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Boundary control of hyperbolic conservation laws using a frequency
domain approach

Xavier Litrico and Vincent Fromion

Abstract— The paper uses a frequency domain method for
boundary control of hyperbolic conservation laws. We show that
the transfer function of the hyperbolic system belongs to the
Callier-Desoer algebra, for which the Nyquist theorem provides
necessary and sufficient conditions for input-output closed-loop
stability. We examine the link between input-output stability
and exponential stability of the state. Specific results are then
derived for the case of proportional boundary controllers. The
results are illustrated in the case of boundary control of open-
channel flow.

I. INTRODUCTION

Hyperbolic conservations laws are derived from physics

of distributed parameter systems. We deal in this paper

with systems represented by hyperbolic conservations laws

with an independent time variable t ∈ [0,+∞) and an

independent space variable on a finite interval x ∈ [0, L],
for which we derive stabilizing boundary controllers using a

frequency domain approach.

This work is motivated by the problem of controlling an

open-channel represented by Saint-Venant equations. These

hyperbolic partial differential equations describe the dynam-

ics of open-channel hydraulic systems, e.g. rivers, irrigation

or drainage canals, sewers, etc., assuming one dimensional

flow.

Many authors contributed on the control of open-channel

hydraulic systems represented by Saint-Venant equations.

Most of these works used a finite dimensional approximation

of the system to design controllers. Recent approaches took

into account the distributed feature of the system by a Rie-

mann invariants approach [7]. This method provides a suf-

ficient stability result for rectangular horizontal frictionless

channels around a uniform flow regime. For more realistic

cases, only vanishing perturbations can be considered [11].

This main limitation of the Riemann invariants method leads

to consider an alternative method based on a frequency

domain approach, which we have already developed in

previous papers [10], [9], by considering only input-output

stability. Here, we also study the Lyapunov-like behavior of

the system for non zero initial conditions.

The objective of this paper is to link the Lyapunov

approach with the frequency domain approach. The main

results of the paper are as follows:

1) We provide a detailed characterization of the transfer

matrix of the considered hyperbolic system, and show

that it belongs to the class B̂(σ) of Callier-Desoer [4],
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2) We use Nyquist theorem to derive necessary and suf-

ficient condition for input-output stability of boundary

controlled hyperbolic systems,

3) We clarify the link between input-output and internal

stability.

We also examine in detail the specific case of proportional

diagonal boundary control and extend the results presented

by [7]. These results are illustrated for boundary control of

linearized Saint-Venant equations, representing open-channel

flow around a given stationary regime.

II. CONTROL PROBLEM STATEMENT

A. Control problem

We consider the following linear system of hyperbolic

conservation laws:

∂ξ

∂t
+

(
0 1

αβ α − β

)
∂ξ

∂x
+

(
0 0
−γ δ

)
ξ = 0 (1)

where t and x are the two independent variables : a time

variable t ∈ [0,+∞) and a space variable x ∈ [0, L] on

a finite interval, ξ(t, x) = (h(t, x), q(t, x))T : [0,+∞) ×
[0, L] → Ω ∈ R

2 is the state of the system. α > β > 0,

γ ≥ 0 and δ ≥ 0 are positive real constants.

The two equations of system (1) can be interpreted as a

mass conservation law with h the conserved quantity and q
the flux. The second equation can then be interpreted as a

momentum conservation law.

We consider the solutions of the Cauchy problem for the

system (1) over [0,+∞) × [0, L] under an initial condition

ξ(0, x) = ξ0(x), x ∈ [0, L] and two boundary conditions of

the form q(t, 0) = q0(t) and q(t, L) = qL(t), t ∈ [0,+∞).

B. Existence and well-posedness

Following a classical approach, we introduce the bounded

group T(t) on L2([0, L], R2), generated by the following

linear operator:

A1ξ =
(

0 1
αβ α − β

)
∂ξ

∂x
+

(
0 0
−γ δ

)
ξ (2)

where A1 is then defined on the domain in L2([0, L], R2)
consisting of functions ξ ∈ H1([0, L], R2) which satisfy the

boundary conditions Cξ(t, 0) = q0(t) and Cξ(t, L) = qL(t)
with C = (0 1). H1([0, L], R2) corresponds to the Sobolev

space of R
2 functions whose derivatives (in generalized

sense) are square integrable on [0, L].
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1) Continuous solutions: Let us first recall that if ξ0(x)
and u(t) = (q0(t), qL(t))T are two continuously differen-
tiable functions of their argument, it is then possible by
Theorem 2.1 in [13] to claim that the solutions of system (1)
are continuously differentiable with respect to its arguments,
i.e., ξ(t, x) ∈ C1([0,∞), [0, L], R2). Furthermore there exist
two finite constants M > 0 and γ such that for any t ∈
[0,∞), any ξ ∈ C1([0, L], R2) and any u ∈ L2([0, t], R2) ∩
C1([0, t], R2), there exists a finite constant Kt such that

‖ξ(t, ·)‖L2([0,L],R2) ≤ Meγt‖ξ0‖L2([0,L],R2) + Kt‖u‖2. (3)

2) Generalized solutions: Following this preliminary re-

sult and the fact that the continuous differentiable functions

defined on any finite support are dense in L2, it is then

possible to handle the inputs and the initial conditions

in L2([0, t], R2) and L2([0, L], R2) respectively. We thus

conclude that system (1) has a generalized solution in

C([0,∞),L2([0, L], R2)) for any t ∈ [0,∞), any ξ0 ∈
L2([0, L], R2) and any (q0, qL) ∈ L2([0, t], R2). Let us

recall that ξ ∈ C([0,∞),L2([0, L], R2)) means that for every

t ≥ 0 ξ(t, ·) belongs to L2([0, L], R2) and limh→0 ‖ξ(t +
h, ·) − ξ(t, ·)‖L2([0,L],R2) = 0. Furthermore, the solution of

system (1) can be rewritten as

ξ(t, ·) = Φ(t)u(t) + T(t)ξ0

where u(t) denotes the restriction of u to [0, t] and where

Φ(t) is a bounded linear operator defined from L2([0, t], R2)
into L2([0, L], R2). Finally, the generalized solution also

satisfies inequality (3) (see [14] for details).

It remains to ensure that the output of the system is well-

defined, i.e., for any t ∈ [0,∞), any ξ0 ∈ L2([0, L], R2)
and any (q0, qL) ∈ L2([0, t], R2), y(t) = (h(t, 0), h(t, L))
belongs to L2([0, t], R2). As in the case of the existence of

generalized solutions, the main idea in this context is to use

a density type argument. We do not develop the details of

the proof since this proof can be easily adapted from the one

associated to example 4.3.12 in [6].

III. FREQUENCY DOMAIN ANALYSIS

Using the results of section II, we know that the solutions

of (1) are Laplace transformable, which enable us to use

a frequency domain approach. We will show in the sequel

that the transfer matrix of system (1) belongs to the Callier-

Desoer algebra [4], [5]. That ensures that the closed-loop

system is well-defined and the validity of the Nyquist cri-

teria, which provides necessary and sufficient conditions for

stability of feedback system. We begin with some definitions.

A. Definitions

Let σ ∈ R be a given real number.

Definition 1 (Sets A(σ), Â(σ), A−(σ) and Â−(σ).):
Let A(σ) denote the set of distributions f such that:

f(t) =
{

0 if t < 0∑∞
i=0 fiδ(t − ti) + fa(t) if t ≥ 0,

where fa(t)e−σt ∈ L1(0,∞), δ(.) represents the unit delta

distribution, 0 ≤ t0 < t1 < . . . and fi are real constants,

and
∑∞

i=0 |fi|e−σti < ∞.

Â(σ) denotes the set of all functions f̂ : C
+ → C that are

Laplace transforms of elements of A(σ); they are analytic

and bounded in �(s) ≥ σ, where �(s) denotes the real part

of s. The sets A−(σ) and Â−(σ) are defined as:

A−(σ) =
⋃

σ1<σ

A(σ1) and Â−(σ) =
⋃

σ1<σ

Â(σ1)

Â∞
− (σ) denotes the set of elements b̂ ∈ Â−(σ) being

bounded away from zero at infinity in �(s) ≥ σ.

Definition 2 (The Callier-Desoer class B̂(σ)): The set

B̂(σ) consists of all functions f̂ = â/b̂, where â ∈ Â−(σ)
and b̂ ∈ Â∞

− (σ).

B. Open-loop transfer matrix

1) Input-output transfer matrix: The system’s open-loop

transfer matrix can be obtained by applying Laplace trans-

form to the linear partial differential equations (1), and solv-

ing the resulting system of Ordinary Differential Equations

in the variable x, parameterized by the Laplace variable s [8].

In this case, using the classical relation d̂f
dt = sf̂(s) − f(0)

and after elementary manipulations, we get:

∂ξ̂(s, x)
∂x

= A(s)ξ̂(s, x) + Bξ(0, x) (4)

with

A(s) =
1

αβ

(
(α − β)s + γ −s − δ

−αβs 0

)

B =
1

αβ

(
(β − α) 1

αβ 0

)
.

The general solution of (4) is then given by:

ξ̂(s, x) = eA(s)x
[
ξ̂(s, 0) + ξ̄0(s, x)

]
(5)

with ξ̄0(s, x) =
∫ x

0
e−A(s)vBξ(0, v)dv.

The state ξ̂(s, x) is then obtained with the transition matrix

Γ(s, x) = eA(s)x acting on the sum of two terms: the first one

ξ̂(s, 0) is the boundary condition in x = 0, and the second

one ξ̄0(s, x) is linked to the initial condition at t = 0.

Then, using an algebraic manipulation to specify the

boundary inputs û(s) = (q̂(s, 0), q̂(s, L))T and outputs

ŷ(s) = (ĥ(s, 0), ĥ(s, L))T , we get the following represen-

tation:

ŷ(s) = P (s)û(s) + P0(s)ξ̄0(s, L) (6)

where P0(s) = P (s)
(

0 1
0 0

)
−

(
1 0
0 0

)
, and

P (s) =

⎛
⎝ λ2eλ1L−λ1eλ2L

s(eλ2L−eλ1L)
λ1−λ2

s(eλ2L−eλ1L)
(λ2−λ1)e

(λ1+λ2)L

s(eλ2L−eλ1L)
λ1eλ1L−λ2eλ2L

s(eλ2L−eλ1L)

⎞
⎠ (7)

λ1 and λ2 are the eigenvalues of A(s), given by, for i = 1, 2:

λi(s) =
(α − β)s + γ + (−1)i

√
d(s)

2αβ
(8)

with d(s) = (α + β)2s2 + 2[(α − β)γ + 2αβδ]s + γ2.
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2) Open-loop poles of the system: The poles of this

transfer matrix are obtained as the solutions of

s(eλ2(s)L − eλ1(s)L) = 0.

There is a pole in zero (the hyperbolic system acts as an

integrator) and the other poles verify the following equation:

d(s) = −4α2β2k2π2

L2

with k ∈ N
∗.

The poles (p±k)k∈N∗ are then given by:

p±k =
2αβ

(α + β)2

[
−δ −

(
1
β
− 1

α

)
γ

2
±

√
∆(k)

]
(9)

with ∆(k) = δ2 − γ2

αβ +
(

1
β − 1

α

)
γδ − k2π2(α+β)2

L2 .

Let km ∈ N
∗ be the greatest integer such that ∆(km) ≥ 0.

Then the poles obtained for 0 < k ≤ km are negative real,

and those obtained for k > km are complex conjugate, with a

constant real part equal to − 2αβ
(α+β)2

[
δ +

(
1
β − 1

α

)
γ
2

]
. The

oscillating poles are therefore located on a vertical line in

the left half plane. Let us note that when γ = δ = 0 the

poles are located on the imaginary axis.

3) Properties of the transfer matrix: Using the above

definitions, we state the following proposition.

Proposition 1: Each element pij(s) of the transfer matrix

P (s) belongs to the Callier-Desoer algebra B̂(σ) iff γ 	= 0
or δ 	= 0, with σ > − 2αβ

(α+β)2

[
δ +

(
1
β − 1

α

)
γ
2

]
.

Indeed, using the closed form expression of the poles of

P (s), pij(s) can be decomposed as an infinite sum [1]:

pij(s) =
∞∑

k=−∞

a
(k)
ij

s − pk

Therefore, since p0 = 0 and the other poles have a negative

real part, we get:

pij(s) =
a
(0)
ij

s
+

∑
k �=0

a
(k)
ij

s − pk
(10)

Then, pij(s) is the sum of an integrator and a stable

infinite dimensional part belonging to Â−(σ). Since the

stable infinite dimensional part has finitely many poles with

real part larger than σ1 = − 2αβ
(α+β)2

[
δ +

(
1
β − 1

α

)
γ
2

]
, then

pij(s) ∈ B̂(σ), with σ > σ1 (see theorem 3 in [1]).

Finally, P (s) ∈ M(B̂(σ)), which is the multivariable

extension of B̂(σ).
If γ = δ = 0, the open-loop poles of the system are

located on the imaginary axis, thus, following [6] it does not

belong to B̂(0).

C. Closed-loop transfer matrix

Let K(s) denote the Laplace transform of the finite

dimensional controller K, i.e.:

û(s) = K(s)ŷ(s) + d̂(s) (11)

with K(s) =
(

k11(s) k12(s)
k21(s) k22(s)

)
and where d̂ = (d̂1 d̂2)T is

the Laplace transform of the input perturbation.
Then the control input u is given by:

û(s) = Sud̂(s) + SuKP0ξ̄0(s, L) (12)

with Su = (I − KP )−1 the input sensitivity function and

the outputs by:

ŷ(s) = PSud̂(s) + SyP0ξ̄0(s, L) (13)

with Sy = (I − PK)−1 the output sensitivity function.

If the controller K(s) belongs to B̂(σ), then the feedback

interconnection also belongs to B̂(σ) provided det(I −KP )
is bounded away from zero at infinity in Cσ+ . Then, the

Nyquist criterion applies, which gives a necessary and suf-

ficient condition of closed-loop input-output stability [6].
1) Stability condition derived from Nyquist criterion:

When the product P (s)K(s) is strictly proper, e.g. as a result

of the bandwidth limitation usually imposes strictly proper

controllers. In this case, the Nyquist criterion can be used

as in the finite dimensional case, to study the closed-loop

stability of the controlled system.
However, in some hyperbolic systems where boundary

conditions are imposed by physical constraints, one needs

to consider non strictly proper diagonal controllers. This

case will be considered in section V, due to its practical

importance for some systems. Let us note that it is still

possible to use Nyquist theorem in this case, but its use is

more delicate due to the system behavior when ω tends to

infinity (see [2], [3]).
The Nyquist theorem enables to extend classical results for

finite dimensional systems to infinite dimensional systems

belonging to the Callier-Desoer algebra. However, it only

provides an input-output or external stability result. In the

next section, we provide Lyapunov type stability result.

IV. STATE SPACE ANALYSIS

We now state two results concerning the state behaviour.

First the transfer function approach can be generalized by

using the distributed transfer function, which relates the

inputs to the state ξ̂(s, x). Second, we show that input-output

stability of the closed-loop system implies the exponential

stability of the state of the system.

A. From input to state
1) Open-loop distributed transfer matrix: The Laplace

transform also enables to derive from eq. (1) the distributed

transfer matrix expressing the state of the system ξ̂(s, x) =
(ĥ(s, x), q̂(s, x))T at each point x ∈ [0, L] of the system as
a function of the boundary and initial conditions:

ξ̂(s, x) = G(s, x)û(s) + G0(s, x)ξ̄0(s, L) + Γ(s, x)ξ̄0(s, x) (14)

with G0(s, x) = G(s, x)
(

0 1
0 0

)
− Γ(s, x), and

G(s, x) =

(
λ2eλ2x+λ1L−λ1eλ1x+λ2L

s(eλ2L−eλ1L)
λ1eλ1x−λ2eλ2x

s(eλ2L−eλ1L)
eλ1x+λ2L−eλ2x+λ1L

eλ2L−eλ1L
eλ2x−eλ1x

eλ2L−eλ1L

)
(15)

Using these transfer functions and the boundary controls

leads to the closed-loop distributed transfer matrix.

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 FrB03.6

5343



2) Closed-loop distributed transfer matrix: Using equa-
tions (12–14), the distributed closed-loop transfer matrix is
written as:

ξ̂(s, x) = G(s, x)Sud̂(s) + G(s, x)SuN0ξ̄0(s, L)
+Γ(s, x)

[
ξ̄0(s, x) − ξ̄0(s, L)

] (16)

with N0(s) =
(

0 1
0 0

)
− K

(
1 0
0 0

)
.

The poles of the closed-loop distributed transfer matrix

GK(s, x) = G(s, x)Su(s)N0(s) are identical to the ones

of the closed-loop input-output transfer matrix P (s)Su(s),
only the zeros change. This is due to the fact that the

feedback is applied only at the boundaries. Therefore, the

results obtained in the last section for the external stability

can be directly generalized to the state, since for any x the

transfer GK(s, x) belongs to H∞.

B. Exponential stability

We now recall a result allowing to strongly relate input-

output stability and Lyapunov stability for systems possess-

ing a minimal state-space realization. This result finds its

roots in the dissipativity framework introduced by Willems

in his seminal paper [17].

In the sequel, Σ is a causal linear time-invariant system

such that for any input u in L2([0, t], Rp), its output given

by y = Σ(u) belongs to L2([0, t], Rm) (Σ is thus assumed

well-defined). Z is a normed vectorial space equipped with

the norm ‖ · ‖Z and corresponds to the the state-space of

Σ. Finally, the state of Σ at time t ∈ [0,∞) belonging to

Z is denoted by z(t) and it is formally related to the input

u and the initial condition by the following causal relation:

z(t) = φ(t, 0, z(0), u(t)).
The following definition corresponds to the uniform reach-

ability and the uniform observability defined by Willems in

[16] for causal linear invariant systems.

Definition 3: Σ is said to be minimal if its state-space is

reachable from z(0) = 0, i.e., there exists αr > 0 and Tr > 0
such that for any z ∈ Z there exists ur ∈ L2([0, Tr], Rp)
such that z(0) = 0, z = z(Tr) = φ(Tr, 0, 0, u

(Tr)
r ) and∫ Tr

0
‖ur(τ)‖2dτ ≤ α2

r‖z‖2
Z and Σ is observable, i.e., there

exists βo > 0 and To > 0 such that for any z ∈ Z and u = 0,

we have
∫ To

0
‖y(τ)‖2dτ ≥ β2

o‖z‖2
Z .

Proposition 2: Let Σ be a causal linear time invariant

system defined from L2([0, t], Rp) into L2([0, t], Rm). If Σ
is finite gain stable on L2 and if its state-space realization

is minimal then Σ is exponentially stable, i.e. there exist

a and b positive such that for any z(0) ∈ Z, we have

‖z(t)‖Z ≤ ae−bt‖z(0)‖Z for any t ≥ 0.

Proof: The proof is omitted for lack of space.

Actually if the closed-loop system is internally stable then

the map between (d1, d2) to (y1, y2) is L2 gain stable (since

the closed-loop matrix belongs to H∞) and thus only the

minimality of the state-space realization of the closed-loop

operator has to be proved.

In our context, the state-space of the closed-loop system

is given by the concatenation of the state-space of the

hyperbolic system given by (1) and the one of the controller

K. We then deduce that Z = L2([0, L], R2) and z = ξ

when a constant feedback is considered. When K is a finite

dimensional time-invariant linear controller of order n, then

Z = L2([0, L], R2)×R
n with z = (ξ, xK) where xK is the

state of K. In this last case, Z is equipped with the following

norm: ‖z‖Z =
(
‖ξ‖2

L2([0,L],R2) + ‖xK‖2
)1/2

.

If we assume that the state-space realization of the con-

troller, K =
[

A B
C D

]
is such that (A,B) is controllable

and (A,C) is observable, it is straightforward to prove

that the state-space realization of K is minimal following

definition 3.

Following this preliminary remark, the minimality of

closed-loop system is ensured if the hyperbolic system given

by (1) is also minimal. That can be easily deduced of results

presented in [12] (see also [14]). Actually, the state-space

of system (1) is reachable from ξ0 = 0, i.e., there exist

two finite constants Tr > 0 and αr > 0 such that for any

ξ1 ∈ L2([0, L], R2)) there exists u ∈ L2([0, T ], R2) such

that ξ1(Tr, ·) = Φ(Tr)u(Tr) and with ‖u‖L2([0,Tr],R2) ≤
αr‖ξ1(Tr, ·)‖L2([0,L],R2). Using the duality between control-

lability and observability (see e.g. [14]), it is also possible

to prove that system (1) is observable, i.e., there exist two

finite constants To > 0 and βo > 0 such that for any ξ1 ∈
L([0, L], R2)), we have ‖y‖L2([0,To],R2) ≥ βo‖ξ0‖L2([0,L],R2)

where y corresponds to the output of system (1) initialized

at ξ(0, ·) = ξ0 and where u(t) = 0 for t ∈ [0, To].
In conclusion, if the state-space realization of the con-

troller is minimal, we are then able to deduce that the

initial condition of the closed-loop system is then forgotten

exponentially.

V. SPECIFIC CASE OF STATIC DIAGONAL

BOUNDARY CONTROL

Proportional diagonal controllers are commonly encoun-

tered (gates in the case of open-channels lead to static

boundary control), and have been studied in the literature

(see e.g. [7]). In this case, the closed-loop system simpli-

fies. We study the poles of the closed-loop system, and

derive an analytical necessary and sufficient condition for

exponential stabilization with decay rate strictly lower than

µ for proportional diagonal boundary control in the case

γ = δ = 0. In the general case, the closed-loop poles cannot

be expressed with closed form solutions, but asymptotic

analysis is possible in high frequencies. We then consider

a static boundary controller defined by:

K =
(

k0 0
0 kL

)
(17)

where k0, kL are constant scalars and we want to determine

conditions on (k0, kL) such that the closed-loop system is

stable.

A. General case

Following the remarks done in section III.C, the closed-

loop system is well-posed, and the Nyquist stability criteria

applies, leading to necessary and sufficient condition for

stability.

45th IEEE CDC, San Diego, USA, Dec. 13-15, 2006 FrB03.6

5344



The resulting closed-loop system is then given by Eq. (13),

and det(I − P (s)K(s)) = eλ1L(s + k0λ2)(s + kLλ1) −
eλ2L(s + k0λ1)(s + kLλ2).

The poles of the closed-loop system are therefore solutions

of the following equation:

e(λ2(s)−λ1(s))L =
(s + k0λ2(s))(s + kLλ1(s))
(s + k0λ1(s))(s + kLλ2(s))

(18)

Unfortunately, there are no closed-form solutions for this

equation, but the Nyquist criterion applies, giving a graphical

result for closed-loop stability.

It is also possible to derive asymptotic approximation for

the poles in high and low frequencies.

In high frequencies, the eigenvalues can be approximated

by λ1(s) = −r1 − s
α + O( 1

s ) and λ2(s) = r2 + s
β + O( 1

s ),
with r1 = αδ−γ

α(α+β) and r2 = βδ+γ
β(α+β) .

Therefore, for |s| 
 2[(α−β)γ+2αβδ]
(α+β)2 , the high frequency

closed-loop poles are approximated by:

p±k ≈ − (r1 + r2)L
τ

+
1
τ

log
(

(β + k0)(α − kL)
(α − k0)(β + kL)

)
± 2jkπ

τ

In low frequencies, we have similarly λ1(s) = − δ
γ s + o(s)

and λ2(s) = γ
αβ +

(
1
β − 1

α + δ
γ

)
s + o(s). Therefore, for

|s| � γ2

2[(α−β)γ+2αβδ] , the low frequency closed-loop poles

are approximated by:

p±k ≈ − 1
γ(α − β) + 2δ

+
1
τ0

log
(

k0(γ − kLδ)
kL(γ − k0δ)

)
± 2jkπ

τ0

with τ0 = L
β − L

α + 2Lδ
γ .

These results extend the poles approximations obtained for

one boundary control at x = L [9]. However, it is difficult

to derive a stability property from an asymptotic frequency

behavior of the poles.

B. Case δ = γ = 0

We now consider the special case where δ = γ = 0, which

corresponds to the system considered by several authors (see

e.g. [7]). In this case, the transfer matrix no longer belongs

to the class B̂(0) and can only be stabilized by a non strictly

proper controller [6]. Therefore, the Nyquist criterion does

not apply. We can nevertheless show that it belongs to the

class of regular transfer functions and then well-posedness of

the closed-loop can be guaranteed (see [15] and references

therein).

Moreover, a necessary and sufficient condition for closed-

loop stability can be derived from the closed-form expression

for the poles of the closed-loop system.

In this case, the eigenvalues are given by λ1(s) = − s
α

and λ2(s) = s
β . Then, equation (18) becomes:

e( 1
α + 1

β )sL =
(β + k0)(α − kL)
(α − k0)(β + kL)

(19)

The closed-loop poles are then obtained in a closed-form:

p±k =
1
τ

log
(

(β + k0)(α − kL)
(α − k0)(β + kL)

)
± 2jkπ

τ

with τ = L
(

1
α + 1

β

)
and where the complex form of the

logarithm is used.

Therefore, we have the following necessary and sufficient

result of input output stability:

Proposition 3: Let µ ≥ 0 be a positive real number. The

closed-loop poles verify �(pk) < −µ if and only if the

couple (k0, kL) verifies the following inequality:∣∣∣∣ (β + k0)(α − kL)
(α − k0)(β + kL)

∣∣∣∣ < e−µτ (20)

This condition extends the one obtained by [7], as shown

below in section VI.

Let us now examine the implications of (20) for specific

values of (k0, kL). When k0 = 0, i.e. for simple boundary

control at x = L, and for µ = 0, the condition (20)

reduces to
∣∣∣ 1−kL/α
1+kL/β

∣∣∣ < 1, which is verified for any kL > 0.

Therefore, any positive proportional boundary controller at

x = L stabilizes the system (1). The minimum is obtained for

kL = α, which is the gain for optimal damping of oscillating

modes (see [9]).

When kL = 0, i.e. for simple upstream boundary control,

and for µ = 0, the condition reduces to
∣∣∣ 1+k0/β
1−k0/α

∣∣∣ < 1, which

is true for − 2αβ
α−β < k0 < 0. Therefore, contrarily to the

boundary control case at x = L, the closed-loop system

with boundary control at x = 0 is not stable for any k0 < 0.

The minimum is obtained for k0 = −β, which is again the

gain for optimal damping of oscillating modes in the case of

boundary control at x = 0.

VI. APPLICATION TO BOUNDARY CONTROL OF

AN OPEN-CHANNEL

A. Linearized Saint-Venant equations

We apply the result of the paper to the control of a

prismatic canal pool of length L with uniform geometry (not

necessarily rectangular) and a given bed slope Sb ≥ 0, rep-

resented by the linearized Saint-Venant equations involving

small variations of discharge q(t, x) and water depth h(t, x)
around constant stationary values Q0 (m3/s) and H0 (m).

These equations can be written as a linear hyperbolic

system of partial differential equations (1) with the fol-

lowing parameters: α = C0 + V0, β = C0 − V0, γ =
gSb

(
10
3 − 4A0

3T0P0

dP0
dH

)
and δ = 2gSb

V0
, where V0 is the

average velocity, C0 =
√

gA0/T0 is the wave celerity, A0

the wetted area, T0 the water surface top width, P0 the wetted

perimeter and g the gravitational acceleration.

Note that the variable h is scaled by a factor T0, i.e. Eq.

(1) applies in fact to h∗ = T0h, which is denoted h with an

abuse of notation.

B. Diagonal proportional control

1) Case γ = δ = 0: We explore the link between our

result and the stability condition obtained by [7] in the case

of a horizontal frictionless channel. In [7], the control is

expressed as :

v(t, 0) = −2α0c(t, 0)
v(t, L) = 2αLc(t, L)
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where v and c are deviations from equilibrium values of

velocity V0 and celerity C0 and α0, αL are positive constants

such that 0 < α0 < 1 and 0 < αL < 1.

Expressed in terms of our boundary conditions, since v =
q

H0
− V0

H0
h and c = C0

2H0
h in rectangular geometry, we get:

α0 = − 1
C0

(k0 − V0) (21)

αL =
1
C0

(kL − V0) (22)

where k0 and kL are the gains of the boundary controls

q(s, 0) = k0h(s, 0) and q(s, L) = kLh(s, L).
Using Eqs. (21–22), it is easy to show that condition (20)

is equivalent to:(
1 − α0

1 + α0

)(
1 − αL

1 + αL

)
< e−µτ .

For µ = 0, i.e. only for stabilization, we recover the sufficient

condition obtained by [7] based on a Riemann invariants

approach. The frequency domain approach provides here a

necessary and sufficient condition for stability.

2) General case: The paper is illustrated for a canal pool

of length L = 3000 m with a trapezoidal geometry, (bed

width of 7 m, side slope of 1.5), a bed slope Sb = 0.0001
and Manning coefficient of 0.02. The considered stationary

regime corresponds to a discharge Q0 = 14 m3/s and a water

depth H0 = 2.12 m. This leads to an hyperbolic system (1)

with the following parameters α = 4.63, β = 3.33, γ =
2.7 × 10−3, and δ = 3 × 10−3.

Figure 1 depicts the time domain simulation of static

diagonal boundary controller for various values of (k0, kL).
The initial state corresponds to a discharge deviation of

0.43 m3/s from the equilibrium regime, and initial values of

h(0, 0) = 0.509 m and h(0, L) = 0.536 m. The hyperbolic

system is simulated with a rational model of order 30.

−0.2

0
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0.6
h(L/4) (m)

−0.2

0

0.2

0.4

0.6
h(L/2) (m)

0 500 1000 1500 2000 2500 3000
−0.2

0

0.2

0.4

0.6
h(3L/4) (m)

time (s)

Fig. 1. Water level deviations along time for various values of (k0, kL):
(−β, α) (solid line), (−β/4, α/4) (dotted line), (−4β, 4α) (dashed line)

It is clear from the figures that the three controllers sta-

bilize the hyperbolic system, and that the optimal controller

leads to the quickest decay of the system.

VII. CONCLUSION

The paper extends existing results on the stabilization

of hyperbolic conservation laws, and proposes a frequency

domain approach for the control of such systems. Simu-

lations for boundary control of an open-channel show the

effectiveness of the approach. Finally, this paper demon-

strates the usefulness of the classical frequency domain

approach for analysis and control of distributed parameters

systems represented by hyperbolic conservation laws. This

preliminary work paves the way towards the study of the

stability of the nonlinear Saint-Venant equations for any

equilibrium regime.
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