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We investigate the collapse of a coherent superposition of two-level atoms induced by a single-
photon heterodyne quantum non-demolition (QND) measurement, and show that such a measure-
ment process leads to the generation of spin-squeezed and Dicke states. We describe the stochastic
process of the measurement and the associated atomic evolution in a wavevector formalism. Analyt-
ical formulas of the atomic distribution momenta are derived in the weak coupling regime for both
short and long time behavior and are in good agreement with those from a Monte-Carlo simulation.
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Generation of highly entangled collective spin states
such as spin-squeezed states (SSS) [1, 2] and Dicke states
[3–5] is of first importance for quantum information [6] or
to perform sub-shot-noise precision measurements [7–10].
To create collective entanglement, a non-linear evolution
of the system is required, usual ways are: the use of inter-
actions between the particles [11], probing with squeezed
light [12] or cavity mediated interaction [9]. The strong
non-linearity of a measurement (due to the state renor-
malization) can also lead to such states [13–16].
Measurement induced spin-squeezed atomic ensembles

have been created using either a Mach-Zehnder inter-
ferometer and simultaneous interaction with several op-
tical frequencies [17] or cavity transmission modulation
[9]. Nevertheless, the experimental realization of highly
engineered atomic states is still challenging and a deep
understanding of the underlying stochastic process of the
measurement is needed. The dynamic of the atomic state
collapse can be described as a succession of partial mea-
surements. Several methods have been used to model
this collapse process, like stochastic Schrödinger equation
[4, 18], master equation [19] or wavevector formalism [13].
Moreover, partial measurements allows to prepare almost
deterministic states implementing a quantum feedback
loop [4, 20–22], it can also be exploited for quantum er-
ror correction [23].
In this article, we show that a heterodyne detection

based on frequency-modulation spectroscopy [24, 25] of
an atomic sample can generate both a SSS and a Dicke
state. With such a method, the frequency components
can be spatially overlapped in a single probe beam mak-
ing the detection strongly immune to common mode de-
phasing sources (e.g. acoustic noise and refraction index
fluctuations). To model this detection scheme, we use the
wavevector formalism previously introduced for homo-
dyne detection [13]. This approach shows strong similar-
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ities with the method used in [26, 27] to reconstruct the
photonic state from the results of a QND measurement
sequence. We derive analytical expressions for short and
long time evolution of the atomic system and compare it
to Monte-Carlo numerical simulations. In particular, we
show that the evolution of the atomic distribution vari-
ance is deterministic at short time scales whereas it ex-
hibits a stochastic behavior for long measurement times.
We consider a coherent ensemble of two levels atoms

and study the evolution of the population difference be-
tween the two levels. The QND measurement is realized
by estimating the dephasing induced by the atomic sam-
ple on a set of far off-resonance single-photons sent one by
one through the atomic cloud. Since the atom-light inter-
action entangles the atoms and the photon, the detection
of a photon performs a conditional measurement of the
atomic distribution. The measurement induced backac-
tion results in a collapse of the initial coherent spin state
(CSS) into a SSS and a Dicke state.
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FIG. 1: Scheme of the heterodyne detection QND device. A
single-photon is sent through a spectral beamsplitter B and
interacts non-destructively with the atomic ensemble (UQND).
The detection time of the photon is then measured.

The QND apparatus considered is shown in Fig. 1.
The input optical state is composed of two spectral
modes. The mode (0) at a frequency ω0/2π is close to
the frequency of the atomic transition, and will there-
fore be strongly phase shifted when traveling through
the atoms. The mode (Ω) is at a far of resonance fre-
quency (ω0 +Ω) /2π will be unaffected. A single-photon
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state |1〉 in the mode (0) is associated to the photon an-
nihilation operator a0, and the vacuum state |0〉 in the
mode (Ω) is associated to aΩ. A single side-band optical
phase modulator B is used as a “spectral beamsplitter
” to generate spectrally mode-entangled single-photons.
A local oscillator (LO) drives B with frequency Ω/2π.
We consider the driving signal as a noise-free classical
field. After passing through the atoms, the two-channel-
optical-state is sent to a single-photon detector which is
assumed to be perfect. Detecting a photon in the mode
(0) is associated with the operator u0, whereas detect-
ing a photon in the mode (Ω) is associated with uΩ. If
the coherence length of the optical source is much larger
than the LO wavelength, the two modes (0) and (Ω) are
in a coherent superposition, and the spatial overlap of
these two modes generates a beating at frequency Ω/2π.
A pulse generator, in phase with the LO, delivers regu-
larly spaced pulses (at time interval τ = 2π/Ω) used as
a reference to measure the arrival time of the photons.
The atomic ensemble is a collection of a fixed number

Nat of two-levels atoms {|ai〉 , |bi〉}, described as angular

momenta {j(i)x , j
(i)
y , j

(i)
z } where j

(i)
x = |bi〉 〈ai| + |ai〉 〈bi|,

j
(i)
y = i (|ai〉 〈bi| − |bi〉 〈ai|) and j

(i)
z = |bi〉 〈bi| − |ai〉 〈ai|.

The atomic ensemble is characterized by the collective

spin operators Jk =
∑

i j
(i)
k , k = x, y, z. A collective

state |n〉 is an eigenstate of both Jz and J
2 = J2

x + J2
y +

J2
z , and is called a Dicke state. Since Jz |n〉 = n |n〉,

n is the population difference between the two atomic
levels. After Np photons detected the atomic state is
|Np〉 =

∑
n cn (Np) |n〉. The initial atomic state is a CSS

polarized along Jx, which means an average population
difference 〈Jz〉 = 0. For Nat ≫ 1, the coefficients cn (0)
are well approximated by a gaussian distribution:

cn (0) =
1

2Nat/2

√(
Nat

n

)
∼ 1√

πNat

exp

(
− n2

Nat

)
. (1)

The spectral beamsplitter B creates a coherent super-
position of the two input spectral modes (0) and (Ω).
Its action is described by the following matrix acting on(
a0, aΩe

iΩt
)
:

B ∝
( √

T −
√
R√

ReiΩt
√
TeiΩt

)
, (2)

where, in analogy with a spatial beamsplitter, R is the
probability for a photon in the carrier mode (0) to be
in the side-band mode (Ω) at the output of B, and T is
the probability for a photon to stay in the carrier mode.
We neglect any absorption and dispersion in B so that
R + T = 1. The phase-shift induced by a single atom
(n = 1) at ω0 is φ ≪ 1. When ω0 + Ω is far from any
atomic transition, it experiences no phase-shift and the
QND interaction can be written as

UQND =

(
eiφJz 0
0 1

)
. (3)

In the present work the absorption of the probe by the
atoms and the decoherence induced is neglected, the
problem is treated in [13]. The scattering matrix of this
system is S = UQNDB:

S ∝
( √

T −
√
R√

Rei(Ωt−φJz)
√
Tei(Ωt−φJz)

)
. (4)

A click at the detector corresponds to the annihili-
tion of a photon either in mode (0) or (Ω). After the
measurement the state of the system satisfies the rela-
tion |00, 0Ω〉 ⊗ |Np + 1〉 ∝ (u0 + uΩ) |10, 0Ω〉 ⊗ |Np〉. The
stochastic recurrence relation defining the atomic state
evolution after one measurement gives

|Np + 1〉 ∝
[(√

T +
√
R
)
cos

((
φJz − Ωt̃

)
/2

)

+i
(√

T −
√
R
)
sin

((
φJz − Ωt̃

)
/2

) ]
|Np〉 , (5)

where t̃ is the stochastic detection time of the photon.
This expression contains a beatnote signal at frequency
Ω/2π with a contrast C = 2

√
RT .

The reconstruction of this beatnote photon after pho-
ton is achieved by comparing the arrival time t̃k of the
k-th photon with the last time reference pulse pτ , where
p ∈ N is the number of pulses counted during t̃k. We

estimate the phase-shift ϕ̃k ≡ Ωδ̃tk from the time delay

δ̃tk = t̃k − pτ between the last pulse from the time refer-
ence and the photon detection. The atomic state afterNp

photons detected becomes |Np〉 =
∑

n FNp
(n) cn (0) |n〉,

where

FNp
(n) ∝

Np∏

k=1

[(√
T +

√
R
)
cos ((φn− ϕ̃k) /2)

+i
(√

T −
√
R
)
sin ((φn− ϕ̃k) /2)

]
.(6)

It is straightforward to calculate the probability P (ϕ)
to measure a phase-shift ϕ when detecting the (Np + 1)-
th photon:

P (ϕ) =
1

2π

∑

n

|cn (Np)|2 (1 + C cos (φn− ϕ)) . (7)

In the weak coupling regime the phase shift determined
by the whole atomic sample is small, then φn ≪ 1 for
n ∈ [−Nat, Nat]. We can develop Eq. (7) at first order in
φn around a centered probability distribution P0 (ϕ) =
(1 + C cosϕ) /2π. We find P (ϕ) = P0 (ϕ) + δP [δϕ̃] (ϕ),
where δP [δϕ̃] (ϕ) = −C sinϕ δϕ̃/2π and δϕ̃ = −φ 〈Jz〉 is
a stochastic parameter depending on the followed trajec-
tory. P0 (ϕ) is the contribution for a zero phase detection,
whereas δP [δϕ̃] (ϕ) describes the atomic phase-shift.
To study the evolution of the atomic state, we split

the measurement into sequences of Nt photon detections,
each inducing a negligible evolution of the atomic wave-
function. It is achieved if the signal-to-noise ratio over
one sequence is small (φ2NatNt ≪ 1). In the weak cou-
pling limit the number of photons in each sequence can



3

be large since φ2Nat ≪ 1. The detection probability
at the end of the j-th sequence of Nt measurements is
Pj (ϕ) = P0 (ϕ) + δP [δϕ̃j ] (ϕ). If we choose a phase
measurement resolution π/m (m ∈ N and m ≫ 1), we
find from Eq. (6):

∣∣FNp
(n)

∣∣2 ∝
Np/Nt∏

j=1

m∏

l=−m

f
(j,l)
Np

(n) , (8)

where we have defined:

f
(j,l)
Np

(n) = [1 + C cos (φn− πl/m)]
Nj,l , (9)

and Nj,l =
π
mPj

(
πl
m

)
Nt is the number of measurements

giving the result ϕ = πl/m during the j-th sequence. For
Nj,l ≫ 1 (which is verified for Nt ≫ m3 [30]), the second

order Taylor expansion of f
(j,l)
Np

(n) around φn = 0 can

be identified with that of a gaussian distribution:

f
(j,l)
Np

(n) ∝ exp
[
−2M2

l Nj,l (n− nl)
2
]
, (10)

where

M2
l =

Cφ2

4

C + cos (πl/m)

(1 + C cos (πl/m))
2 , (11)

nl =
1

φ

1 + C cos (πl/m)

C + cos (πl/m)
sin (πl/m) . (12)

By converting the discrete sum over l into an integral,
Eq. (8) and Eq. (10) give finally:

∣∣FNp
(n)

∣∣2 ∝ exp
[
−2M2Np

(
n2 + 2δϕ̃n/φ

)]
, (13)

where δϕ̃ = Nt

Np

∑Np/Nt

j=1 δϕ̃j is the average mean po-

sition over the followed trajectory, and M2 = φ2
(
1 −√

1− C2
)
/4 is the measurement strength.

It is interesting to compare the initial atomic state dis-
tribution cn (0) from Eq. (1) with FNp

(n). Depending on
their relative width, two regimes have to be considered
during the atomic state evolution: the short time limit -
where the width of the atomic distribution ∆J2

z is large
and the atomic state is in a superposition of many atomic
levels - and the long time limit where the distribution is
very narrow and the state is split on a few levels of ampli-
tude FNp

(n). The boundary between these two regimes

occurs for ∆J2
z ∼ 1, i.e. for Np ∼ M−2.

In the short time limit, defined by the condition Np ≪
M−2,

∣∣FNp
(n)

∣∣2 is broad and |cn (Np)|2 is a gaussian
distribution characterized by the following mean position
and variance:

〈Jz〉 = −C2ξ2κ2δϕ̃/φ, (14)

∆J2
z = ξ2Nat/4, (15)

where κ2 = M2NatNp is the signal-to-noise ratio and
ξ2 = 1/

(
1 + κ2

)
is the squeezing factor. For Np ≥ 1,

the squeezing factor drops below unity and the initial
CSS collapses into a SSS as a consequence of the mea-
surement process. The remarkable result is that ∆J2

z is
independent of the stochastic parameter δϕ̃ at first order
and is thus deterministic, as shown with the numerical
simulation in Fig. 3 (b).

FIG. 2: Extreme cases for long time evolution. (a) The mean
position of the atomic distribution is in the middle of two
eigenvalues of Jz. (b) The mean position of the atomic dis-
tribution is centered on an eigenvalue of Jz.

In the long time limit (Np ≫ M−2) the atomic dis-
tribution is very narrow (∆J2

z ≪ 1) and the atomic
state cn (Np) ∼ FNp

(n) is spread over a few eigenstates.
The evolution strongly depends on the distance between
the mean value 〈Jz〉 and the closest eigenvalue of Jz.
Two extreme cases can be considered (Fig. 2): either
〈Jz〉 is in the middle of two eigenvalues, which turns
out to be an unstable equilibrium of the system, or it
is an eigenvalue of Jz, corresponding to the stable equi-
librium state (for a discussion on the stability of the at-
tractors see [4, 28]). In the first case shown in Fig. 2
(a) the distribution is centered between two eigenstates
of Jz , namely |n0〉 and |n0 + 1〉. The atomic state is
well approximated by a superposition of these two states
|Np〉 ≈ (|n0〉+ |n0 + 1〉) /

√
2, since the amplitude of the

other states decreases exponentially. In this case 〈Jz〉 =
n0+1/2 and the variance is ∆J2

z = 〈Np|J2
z |Np〉−〈Jz〉2 =

1/4, which results to be the upper bound value in the
long time limit. This limit clearly appears in the nu-
merical calculations, as shown in Fig. 3 (b). The second
case represented in Fig. 2 (b) corresponds to an atomic
distribution centered on an eigenstate |n0〉 of Jz. The
atomic state is then a superposition of three eigenstates
|Np〉 ≈ ∑

k=−1,0,1 FNp
(n0 + k) |n0 + k〉 . From the nor-

malization condition, the symmetry of the state around
n0, and Eq. (13), we have the following relations:

∑
k=−1,0,1

∣∣FNp
(n0 + k)

∣∣2 = 1 (16)
∣∣FNp

(n0 ± 1)
∣∣2 =

∣∣FNp
(n0)

∣∣2 e−2M2Np . (17)

Since 〈Jz〉 = n0, it follows ∆J2
z = 2 exp

(
−2M2Np

)

which is the lower bound for the variance evolution, as
plotted in Fig. 3 (b).
We have verified this behavior using a numerical sim-

ulation of the quantum trajectories (Fig. 3). The ini-
tial atomic state is given by Eq. (1). For each photon,
the probability PNp+1 (ϕ) to measure a phase ϕ for the
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FIG. 3: Trajectories of the atomic distribution momenta obtained with a Monte-Carlo simulation, once set Nat = 100, φ = 10−3

rad, and R = T = 1/2. (a) Mean position of the atomic population 〈Jz〉 as a function of the number of measured photons. For
a long enough measurement the state converges to a Dicke state. (b) Variance evolution during the measurement sequence.
The solid line is the average over 1000 trajectories (only 20 are plotted) while the dashed line is the result of the analytical
calculation of the variance at short time, given by Eq. (15). At short time scale, the evolution is deterministic as predicted
by the analytical study. At long time scale, the variances become stochastic but remain bounded. In addition, the average
variance over the trajectories is below the short time behavior. (c) The histogram of the mean positions at the end of the
trajectories is compared to the initial distribution (solid line). The measurement process satisfies the Born probability rule
Pn = |〈n|Np = 0〉|2.

next detected photon is given by Eq. (7). More explic-
itly, we use the cumulative distribution function associ-
ated to this density of probability, which is FNp+1 (ϕ) =∫ ϕ

−π PNp+1 (θ) dθ. By generating a random number with

an uniform distribution over [0, 1] and numerically invert-
ing FNp+1 we get the detected phase of the (Np + 1)-th
photon. The recurrence relation of Eq. (5) gives the new
atomic distribution. The quantum trajectory is obtained
repeating this sequence.
In conclusion, we analysed a single photon heterodyne

detection where a time reference is used to extract the
beatnote induced by the coherent superposition of two
optical modes. This measurement strategy can permit
robust atomic state preparation because of its strong im-
munity to technical noise and refraction index fluctua-
tions, due to the spatial overlap of frequency compo-
nents in the probe beam. Using a wavevector formal-
ism in the weak coupling limit, we developed a model for

the stochastic detection process where analytical expres-
sions are derived for both short and long time behavior.
We described the collapse of a coherent spin state un-
der this repeated measurement and shown it generates
both spin-squeezed and Dicke states. This method of
detection could be used to generate other kind of non-
classical states such as Schrödinger cats or NOON states,
whereas the implementation of quantum feedback would
make possible a deterministic state preparation. Such
states could be used to perform highly non-classical in-
terferometry at the Heisenberg limit [29].
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