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We investigate the quantum non-demolition (QND) measurement of an atomic population based
on a heterodyne detection and show that the induced back-action allows to prepare both spin-
squeezed and Dicke states. We use a wavevector formalism to describe the stochastic process of the
measurement and the associated atomic evolution. Analytical formulas of the atomic distribution
momenta are derived in the weak coupling regime both for short and long time behavior, and
they are in good agreement with those obtained by a Monte-Carlo simulation. The experimental
implementation of the proposed heterodyne detection scheme is discussed. The role played in the
squeezing process by the spontaneous emission is considered.
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I. INTRODUCTION

Generation of entangled collective spin states such as
spin-squeezed states (SSS) [1, 2] and Dicke states [3–5]
is of first importance for quantum information [6] and
quantum metrology [7–10]. A non-linear evolution of
the system is required to create collective entanglement:
common approaches exploit interactions between the par-
ticles [11, 12], probing with squeezed light [13] or cav-
ity mediated interaction [9]. The strong non-linearity of
a measurement determined by the state renormalization
can also lead to such states [14–17].

Measurement induced squeezing of atomic ensembles
has been performed using either a Mach-Zehnder inter-
ferometer and simultaneous interaction with several op-
tical frequencies [18], or cavity transmission modulation
[9]. Nevertheless, the experimental realization of highly
engineered atomic states is still challenging and a deep
understanding of the underlying stochastic process of the
measurement is needed. The dynamic of the atomic state
collapse can be described as a succession of partial mea-
surements. Several methods have been used to model
this collapse process, like stochastic Schrödinger equa-
tion [4, 19], master equation [20], or wavevector formal-
ism [14].

In this article, we propose to use the frequency mod-
ulation (FM) spectroscopy technique [21–24] to generate
both spin-squeezed and Dicke states. A laser beam is
phase modulated to produce frequency sidebands; one
sideband is placed close to an atomic transition and ex-
periences a phase-shift passing through the atomic sam-
ple. The detection of the beatnote at the modulation
frequency allows then to estimate the atomic population
of the probed state.

A theorical analysis of the measurement process shows
that a heterodyne detection performed on an atomic sam-
ple allows to prepare new quantum states. The study is

based on the wavevector formalism previously introduced
for homodyne detection [14] and shows similarities with
the method used in [25, 26] to reconstruct the photonic
state from the results of a QND measurement sequence.
We study the quantum trajectories of the atomic state
caused by the repeated interaction with single-photons
sent in the QND apparatus. In the weak coupling limit
an analytical expression is derived for the evolution of the
state variance during the measurement, it completely de-
scribes the atomic wavefunction collapse. The result is
in good agreement with a Monte-Carlo simulation of the
measurement process.

II. THE MEASUREMENT PROCESS

The principle of the QND measurement is presented
in Fig. 1. An atomic system interacts coherently with
an optical probe. As a result, the orientation compo-
nent of the atomic state (such as the atom number in a
well defined hyperfine level), becomes weakly entangled
with the probe photons, and the photodetection grad-
ually provides the observer with information about the
spin state. Continuous observation conditionally reduces
the orientation uncertainty with respect to the QND
measurement outcome thanks to the measurement quan-
tum back-action. In any individual measurement trajec-
tory, the initial wavefunction will thus collapse in a sin-
gle squeezed state whereas the ensemble averaged uncer-
tainty will not be reduced, because the measurement out-
comes over many QND trajectories are distributed within
the variance of the initial state. Our model will allow to
study the dynamics of this collapse by considering single
photon detection events.
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FIG. 1: Basic scheme of the measurement process: the phase-
shift induced by the atomic sample is estimated using the
repeated interaction with single-photons. The back-action on
the atomic state increases with the precision of the phase
measurement.

A. Heterodyne QND detection

We consider the QND measurement of the population
difference between two atomic levels using an heterodyne
detection. The measurement is realised by estimating
the phase-shift between the two frequency components
of the detection beam. This configuration is equivalent
to a frequency space interferometer in which each path
corresponds to a single frequency mode. In our model,
we consider photons individually sent into this interfer-
ometer and reconstruct the output beatnote photon after
photon by comparing their arrival time with a time ref-
erence.

1. Model of the apparatus

Time reference

Delay

FIG. 2: Model for the QND based heterodyne detection.
Single-photons are sent through a spectral beamsplitter B and
interact non-destructively with the atomic ensemble (UQND).
The detection time of each photon is measured by comparison
with a time reference signal.

The model for the QND apparatus is shown in Fig. 2.
The input optical state is composed of two spectral
modes. The probe mode (0) at a frequency ω0/2π is close
to the frequency of the atomic transition, and will there-
fore be strongly phase shifted when traveling through the
atoms. The reference mode (Ω) is at a far-off resonance
frequency (ω0 +Ω) /2π and will be unaffected. A single-
photon state |1〉 in the mode (0) is associated to the pho-
ton annihilation operator a0, and the vacuum state |0〉 in
the mode (Ω) is associated to aΩ. A single sideband op-

tical phase modulator B is used as a spectral beamsplit-
ter to generate spectrally mode-entangled single-photons
(see App. A). A local oscillator (LO) drives B with fre-
quency Ω/2π. We consider the driving signal as a noise-
free classical field. After passing through the atoms, the
two-channel-optical-state is sent to a single-photon de-
tector which is assumed to be ideal. The detection of a
photon in the mode (0) is associated with the operator
u0, whereas the detection of a photon in the mode (Ω)
is associated with uΩ. If the coherence length of the op-
tical source is much larger than the LO wavelength, the
two modes (0) and (Ω) are in a coherent superposition,
and the spatial overlap of these two modes generates a
beating at frequency Ω/2π. A pulse generator, in phase
with the LO, delivers regularly spaced pulses (at time
interval τ = 2π/Ω) used as a reference to measure the
arrival time of the photons. The histogram representa-
tion of the photon arrival time allows to reconstruct the
beating signal.

2. Atomic state

The atomic ensemble is a collection of a fixed number
Nat of two-levels atoms {|ai〉 , |bi〉}, described as fictitious

1/2-spins {j(i)x , j
(i)
y , j

(i)
z } where:

j(i)x =
1

2
(|bi〉 〈ai|+ |ai〉 〈bi|) , (1)

j(i)y =
i

2
(|ai〉 〈bi| − |bi〉 〈ai|) , (2)

j(i)z =
1

2
(|bi〉 〈bi| − |ai〉 〈ai|) . (3)

The atomic ensemble is characterized by the collective

spin operators Jk =
∑

i j
(i)
k , k = x, y, z. A collective

state |n〉 is an eigenstate of both Jz and J
2 = J2

x+J
2
y+J

2
z ,

and is called a Dicke state. It verifies:

J
2 |n〉 =

Nat

2

(
Nat

2
+ 1

)
|n〉 (4)

Jz |n〉 = n |n〉 (5)

where −Nat/2 ≤ n ≤ Nat/2. After Np photons detected
the atomic state is |ψat (Np)〉 =

∑
n cn (Np) |n〉. The ini-

tial atomic state is a coherent spin state (CSS) polarized
along Jx, which means an average population difference
〈Jz〉 = 0, and its explicit expression is [27]:

cn (0) =
1

2Nat/2

√
Nat!(

Nat

2 + n
)
!
(
Nat

2 − n
)
!
. (6)

From the Moivre-Laplace theorem, if Nat ≫ 1 the coeffi-
cients cn (0) are well approximated by a gaussian distri-
bution:

cn (0) ∝ exp

(
− n2

Nat

)
. (7)
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B. Analytical description of the measurement

process

1. Scattering matrix of the interferometer

The spectral beamsplitter B creates a coherent super-
position of the two input spectral modes (0) and (Ω), see
App. A. Its action is described by the following matrix:

B ∝
( √

T −
√
R√

ReiΩt
√
TeiΩt

)
, (8)

where, in analogy with a spatial beamsplitter, R is the
probability for a photon in the probe mode (0) to be
in the reference mode (Ω) at the output of B, and T is
the probability for a photon to stay in the carrier mode.
We neglect any absorption and dispersion in B so that
R+ T = 1.
When ω0 + Ω is far from any atomic transition, the

reference beam experiences no phase-shift and the QND
interaction can be written as

UQND (Jz) =

(
eiφJz 0
0 1

)
. (9)

φ is the optical phase-shift induced by a number diference
of two (n = 1), and depends on the coupling strength
of the transition at ω0 and on the optical density of
the atomic cloud. Spontaneous emission induced by the
probe beam is neglected in this analysis; the reduction it
causes on the coherence of the atomic state is considered
in Sec. IV.
The scattering matrix of this system is S (Jz) =

UQND (Jz)B and it furnishes the output modes of
the interferometer once the input ones are given:
(u0 (Jz) , uΩ (Jz)) = S (Jz) (a0, aΩ).

2. Measurement back-action

A click at the detector corresponds to the annihilition
of a photon either in mode (0) or (Ω). After the mea-
surement the state of the system satisfies the relation:

|00, 0Ω〉 ⊗ |ψat (Np + 1)〉
∝ [u0 (Jz) + uΩ (Jz)] |10, 0Ω〉 ⊗ |ψat (Np)〉 . (10)

The stochastic recurrence relation which defines the
atomic state evolution after one measurement follows
from the expression of S (Jz):

|ψat (Np + 1)〉 ∝
[(√

T +
√
R
)
cos

(
φJz
2

− Ωt̃

2

)

+i
(√

T −
√
R
)
sin

(
φJz
2

− Ωt̃

2

)]
|ψat (Np)〉 , (11)

where t̃ is the time at which the photon has been de-
tected.

This expression contains a beatnote signal at frequency
Ω/2π with a contrast C = 2

√
RT . The reconstruction of

the beatnote photon after photon is achieved by compar-
ing the arrival time t̃k of the k-th photon with the last
time reference pulse pτ , where p is the number of pulses
counted between t = 0 and t = t̃k. We estimate the
phase-shift ϕ̃k ≡ Ωδ̃tk from the time delay δ̃tk = t̃k − pτ
between the last pulse of the time reference and the pho-
ton detection.
The atomic state after the detection of Np photons is

obtained applying Np times the relation of Eq. (11) on
the initial atomic state |ψat (Np = 0)〉. Expressed as a
superposition of collective states, it results |ψat (Np)〉 =∑

n FNp
(n) cn (0) |n〉, where

∣∣FNp
(n)
∣∣2 ∝

Np∏

k=1

[1 + C cos (φn− ϕ̃k)] (12)

is the back-action function [38]
Eq. (12) leads straightforwardly to the probability

P (ϕ) to measure a phase-shift ϕ when the (Np + 1)-th
photon is detected:

P (ϕ) =
1

2π

∑

n

|cn (Np)|2 (1 + C cos (φn− ϕ)) . (13)

Using this expression and the recurrence relation of
Eq. (11), we simulated the quantum trajectories followed
by the atomic state (see App. C). Typical results are
presented in Fig. 3.
In the weak coupling limit (φNat ≪ 1), it is possi-

ble to derive an analytical expression for the
∣∣FNp

(n)
∣∣2

function (see App. B):

∣∣FNp
(n)
∣∣2 ∝ exp

[
−2M2Np

(
n2 + 2δϕ̃n/φ

)]
, (14)

where

δϕ̃ = lim
Nt
Np

→0

Nt

Np

Np/Nt∑

j=1

δϕ̃j (15)

is the average mean position over the followed trajectory,
and

M2 =
φ2

4

(
1−

√
1− C2

)
, (16)

is the measurement strength. This expression of the
back-action function contains the complete description of
the atomic state evolution in the weak coupling regime
and allows to quantitatively study the atomic wavefunc-
tion collapse, that is the squeezing process.

III. DYNAMICS OF THE WAVEFUNCTION

COLLAPSE

The atomic state evolution is studied by comparing
the initial atomic state distribution cn (0) of Eq. (7) with
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FIG. 3: Trajectories of the atomic distribution momenta obtained with a Monte-Carlo simulation, once set Nat = 200, φ = 10−3

rad, and R = T = 1/2. (a) Mean position of the atomic population 〈Jz〉 as a function of the number of measured photons. For
a long enough measurement the state converges to a Dicke state. (b) Variance evolution during the measurement sequence.
The solid line is the average over 1000 trajectories (only 20 are plotted) while the dashed line is the result of the analytical
calculation of the variance at short time, given by Eq. (18). At short time scale, the evolution is deterministic as predicted
by the analytical study. At long time scale, the variances become stochastic but remain bounded. In addition, the average
variance over the trajectories is below the short time behavior. (c) The histogram of the mean positions at the end of the
trajectories is compared to the initial distribution (solid line). The measurement process satisfies the Born probability rule
Pn = |〈n|ψat (Np = 0)〉|2.

FNp
(n). Depending on their relative width, two regimes

appear during the atomic state evolution: the short time
limit - where the width of the atomic distribution ∆J2

z is
large compare to one and the atomic state is in a super-
position of many atomic levels - and the long time limit
- where the distribution is very narrow and the state is
split on a few levels of amplitude FNp

(n). The boundary

between these two regimes occurs for ∆J2
z ∼ 1, that is

for Np ∼M−2.

A. Short time limit

In the short time limit, defined by the condition Np ≪
M−2,

∣∣FNp
(n)
∣∣2 is broad and |cn (Np)|2 is a gaussian

distribution characterized by the following mean position
and variance:

〈Jz〉 = −C2ξ2κ2δϕ̃/φ, (17)

∆J2
z = ξ2Nat/4, (18)

where κ2 = M2NatNp is the signal-to-noise ratio and
ξ2 = 1/

(
1 + κ2

)
is the squeezing factor. For Np ≥ 1,

the squeezing factor drops below unity and the initial
CSS collapses into a SSS as a consequence of the mea-
surement process. The remarkable result is that ∆J2

z is
independent of the stochastic parameter δϕ̃ at first order
and is thus deterministic, as shown with the numerical
simulation in Fig. 3 (b).

FIG. 4: Extreme cases for long time evolution. The mean
position of the atomic distribution is in the middle of two
eigenvalues of Jz, (a) or centered on an eigenvalue of Jz (b).

B. Long time limit

In the long time limit (Np ≫ M−2) the atomic distri-
bution is very narrow (∆J2

z ≪ 1) and the atomic state
cn (Np) ∼ FNp

(n) is spread over a few eigenstates. The
evolution strongly depends on the distance between the
mean value 〈Jz〉 and the closest eigenvalue of Jz . Two
extreme cases can be considered (Fig. 4): either 〈Jz〉 is
in the middle of two eigenvalues, which turns out to be
an unstable equilibrium state of the system, or it is an
eigenvalue of Jz, which corresponds to the stable equi-
librium state (the stability of the attractors in treated in
[4, 28]).
In the first case the distribution is centered between

two eigenstates of Jz, namely |n0〉 and |n0 + 1〉. The
atomic state is well approximated by a superposition of
these two states |ψat (Np)〉 ≈ (|n0〉+ |n0 + 1〉) /

√
2, since

the amplitude of the other states decreases exponentially.
In this case 〈Jz〉 = n0 + 1/2 and the variance is ∆J2

z =
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〈ψat (Np)| J2
z |ψat (Np)〉−〈Jz〉2 = 1/4, which results to be

the upper bound value in the long time limit. This limit
clearly appears in the numerical calculations, as shown
in Fig. 3 (b).
The second case represented in Fig. 4 (b) corresponds

to an atomic distribution centered on an eigenstate |n0〉
of Jz . The atomic state is then a superposition of three
eigenstates

|ψat (Np)〉 ≈
∑

k=−1,0,1

FNp
(n0 + k) |n0 + k〉 . (19)

From the normalization condition, the symmetry of the
state around n0, and Eq. (14), we have:

∑
k=−1,0,1

∣∣FNp
(n0 + k)

∣∣2 = 1 (20)
∣∣FNp

(n0 ± 1)
∣∣2 =

∣∣FNp
(n0)

∣∣2 e−2M2Np . (21)

Since 〈Jz〉 = n0, it follows ∆J2
z = 2 exp

(
−2M2Np

)
,

which is the lower bound for the variance evolution as
plotted in Fig. 3 (b).

IV. EXPERIMENTAL CONSIDERATIONS

The main experimental challenge in a QND detection
is to limit the spontaneous emission and so the optical
power while reaching the shot-noise limit with a sufficient
bandwidth. In this paragraph, we show how a heterodyne
detection allows to reach the shot-noise of a weak probe
beam and how the existence of two sidebands rejects all
the frequency independent common dephasing sources.
We finally discuss the effect of the spontaneous emission
on the squeezing performances.
In a realistic setup, different configurations for the

measurement can be implemented depending on the rel-
ative position of the carrier and the sidebands with re-
spect to the atomic transitions. Two examples of possible
schemes are presented in Fig. 5, where the case of alkaline
atoms is considered.

A. Shot-noise limited detection

The intrinsic advantage of a heterodyne detection is
that it makes possible to reach the shot-noise for a weak
probe beam by beating it with a much stronger reference
beam. In FM spectroscopy, the reference beam is the
strong carrier and the probe beam is the weak sideband.
If Nc is the number of photons in the carrier, Ns that
one in the sideband, and Ne the photon equivalent noise
due to the detection electronics, the signal-to-noise ratio
of the optical detection is:

SNR ∝
√

NcNs

Nc +Ns +Ne
. (22)

If Nc ≫ Ns, Ne, then SNR ∼
√
Ns: by using a strong

reference, the detection can thus be limited to the shot-
noise of the weak probe.

FIG. 5: Two possible measurement schemes. (a) One side-
band is in the middle of the two probed states whereas the
carrier and the other sideband are far from the transition
(∆FF ′ ≪ ∆c). (b) Each sideband is close to an atomic tran-
sition, the carrier is in the middle of the two probed states.

Nevertheless, the reference must be far from the atomic
transition to strongly reduce its absorption. A high mod-
ulation frequency Ω is thus required, which results to be
the main technical limitation of the method. Nowadays,
photodiodes designed for high-speed optical communica-
tions provided with integrated transimpedance amplifiers
with gains of a few kilo-ohms, set an indicative upper
limit of 10 GHz for the achievable bandwidth.

B. Common mode noise rejection

All the systems where the phase induced by the atoms
on a probe beam is measured by comparison with the
phase of a reference beam require a precise control of
all the sources of relative phase noise between the two
beams. The geometrical splitting of the two components,
like in a Mach-Zehnder interferometer, requires to pre-
cisely stabilize the relative length between the two paths.
On the other hand, if the splitting is in frequency and the
two components are spatially overlapped, all the noise
sources acting on the optical path length (like acoustic
noise, optical index fluctuations and mechanical displace-
ments) are rejected, since they are common mode. In the
specific case of a two sidebands modulator, where only
one sideband is close to an atomic resonance, the signal
detected on the photodiode is the difference between the
beatnotes of each sideband with the carrier. The differen-
tial detection leaves only the atomic contribution to the
optical index, an active stabilisation of the interferometer
is not required.
In [18], an amplitude modulation method in a Mach-

Zehnder interferometer is proposed which similarly re-
jects the common mode noise using two probe beams.
Nevertheless, it requires a demanding good spatial over-
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lap, a well balanced power and an active phase control
of the two probes; all these features are intrinsic in the
method we propose.

C. Spontaneous emission

The performance of a QND detection is reduced by the
spontaneous emission induced by the probe. The atomic
decay causes a decoherence of the atomic state since the
detection of the emitted photon allows to determine in
which state the atom has been projected. The problem
of quantifying this effect has been treated in [14, 29, 30].
We now analyse the performance of scheme (a) in Fig. 5

when the atomic decay is taken into account. The de-
phasing induced by the atomic cloud on the optical probe
is given by [31]:

∆Φ =
λ2

4πA (N1S1 +N2S2) , (23)

where NF is the population of the |F 〉 state, λ the optical
wavelength, A the probe beam area, and SF the probe
coupling to the |F 〉 state:

SF =
∑

F ′

γ∆FF ′

∆2
FF ′ + γ2

SFF ′ . (24)

In the last equation γ is the atomic linewidth and SFF ′

is the dipole transition strength of |F 〉 → |F ′〉 given by:

SFF ′ = (2F ′ + 1) (2J + 1)

{
J J ′ 1
F ′ F I

}2

, (25)

where I and J are the nuclear and total angular mo-
mentum, respectively. The detunings ∆1F ′ and ∆2F ′

are choosen so that S1 = −S2 ≡ S. Introducing ǫ
so that N1 = Nat (1 + ǫ) /2 and N2 = Nat (1− ǫ) /2,
the optical dephasing can be written as ∆Φ = ρ0Sǫ,
where ρ0 = λ2Nat/4πA is the resonant optical density.
The phase-shift φ induced by a population difference of
one atom between the two atomic states is obtained for
ǫ = 2/Nat:

φ =
λ2S

2πA . (26)

The integrated probability for an atom to scatter a pho-
ton when probed by Np photons is, in the limit C ≪ 1:

η =
ρ0
Nat

C2Np

2
L, (27)

where L is the atomic lineshape:

L =
∑

F,F ′

γ2

∆2
FF ′ + γ2

SFF ′ . (28)

The signal-to-noise ratio can be rewritten as a function
of the decoherence: κ2 = µρ0η where µ = S2/L. In [29],
the squeezing factor is estimated to be:

ξ2 =
(1− η)

2

1 + µρ0η
+ 1− (1− η)

2
. (29)

Considering 107 atoms of 87Rb optically trapped with
a beam waist of 20 µm and probed on the D2 (52S1/2 →
52P3/2) line at λ = 780 nm with a detuning ∆13 = 3.2

GHz then µ ∼ 1 and φ = 4.1 10−7 rad. The result-
ing resonant optical density is ρ0 ∼ 2400 from which a
squeezing factor ξ2 = 0.06 (about 12 dB) can be achieved
for an optimum decoherence η ∼ 0.01. It corresponds to
a measurement of Np ∼ 107 photons in the total beam
for a modulation depth of 1%.
The optimum squeezing factor strongly depends on

the optical density of the atomic sample. Using a Bose-
Einstein condensate (BEC), a much higher squeezing can
be achieved but much less photons must be used during
the measurement. It means that the detection must be
shot-noise limited at a low photon number, in that case
placing the sample in an optical cavity must be helpful
since the signal-to-noise ratio evolves as the square-root
of the finesse [23].
With regard to the possibility of exploring the long

time regime behavior to prepare Dicke states, the de-
coherence due to spontaneous emission can be seen as
a constraint that would make this regime hard to reach.
Nevertheless the discussion above holds mainly for a large
atom number, if the initial sample contains only a few
atoms (for example a BEC of 100 atoms) the variance
of the coherent state is of the order of a few units so
that entering the Dicke state regime in the presence of
spontaneous emission is realistic.

V. CONCLUSION

In this article we analyse a QND heterodyne detection
of an atomic sample to prepare spin-squeezed states. A
theorical model of the measurement process is proposed
that consists on the sequential detection of single pho-
tons that causes a back-action on the atomic wavevector.
One should note that in Eq. (12) no asumption has been
done on the atom-light coupling strength. An analytical
solution is obtained in the weak coupling regime and com-
pletely describes the atomic state evolution. Remarkably,
two regimes occur during the wavefunction collapse: at
short time spin-squeezed states are prepared whereas it
converges to Dicke states at long time.
Finally, experimental considerations to implement the

detection scheme have been presented, pointing out the
main advantages and limitations of the method as well
as the role played by the atomic decay and its influ-
ence on the squeezing factor. The requirement of an
active stabilisation of the separated geometrical paths
used in standard interferometric methods, such as the
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Mach-Zehnder configuration, is replaced by the need for
a stable RF field. Moreover, the heterodyne detection
allows to reach the shot-noise of a weak beam by mixing
it with a stronger one.
This detection method could be used to generate other

kinds of non-classical states such as Schrödinger cats or
NOON states. Such states could be employed in quantum
enhanced metrology to approach the Heisenberg limit
sensitivity [32]. Moreover, sequential measurements al-
low to prepare almost deterministic states by implement-
ing a quantum feedback loop [4, 33–35], and can be ex-
ploited for quantum error correction [36].
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Appendix A: The phase modulator as a

single-photon spectral beamsplitter

The electro-optic modulation relies on the Pockels ef-
fect, a second order non-linear interaction between an op-
tical and a quasi-static, radio-frequency (RF) field. The
Hamiltonian associated with this process is:

HP = i~g
(
a†ma

†
0a1 − ama0a

†
1

)
, (A1)

where am, a0 and a1 are the annihilition operators for
the RF field, the input field and the generated field, re-
spectively and g is a coupling constant (depending on
the non-linear crystal, the field frequencies, . . . ). This
Hamiltonian is the result of two processes: a down con-
version from an optical to a quasi-static electric field,
that is an optical rectification, and a frequency sum with
a quasi-static electric field, which is the Pockels effect.
Let t be the propagation time of the optical wave in

the non-linear crystal. The evolution of an incident state
|ψin〉 through the crystal in the weak coupling limit (gt≪
1) gives the following output state:

|ψout〉 = e−iHP t/~ |ψin〉 (A2)

∼
[
1+ gt

(
a†ma

†
0a1 − ama0a

†
1

)]
|ψin〉 . (A3)

Considering a coherent RF field and a single-photon op-
tical state in input |ψin〉 = |αm〉 ⊗ |10, 01〉, the output
field is:

|ψout〉 = |αm〉 ⊗ (|10, 01〉+ gtαm |00, 11〉) . (A4)

The phase modulator thus splits the input photon wave-
function in two spectral components, whose superposi-
tion determines a beating of the photon wavefunction

with itself at the modulation frequency of the RF field,
as shown in Fig 6.

Phase

modulator
RF

FIG. 6: Quantum beats of the single-photon wavefunction
generated by a phase modulator.

Appendix B: Derivation of an analytical expression

of
∣∣FNp (n)

∣∣2 in the weak coupling limit

The general stochastic measurement process described
by Eq. (12) is non-Markovian. In the weak coupling limit
(φNat ≪ 1) the process becomes Markovian [37] but is
not stationary. Using again the weak coupling approxi-
mation we show that the overall process can be split into
a sequence of stationary sub-processes, which brings to

an analytical expression of
∣∣FNp

(n)
∣∣2.

1. Evaluation of the probability P (ϕ)

In the weak coupling regime the phase shift determined
by the whole atomic sample is small, then φn ≪ 1 for
−Nat/2 ≤ n ≤ Nat/2. We can expand Eq. (13) to
the first order in φn around a centered probability dis-
tribution P0 (ϕ) = (1 + C cosϕ) /2π. We find P (ϕ) =
P0 (ϕ)+ δP [δϕ̃] (ϕ), where δP [δϕ̃] (ϕ) = −C sinϕ δϕ̃/2π
and δϕ̃ = −φ 〈Jz〉 is a stochastic parameter depending
on the followed trajectory. The chain of stochastic vari-
ables {ϕ̃k}1≤k≤Np

is reduced to a single parameter δϕ̃Np

which proves that the process is Markovian. P0 (ϕ) is
the deterministic contribution for a zero phase detection,
whereas δP [δϕ̃] (ϕ) describes the atomic phase-shift.

2. Decomposition into stationary sub-processes

To study the evolution of the atomic state, we split
the measurement into sequences of Nt photon detec-
tions, each inducing a negligible evolution of the atomic
wavefunction (the sub-processes are stationary). A
small signal-to-noise ratio is required for each sequence
(φ2NatNt ≪ 1). In the weak coupling limit the number
of photons in each sequence can be large since φ2Nat ≪ 1.
The detection probability at the end of the j-th

sequence of Nt measurements is Pj (ϕ) = P0 (ϕ) +
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δP [δϕ̃j ] (ϕ). If we choose a phase measurement reso-
lution π/m (m ∈ N and m≫ 1) we find from Eq. (12):

∣∣FNp
(n)
∣∣2 ∝

Np/Nt∏

j=1

m∏

l=−m

f
(j,l)
Np

(n) , (B1)

having defined:

f
(j,l)
Np

(n) = [1 + C cos (φn− πl/m)]
Nj,l . (B2)

Nj,l =
π
mPj

(
πl
m

)
Nt is the number of measurements giv-

ing the result ϕ = πl/m during the j-th sequence.
The number of photons has to be large in the intervals

[−π,−π + π/m] and [π − π/m, π], where P (ϕ) is close
to zero. This is verified for Nt ≫ m3, since the following
condition must be satisfied when C ∼ 1:

Nt

∫ π

π− π
m

P0 (ϕ) dϕ ∼ Nt

[
1− C
2m

+
π2C
12m3

]
≫ 1. (B3)

In that case Nj,l ≫ 1 and the second order term for the

Taylor expansion of f
(j,l)
Np

(n) in φn can be identified with

that of a gaussian distribution:

f
(j,l)
Np

(n) ∝ exp
[
−2M2

l Nj,l (n− nl)
2
]
, (B4)

where

M2
l =

Cφ2
4

C + cos (πl/m)

(1 + C cos (πl/m))
2 , (B5)

nl =
1

φ

1 + C cos (πl/m)

C + cos (πl/m)
sin (πl/m) . (B6)

By converting the discrete sum over l into an integral and
using Eq. (B1) and Eq. (B4), we obtain Eq. (14).

Appendix C: Numerical simulations

The numerical simulation of the quantum trajectories
shown in Fig. 3 adopts the state of Eq. (7) as initial one.
For each photon, the probability PNp+1 (ϕ) to measure a
phase ϕ for the next detected photon is given by Eq. (13).
More explicitly, we use the cumulative distribution func-
tion associated to this density of probability, which is:

FNp+1 (ϕ) =

∫ ϕ

−π

PNp+1 (θ) dθ. (C1)

By generating a random number with an uniform distri-
bution over [0, 1] and numerically inverting FNp+1 we get
the phase detected for the (Np + 1)-th photon. The re-
currence relation given by Eq. (11) yields the new atomic
distribution. The quantum trajectory is obtained iterat-
ing the sequence.
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