1 1 . . 1 . . . . -1 . -1 1 1 .              . ( 11 
)
Here we get two types of generators. In the generator g 1 , the rows 4 and 6 encode non entangled states while the other rows encode a state such as

|ψ = 1 2 (|001 -|010 + |100 + |111 ), ( 12 
)
with τ (3) = 1 and vanishing 2-tangles. Such a state is of the GHZ type. The second generator g 2 encodes states of the type ( 6) corresponding to incomplete balanced entanglement.

Four-qubit entanglement and the lattice Λ 16

For four real qubits, the Clifford group is C + 4 ≡ Aut(Λ 16 ), of order 89 181 388 800, associated to the Barnes-Wall lattice Λ 16 [START_REF] Nebe | Self-dual codes and invariant theory[END_REF]. We use construction "B" associated to the [START_REF] Coffman | Distributed entanglement[END_REF][START_REF] Planat | On the Pauli graphs of N -qudits[END_REF][START_REF] Calderbank | Quantum Error Correction via Codes over GF(4[END_REF] Reed-Muller code (see [START_REF] Conway | Sphere packings, lattices and groups[END_REF], p. 141) .

One gets two 16×16 gates generating Aut(Λ 16 ) with rows encoding entangled states such as the factorizable state

|ψ = 1 2 (|0000 -|0011 -|0101 + |0110 ) = 1 2 |0 ((|000 -|011 -|101 + |110 )). (13) 
It is easy to quantify the residual tripartite entanglement of state [START_REF] Bosma | The Magma algebra system I. The user language[END_REF]. Using [START_REF] Nebe | Self-dual codes and invariant theory[END_REF], one gets true tripartite entanglement τ (3) = 1 corresponding to the GHZ family. All states encoded by the rows in the generators of Aut(Λ 16 ) display vanishing 4-tangle (the four-tangle is calculated from the expressions given in [START_REF] Sharma | Four-tangle for pure states[END_REF]). Presumably, all residual three-tangles equal unity as for GHZ-type states).

Entanglement arising from the D + 12 lattice

The unique indecomposable 12-dimensional unimodular lattice is D + 12 . It can be generated from the construction "A" applied to the [START_REF] Conway | Sphere packings, lattices and groups[END_REF][START_REF] Levay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF][START_REF] Levay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF] extended Golay code over GF (3) ¶.

The automorphism group is of order 2 21 3 5 5 2 7 1 11. As for the previous cases, the rows of the generators encode entangled states. If we look at the system as a bipartite in Magma, the code C:=ReedMullerCode(1,4); L:=Lattice(C,"B"); aut:=AutomophismGroup(L:NaturalAction); ¶ In Magma, one uses the following commands "C := GolayCode(GF(3), true); L:=Lattice(C,"A"); aut:=AutomorphismGroup(L:NaturalAction);" 3×4 system, the Schmidt rank + of the generators is found to be three. There are several types of states. We restrict our account to one of them, that we consider as the state of a 3 × 2 × 2 system, i.e. a qutrit coupled to two qubits.

|ψ = (2 |000 + |001 -|010 + |011 + |110 + |200 )/3. ( 14 
)
The reduced density matrix of the two-qubit bipartite system is found to be

ρ BC = 1 9      5 2 -2 2 1 1 -1 1 -2 -1 2 -1 2 1 -1 1     
The set of eigenvalues of ρρ associated the two-qubit subsystem B -C is obtained as { 2 81 (10 + 3 √ 11) ±1/2 , 0, 0}, corresponding the two-tangle τ BC ∼ 0.44 * . Then, one can compute the reduced density matrix ρ AB and ρ AC ; they correspond to a qutrit/qubit system. According to the Peres criterion [START_REF] Horodecki | Quantum entanglement[END_REF]♯, a necessary and sufficient condition for the existence of entanglement between parties A and B is that the partial + The Schmidt rank can easily be obtained in Magma. Magma provides the Smith normal form for any matrix A with entries in an Euclidean ring (a field K, the ring Z of integers, the ring K[x] of polynomials with coefficients over a field K...). Given an m × n matrix A over an Euclidean ring R, one can find invertible square matrices P and Q such that P AQ = S, where S is a diagonal matrix: the Smith normal form of A. This is equivalent to the singular value decomposition A = P -1 SQ -1 . The non-zero diagonal entries of the Smith form of A are unique up to multiplication by a unit of R and are also called elementary divisors. Thus, the Schmidt rank of A equals the rank of S.

* Note that the same row of the selected generator may be thought as attached to a 2 × 2 × 3 system, i.e. two-qubits coupled to a qutrit. In that case, the state has to be rewritten as

|ψ = (2 |000 + |001 + |010 -|100 -|2000 + |210 )/3. ( 15 
)
and the new reduced density matrix of the two-qubit bipartite system is found to be

ρ BC = 1 9     2 2 1 . 2 1 1 . 1 1 2 . . . . .    
The set of eigenvalues of ρρ associated the two-qubit subsystem B -C is now obtained as

{ 1 81 (3 ± 2 √
2), 0, 0}, corresponding the two-tangle τ BC ∼ 0.050. Another selected generator of Aut(D + 12 ), seen as a 3 × 2 × 2 system, can easily be found to have a row with entanglement similar to that of [START_REF] Sharma | Four-tangle for pure states[END_REF]. ♯ According to the Peres partial transpose (PPT) theorem, a state ρ AB of a bipartite system A-B with dimension

d = d A d B ≤ 6 is separable iff (ρ TA AB ) iα,jβ = (ρ TA AB ) jα,iβ
has non negative eigenvalues. For d = d A d B > 6, if the partial transpose matrix ρ TA AB has negative eigenvalues, then the bipartite system A B is entangled. But they are states, known as bound entangled states, that satisfy the Peres positivity criterion, but still are entanged.

transpose matrix ρ T A

AB contains at least one negative eigenvalue. A similar criterion holds for the entanglement between parties A and C.

The sets of eigenvalues of matrices One elegant construction of Λ 24 makes use of the MOG (Miracle Octad Generator) coordinates, that are obtained from the codewords of the hexacode ( [START_REF] Conway | Sphere packings, lattices and groups[END_REF], p. 132). In this representation, aut(Λ 24 ) is entangled. One can see the states encoded by the rows of the two generators as coming grom a 6 × 4 quantum system and for them one finds that the Schmidt rank is four. The amount of entanglement that we find with this approach is quite inhomogeneous. We restrict to a single example, the two-qubit/sextit state

ρ T A AB = 1 9          5 . . 2 -1 . . 2 2 -1 . . . 2 . . . . . -1 . 1 . . 2 . . . 1 . -1 . . . . .          , ρ T A AC = 1 9          5 1 -1 1 2 1 1 2 . . . . -1 . 1 . . . 1 
|ψ = (-2 |001 + |100 + |101 + |200 + |210 + |300 + |311 -|500 -|501 -2 |510 )/4, (16) 
with reduced density matrix It can be shown that the partial traces ρ T A AB and ρ T A AC violate the Peres positivity criterion so that there also is entanglement between the parties A -B and A -C.

ρ BC = 1 16      4 
It would be desirable to analyze the entanglement in Λ 24 as arising from a threequbit/qutrit system but the methods to achieve this goal seem not yet to be available.

Conclusion

The symmetry group acting on the generating basis of even Euclidean lattices has been described as a group of entangling quantum gates. Barnes-Wall lattices are known to be related to the Clifford group of quantum error correction [START_REF] Nebe | Self-dual codes and invariant theory[END_REF][START_REF] Calderbank | Quantum Error Correction via Codes over GF(4[END_REF] and to discretised Hilbert spaces [START_REF] Mosseri | Geometry of entangled states, Bloch spheres and Hopf fibrations[END_REF] but the occurrence of Leech lattice is novel in this context. It may be that real world systems, like quark systems, or codons, or even black holes [START_REF] Levay | Three-qubit operators, the split Cayley hexagon of order two, and black holes[END_REF], exploit dimension 24 = 2 3 × 3 as three-qubits and qutrits at the same time. Leech lattice may also be constructed from Leech roots in Lorentzian space R 25,1 (see [START_REF] Conway | Sphere packings, lattices and groups[END_REF], chaps. 26-27) and dimension 26 corresponds to the original version of string theory through the no-ghost theorem. These new vistas (see also [START_REF] Allcock | On the Y555 complex reflection group[END_REF]), and their connection to tripartite entanglement, will be explored in future work.

  More precisely, taking the input qubit states as |0 and |ψ = a |0 + b |1 , the action CNOT(|0 |ψ ) ends up into the non-separable Bell state a |00 + b |11 . As it is well known, the CNOT gate is a primitive of universal quantum computing .

  The densest known lattice in dimension 24 is the Leech lattice Λ 24 with kissing number 196560. It is the unique Euclidean lattice that is even, unimodular and with non-zero vectors at least two. The automorphism group is called Co 0 = Z 2 .Co 1 , where the Conway group Co 1 is sporadic, with order 2 21 .3 9 .5 4 .7 2 .11.13.23.
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  It follows that the two-tangle for this states is τ BC ∼ 0.00536.

			2 3 1	
			2 6 2 .	 
			3 2 5 .	 
			1 . . 1
	and eigenvalues of ρρ as { 1 64 (9 ± 4	√	2), 1 256 (3 ± 2	√ 2)}.
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