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A Model-Theoretic Framework for
Grammaticality Judgements

Denys Duchier, Jean-Philippe Prost, and Thi-Bich-Hanh Dao

LIFO, Université d’Orléans

Abstract. Although the observation of grammaticality judgements is
well acknowledged, their formal representation faces problems of dif-
ferent kinds: linguistic, psycholinguistic, logical, computational. In this
paper we focus on addressing some of the logical and computational
aspects, relegating the linguistic and psycholinguistic ones in the param-
eter space. We introduce a model-theoretic interpretation of Property
Grammars, which lets us formulate numerical accounts of grammatical-
ity judgements. Such a representation allows for both clear-cut binary
judgements, and graded judgements. We discriminate between problems
of Intersective Gradience (i.e., concerned with choosing the syntactic
category of a model among a set of candidates) and problems of Sub-
sective Gradience (i.e., concerned with estimating the degree of gram-
matical acceptability of a model). Intersective Gradience is addressed as
an optimisation problem, while Subsective Gradience is addressed as an
approximation problem.

1 Introduction

Model-Theoretic Syntax (MTS) fundamentally differs from proof-theoretic syn-
tax (or Generative-Enumerative Syntax—GES—as coined by Pullum and Scholz
[1]) in the way of representing language: while GES focuses on describing a pro-
cedure to generate by enumeration the set of all the legal strings in the language,
MTS abstracts away from any specific procedure and focuses on describing in-
dividual syntactic properties of language. While the syntactic representation of
a string is, in GES, the mere trace of the generative procedure, in MTS it is a
model for the grammar, with no information as to how such a model might be
obtained. The requirement to be a model for the grammar is to satisfy the set
of all unordered grammatical constraints.

When compared with GES, the consequences in terms of coverage of lin-
guistic phenomena is significant. Pullum and Scholz have shown that a num-
ber of phenomena, which are not accounted for by GES, are well covered in
MTS frameworks. Most noticeably, quasi-expressions' and graded grammatical-

! The term quasi-expression was coined by Pullum and Scholz [1] in order to refer to
those utterances of a natural language, which are not completely well-formed, yet
show some form of syntactic structure and properties. In contrast, expressions refer
to well-formed utterances, that is, utterances which strictly meet all the grammatical
requirements. We adopt here the same terminology; we will use utterance to refer to
either an expression or a quasi-expression.



ity judgements are only covered by MTS. Yet there exists no logical formulation
for such graded grammaticality judgements, although they are made theoreti-
cally possible by MTS. This paper proposes such a formulation, based on the
model of gradience implemented by Prost [2].

Our contribution is 3-fold: first and foremost, we offer precise model-theoretic
semantics for property grammars; we then extend it to permit loose models for
deviant utterances; and finally we use this formal apparatus to devise scoring
functions that can be tuned to agree well with natural comparative judgements
of grammaticality.

While Prost [2] proposed a framework for gradience and a parsing algorithm
for possibly deviant utterances, his formalization was not entirely satisfactory;
among other things, his models were not trees, but technical devices suggested by
his algorithmic approach to parsing. Our proposal takes a rather different angle;
our models are trees of syntactic categories; our formalization is fully worked
out and was designed for easy conversion to constraint programming.

The notions of gradience that underly our approach are described in sec-
tion 2; property grammars are introduced in section 3; their strong semantics
are developed in section 4; their loose semantics in section 5; section 6 presents
the postulates that inform our modelization of acceptability judgements, and
section 7 provides its quantitative formalization.

2 Gradience

Aarts [3] proposes to discriminate the problems concerned with gradience in two
different families: those concerned with Intersective Gradience (IG), and those
concerned with Subsective Gradience (SG). In reference to Set Theory, IG refers
to the problem of choosing which category an item belongs to among a set of
candidates, while SG refers to the problem of estimating to what extent an item
is prototypical within the category it belongs to. Applied here, we regard the
choice of a model for an utterance (i.e. expression or quasi-expression) as a
problem of IG, while the estimation of a degree of grammatical acceptability for
a model is regarded as a problem of SG.

For example, Fig 1 illustrates a case of IG with a set of possible parses for
a quasi-expression. In that case the preferred model is the first one. The main
reason is that, unlike the other ones, it is rooted with the category S.

Fig 2 illustrates different sentences ordered by decreasing grammatical ac-
ceptability. Each given judgement corresponds to a (human) estimate of how
acceptable it is compared with the reference expression 1.

Fig 3 gives models for quasi-expressions 2 (QE2) and 5 (QE5) from Fig.2. We
observe that the model for QE2 is rooted by S, while the one for QE5 is rooted by
Star (wildcard category). QE5, unlike QE2, is essentially and crucially missing
a VP. QE5 is also unexpectedly terminated with a P. QE2, on the other hand,
is only missing a determiner for introducing rapport, since it is a requirement in
French for a noun to be introduced by a determiner. For all these reasons, the
model for QE5 is judged more ungrammatical than the one for QE2.
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Fig. 1. Intersective Gradience: possible models for the French quasi-expression Marie
a emprunté un trés long chemin pour

1. Les employés ont rendu un rapport trés complet a leur employeur [100%]
The employees have sent a report very complete to their employer

2. Les employés ont rendu rapport trés complet a leur employeur [92.5%]
The employees have sent report very complete to their employer

3. Les employés ont rendu un rapport trés complet a [67.5%]
The employees have sent a report very complete to

4. Les employés un rapport trés complet & leur employeur [32.5%]
The employees a report very complete to their employer

5. Les employés un rapport trés complet & [5%]
The employees a report very complete to their employer

Fig. 2. Sentences of decreasing acceptability
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Fig. 3. Models for the quasi-expressions 2. and 5. from Fig.2

We will come back shortly to the precise meaning of model. For the moment,
let us just say that a model is a syntactic representation of an utterance. Intu-
itively, the syntactic representation of an expression can easily be grasped, but
it is more problematic in case of a quasi-expression. What we propose in that
case, is to approxzimate models, then to choose the optimal one(s). The numeric
criterion to be optimised may take different forms ; we decide to maximise the
proportion of grammatical constraints satisfied by the model. Once the problem
of IG is solved, we can then make a grammaticality judgement on that model
and estimate a degree of acceptability for it. We propose that that estimate be
based on different psycholinguistic hypotheses regarding factors of influence in a
grammaticality judgement. We propose a formulation for each of them, and for
combining them into a single score for the model.

3 Property Grammars

The framework for gradience which we propose is formulated in terms of Prop-
erty Grammars [4]. Property Grammars are appealing for modeling deviant ut-
terances because they break down the notion of grammaticality into many small
constraints (properties) which may be independently violated.

Property Grammars are perhaps best understood as the transposition of
phrase structure grammars from the GES perspective into the MTS perspective.
Let’s consider a phrase structure grammar expressed as a collection of rules. For
our purpose, we assume that there is exactly one rule per non-terminal, and that
rule bodies may be disjunctive to allow alternate realizations of the same non-
terminal. In the GES perspective, such a grammar is interpreted as a generator
of strings.

It is important to recognize that the same grammar can be interpreted in
the MTS perspective: its models are all the syntax trees whose roots are labeled
with the axiom category and such that every rule is satisfied at every node. For
example, we say that the rule NP — D N is satisfied at a node if either the node
is not labeled with NP, or it has exactly two children, the first one labeled with
D and the second one labeled with N.



In this manner, rules have become constraints and a phrase structure gram-
mar can be given model-theoretical semantics by interpretation over syntax tree
structures. However these constraints remain very coarse-grained: for example,
the rule NP — D N simultaneously stipulates that for a NP, there must be (1) a D
child and (2) only one, (3) a N child and (4) only one, (5) nothing else and (6)
that the D child must precede the N child.

Property grammars explode rules into such finer-grained constraints called
properties. They have the form A : v meaning in an A, the constraint ¢ applies
to its children (its constituents). The usual types of properties are:

obligation A:AB at least one B child

uniqueness | A: B! at most one B child

linearity A: B < C |a B child precedes a C child

requirement | A : B = C'|if there is a B child, then also a C' child
exclusion A: B+ C| B and C children are mutually exclusive
constituency | A : S7? the category of any child must be one in S

For the rule NP — D N studied above, stipulation (1) would be expressed by a
property of obligation NP : AD, similarly stipulation (3) by NP : AN, stipulation
(2) by a property of uniqueness NP : D!, similarly stipulation (4) by NP : NI, stip-
ulation (5) by a property of constituency NP : {D,N}?, and stipulation (6) by a
property of linearity NP : D < N.

In other publications, property grammars are usually displayed as a collection
of boxes of properties. For example, Table 1 contains the property grammar for
French that is used in [2]. The present article deviates from the usual presentation
in four ways. First, in the interest of brevity, we do not account for features
though this would pose no formal problems. Consequently, second: we omit the
dependency property. Third, we make the constituency property explicit. Fourth,
our notation is different: the S box is transcribed as the following set of property
literals: S: AVP, S: NP!, S: VP!, and S: NP < VP.

4 Strong semantics

Property grammars. Let L be a finite set of labels representing syntactic cate-
gories. We write P, for the set of all possible property literals over £ formed
Vco, c1,co € L in any of the following 6 ways:

Cp . C1 = Ca, ColACl, 60261!, Cp . C1 = Ca, Coiclﬁé}CQ, Cco: 817
Let S be a set of elements called words. A lexicon is a subset of £ x S.2 A
property grammar G is a pair (Pg, L) where Pg is a set of properties (a subset

of Pr) and L is a lexicon.

2 We restricted ourselves to the simplest definition sufficient for this presentation.



S (Utterance AP (Adjective Phrase) | PP (Propositional Phrase)

obligation : AVP obligation : A(A V Vipast part]) obligation : AP
uniqueness : NP! uniqueness : A! uniqueness : P!
: VP! : Vipast part]! : NP!
linearity : NP < VP . Adv! linearity : P < NP
dependency : NP ~ VP linearity : A < PP P <VP
S Adv < A requirement : P = NP
exclusion : A ¥ Vpast part] dependency : P~ NP
NP (Noun Phrase) | VP (Verb Phrase) |
obligation : A(NV Pro) obligation : AV
uniqueness : D! uniqueness : Vimain past part]|
: N! : NP!
: PP! : PP!
: Pro! linearity : V < NP
linearity : D < N : V< Adv
: D < Pro : VPP
:D < AP requirement : Vipast part] = Viaux|
) : N <PP exclusion : Pro[,e
requirement : N = D : PTO[gay & Pro[,
DAP =N TYPE pers
lusion : N ¢4 Pro P
exclusion PERS CASE nom
dependency : N GEND D GEND dependency : V NUM ~» Pro PERS
b R NV NUM NUM

Table 1. Example property grammar for French

Class of models. The strong semantics of property grammars are given by inter-
pretation over the class of syntax tree structures defined below.

We write Ny for N\ {0}. A t¢ree domain D is a finite subset of N§j which is
closed for prefixes and for left-siblings; in other words it satisfies:

v, ' e N§ €D = we€D
vVr e NG, Vi,j € Ny i<jAmjeD = mieD

A syntax tree 7 = (D, L, R;) consists of a tree domain D, a labeling function
L, : D, — L assigning a category to each node, and a function R, : D, — S*
assigning to each node its surface realization.
For convenience, we define the arity function A, : D, — N as follows, V& €
D.:
Ar(m) =max{0}U{i € Ny | mi € D;}

Instances. A property grammar G stipulates a set of properties. For example the
property cg : ¢1 < ¢ is intended to mean that, for a non-leaf node of category ¢y,
and any two daughters of this node labeled respectively with categories ¢; and
c2, then the one labeled with ¢; must precede the one labeled with c,. Clearly,
for each node of category cg, this property must be checked for every pair of
daughters of said node. Thus, we arrive at the notion of instances of a property.

An instance of a property is a pair of a property and a tuple of nodes (paths)
to which it is applied. We define the property instances of a grammar G on a



syntax tree 7 as follows:

L[G] = UZ.[5] | v € Pe}
Zrfeo : c1 < ea] = {(co : 1 < e2)Q(m, Wi, wj) | Vm,mi,mj € Dy, i # j}
={(co : Acy)@Q(rr) | Vm € D, }
. [[co all = {(co : 1 YQ(m, wi, 7j) | Vo, mwi,7j € Dy, i # j}
Zrleo : 1 = co] = {(co : c1 = ¢2)Q(m,mi) | Vo, mi € D, }
Irfco:c1 45 ca] = {(co:c1 ¢ c2)Q(m, i, mj) | Vo, wi,wj € Dy, i # j}
Z-Jco: s17] = {(co : $17)Q(m, w3y | Vm,7i € D, }

Pertinence. Since we created instances of all properties in Py for all nodes in 7,
we must distinguish properties which are truly pertinent at a node from those
which are not. For this purpose, we define the predicate P, over instances as
follows:

Pr((co:c1 < c)Q(m,mi,mj)) = Ly(r)=co AN Ly(mi) =c1 AN L:(7j) =co
Pr((co: De)@(m)) = Lr(m) = co
Pr((co : et)Q(m,wi,mj)) = Lo(m) =co A Lr(wi) =c1 A L (7)) = &1
Pr((co:c1 = c)Q(m,mi)) = Ly(n)=co N Ly(wi) =c1
Pr((co:c1 45 c)Q(m,mi,wj) = Li(x)=co N (Lr(mi) =c1 V L:(7j) = c2)
P ((co: $17)Q(m,mi)) = L.(7)=cp

Satisfaction. When an instance is pertinent, it should also (preferably) be sat-
isfied. For this purpose, we define the predicate S; over instances as follows:

Sr((co : 1 < c2)Q(m, i, ) = i<j
Sr((co : Aey)Q(m = V{L;(mi)=c|1<i< A (m)}
Sr((co : en))Q(mr, i, mj = i=j

AL (n) = e |1 < j < Ar(m)}
L.(mi)#c¢1 V L:(7j) # ¢

= LT(ﬂ'i) € S1

S-((co : c1 ¥ c2)Q(m, i, 7j
Sr((co : 817)Q(m, i

))
)
)
Sr((co : 1 = ¢2)Q(m, mi))
))
)

We write I¢; , for the set of pertinent instances of G in 7, I/, for its subset
that is satisfied, and I, for its subset that is violated:

1 ={reZ[G] | P-(r)}

15, ={reld, |5
Ig. = {reld, |5}



Admissibility. A syntax tree 7 is admissible as a candidate model for grammar
G iff it satisfies the projection property,® i.e. Vrr € D:

A (m)=0 = (L.(m),R.(m)) € Lg
i=A, ()

Ar(m) #0 = Re(m)= 3 Re(ri)

i=1

where > represents here the concatenation of sequences. In other words: leaf
nodes must conform to the lexicon, and interior nodes pass upward the ordered
realizations of their daughters. We write Ag for the set of admissible syntax
trees for grammar G.

Strong models. A syntax tree 7 is a strong model of a property grammar G iff
it is admissible and I . = (. We write 7 : 0 = G iff 7 is a strong model of G
with realization o, i.e. such that R,(¢) = o.

5 Loose Semantics

Since property grammars are intended to also account for deviant utterances, we
must define alternate semantics that accommodate deviations from the strong
interpretation. The loose semantics will allow some property instances to be
violated, but will seek syntax trees which maximize the overall fitness for a
specific utterance.

Admissibility. A syntax tree 7 is loosely admissible for utterance o iff it is admis-
sible and its realization is 0 = R,(¢). We write Ag , for the loosely admissible
syntax trees for utterance o:

.AGJ = {T c Ag | RT(G) = (I}

Following Prost [2], we define fitness as the ratio of satisfied pertinent instances
over the total number of pertinent instances:

FG,T = Ig,r/‘[g','r

The loose models for an utterance o are all loosely admissible models for utter-
ance ¢ that maximize fitness:

T:opRG iff 7€argmax(Fg )
T'EAG,

3 Tt should be noted that Prost [2] additionally requires that all constituency properties
be satisfied.



6 Modeling Judgements of Acceptability

We now turn to the issue of modeling natural judgements of acceptability. We
hypothesize that an estimate for acceptability can be predicted by quantitative
factors derivable from the loose model of an utterance. To that end, we must
decide what factors and how to combine them. The answers we propose are
informed by the 5 postulates outlined below.

Postulates 1, 2, and 3 are substantiated by empirical evidence and work in the
fields of Linguistics and Psycholinguistics, but postulates 4 and 5 are speculative.
While the factors we consider here are all syntactic in nature, it is clear that
a complete model for human judgements of acceptability should also draw on
other dimensions of language (semantics, pragmatics, ... ).

Postulate 1 (Failure Cumulativity) Gradience is impacted by constraint fail-
ures; that is, an utterance’s acceptability is impacted by the number of constraints
it violates.

This factor is probably the most intuitive, and is the most commonly found in
the literature [5, 6]. It corresponds to Keller’s cumulativity effect, substantiated
by empirical evidence.

Postulate 2 (Success Cumulativity) Gradience is impacted by constraint suc-
cesses; that is, an utterance acceptability is impacted by the number of constraints
it satisfies.

Different works suggest that acceptability judgements can also be affected by
successful constraints [7-9,3]. The underlying intuition is that failures alone
are not sufficient to account for acceptability, hence the postulate that some
form of interaction between satisfied and violated constraints contributes to the
judgements. It significantly differs from other accounts of syntactic gradience,
which only rely on constraint failures (e.g. Keller’'s LOT, or Schréoder’s WCDG).

Postulate 3 (Constraint Weighting) Acceptability is impacted to a different
extent according to which constraint is satisfied or violated.

Here we postulate that constraints are weighted according to their influence on
acceptability. This intuition is commonly shared in the literature* [8-13,5, 14,
15], and supported by empirical evidence. In this paper, we make the simplifying
assumption that a constraint weighs the same whether it is satisfied or violated,
but we could just as well accommodate different weights.

Strategies for assigning weights may be guided by different considerations of
scope and granularity. Scope: should weights be assigned to constraint individ-
ually or by constraint type. Granularity: should weights be decided globally for
the grammar, or separately for each syntactic category.

4 Note that these constraint weights take different meanings in different works. Many
of them, for instance, have a statistical component that we do not have here.



Scope and granularity can then be combined in different ways: all constraints
of the same type at the grammar level, or all constraints of the same type at
the construction level, or individual constraints at the construction level, or
individual constraints at the grammar level. The difference between the last two
possibilities assumes that the same constraint may occur in the specification of
more than one construction.

Arguably, the finer the granularity and the narrower the scope, the more
flexibility and accuracy we get but at a significant cost in maintenance. This high
cost is confirmed by Schroder [6], who opted for weights being assigned to each
individual constraint at the grammar level. Prost [2] opted for a compromise,
where the weighting scheme is restricted to the constraint types at the grammar
level, which means that all constraints of the same type in the grammar are
assigned the same weight. For example, all the Linearity constraints (i.e. word
order) are weighted 20, all the Obligation constraints (i.e. heads) are weighted
10, and so on.

While the strategy of weight assignment is of considerable methodological im-
port, for the purpose of the present logical formulation it is sufficient to suppose
given a function that maps each constraint to its weight.

Postulate 4 (Constructional complexity) Acceptability is impacted by the
complexity of the constituent structure.

How to precisely measure and capture the complexity of an utterance is an open
question, which we do not claim to fully answer. In fact, this factor of influ-
ence probably ought to be investigated in itself, and split into more fine-grained
postulates with respect to acceptability and syntactic gradience. Different works
from Gibson [16, 12] could be used as a starting point for new postulates in this
regard. Here we simply measure the complexity of the category a constituent
belongs to as the number of constraints specifying this category in the gram-
mar. This postulate aims to address, among others, the risk of disproportionate
convergence. The underlying idea is to balance the number of violations with
the number of specified constraints: without such a precaution a violation in
a rather simple construction, such as AP, would be proportionally much more
costly than a violation in a rather complex construction, such as NP.

Postulate 5 (Propagation) Acceptability is propagated through the dominance
relationships; that is, an utterance’s acceptability depends on its nested con-
stituents’ acceptability.

Here it is simply postulated that the nested constituents’ acceptability is recur-
sively propagated to their dominant constituent.

7 Formalizing Judgements of Acceptability

Following the previous discussion, we define a weighted property grammar G as
a triple (Pg, Lg,wg) where (Pg, Lg) is a property grammar and wg : P — R
is a function assigning a weight to each property.



Since our approach relies on quantitative measurements of satisfactions and
violations, it must be formulated in terms of property instances. Furthermore,
postulates 4 and 5 require the computation of local quantitative factors at each
node in the model. For this reason, we need to identify, in the set of all property
instances the subset which applies at a given node.

For each property instance r, we write at(r) for the node where it applies;
and we define it by cases Vp € P, Vo, 71, m2 € N§ as follows:

at(pQ(mp)) = mo at(pQ(mg, m1)) = o at(pQ(mg, w1, m2)) = 7o

If B is a set of instances, then B|; is the subset of B of all instances applying
at node 7:

Bl ={r € B|at(r) =7}
We now define the sets of instances pertinent, satisfied, and violated at node :
0 0 - -
IG,TJT = IG,T|7T I&E,T,Tk’ = Iév:,T|7" IG,T,ﬂ' = IG,T‘W

which allow us to express the cummulative weights of pertinent, satisfied, and
violated instances at node m:

Wern=> {wcl(z)|VeQy e 1§, .}
Wér)mr = Z {wg(z) | VzQy € Iég,mr}
We,rn= Z {wg(z) |VozQy € I}

Following Prost [2], we define at each node m the quality index Wg ; -, the
satisfaction ratio pg + = and the violation ratio pg . .

+ - +
WG,T,W - G, ,0+ o |IG,T,7T
+ — G, = |70
WG + WG,T,ﬂ' |IG,T;TF

77—771-

IDG,T,Tr -

¢ 7 xl
WG,T,Tr = 0 Al
T

|G,T|

According to postulate 4, we must take into account the complexity of a con-
struction: is it specified by many properties or by few? For each node m, we
look up the set of properties T, » that are used in the grammar to specify the
category L. () of m:

Tgrm={c:C€Ps|L:(m)=c}
and we use it to define a completeness index Cg ; r:

18 7 ]
TG 7|
According to postulate 5, these quantities must be combined recursively to com-

pute the overall rating of a model. Several rating functions have been investi-
gated: we describe the index of grammaticality and the index of coherence.

CG,T,TA’ =



7.1 Index of grammaticality

This scoring function is based on a local compound factor called the index of
precision computed as follows:

PG,T,ﬂ' = kWG,T,Tr + lpg;,—m— + mCG,T,ﬂ'

where the parameters (k,[,m) are used to tune the model. The index of gram-
maticality at node 7 is then defined inductively thus:

9Grm = Porr S g i Ar(m) £0
A ¢! if Ar(r) =0

The overall score of a loose model 7 is the score gg . of its root node.

7.2 Index of coherence

This scoring function is based on a local compound factor called the index of
anti-precision computed as follows:

Acrr =kWe,rr —lpg ;o + mCG rr

where the parameters (k, [, m) are used to tune the model. The index of coherence
at node 7 is then defined inductively thus:

5 _ AG’,T,Tr : ﬁ(ﬂ—) E?:Tl(ﬂ') VG, r,mi if AT (77) 7é 0
“rT 1 it A, (7) =0

The overall score of a loose model T is the score yg,, . of its root node.

7.3 Experimental Validation and Perspectives

An interesting aspect of the framework presented here is that it makes it possible
to formally devise scoring functions such as those for the indexes of Grammat-
icality or Coherence. It is interesting because it opens the door to reasonning
with graded grammaticality, in relying on numerical tools which can be validated
empirically. As far as Grammaticality and Coherence are concerned, they find
their origin in psycholinguistic postulates, but other kinds of justifications may
just as well yield different formulations.

Of course, assigning a score to an utterance is only meaningful if supporting
evidence can be put forward for validation. In the present case, the relevance
of these automatic scores has been validated experimentally in Blache et al. [9]
then in Prost [2], in measuring to what extent the scores correlate to human
judgements. Human judgements of acceptability were gathered for both gram-
matical and ungrammatical sentences, as part of psycholinguistic experiments
(reported in [9]) using the Magnitude Estimation protocol [17]. The corpus in use
was artificially constructed, each sentence matching one of the 20 different error



patterns. The experiment involves 44 annotators, all native speakers of French,
and with no particular knowledge of linguistics. Each annotator was asked to
rate, for each sentence, how much better (or worse) it was compared with a
reference sentence. The figures obtained were normalised across annotators for
every sentence, providing a score of human judgement for each of them.

The validation of the automatic scoring was then performed in calculating
the correlation between the mean scores (automatic judgements on one hand,
and human judgements on the other hand) per error pattern. The outcome
is a Pearson’s correlation coefficient p = 0.5425 for the Coherence score, and
p = 0.4857 for the Grammaticality Index.

Interestingly as well, the same scoring functions are also opened to the mod-
elling of graded judgements of grammaticality, as opposed to ungrammaticality.
The scale of scores calculated through the Grammaticality or Coherence Indexes
being open-ended, two distinct expressions can be assigned two distinct scores.
We could then wonder whether, and to what extent, these scores are comparable.
If comparable, then they could be interpreted as modelling the linguistic com-
plexity of an expression. For example, we might like scores to capture that an
expression with embedded relative clauses is more complex to comprehend than
a simple Subject-Verb-Object construction. Unfortunately, the psycholinguistic
experiment in [9] was not designed to that end (very few different construc-
tions are in fact used for the reference sentences). Validating that hypothesis is,
therefore, not possible at this stage, and must be kept for further works.

Finally, our formalization was designed for easy conversion to constraint pro-
gramming and we are currently developing a prototype solver to compare its
practical performance with the baseline established by Prost’s parser.

8 Conclusion

While formal grammars typically limit their scope to well-formed utterances,
we wish to extend their formal reach into the area of graded grammaticality.
The first goal is to permit the analysis of well-formed and ill-formed utterances
alike. The second more ambitious goal is to devise accurate models of natural
judgements of acceptability.

In this paper, we have shown that property grammars are uniquely suited
for that purpose. We contributed precise model-theoretic semantics for property
grammars. Then, we relaxed these semantics to permit the loose models required
by deviant utterances. Finally, we showed how formally to devise quantitative
scoring functions on loose models.

Prost [2] has shown that these scoring functions can be tuned to agree well
with human judgements.
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