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PREPROJECTIVE ALGEBRAS AND C-SORTABLE WORDS

CLAIRE AMIOT, OSAMU IYAMA, IDUN REITEN, AND GORDANA TODOROV

Abstract. Let Q be an acyclic quiver and Λ be the complete preprojective algebra of Q over an
algebraically closed field k. To any element w in the Coxeter group of Q, Buan, Iyama, Reiten
and Scott have introduced and studied in [BIRS09a] a finite dimensional algebra Λw = Λ/Iw.
In this paper we look at filtrations of Λw associated to any reduced expression w of w. We are
specially interested in the case where the word w is c-sortable, where c is a Coxeter element. In
this situation, the consecutive quotients of this filtration can be related to tilting kQ-modules
with finite torsionfree class. This nice description allows us to construct a triangle equivalence
between the 2-Calabi-Yau triangulated category SubΛw and the generalized cluster category
associated with an Auslander algebra.
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Introduction

Attempts to categorify the cluster algebras of Fomin and Zelevinsky [FZ02] have led to the
investigation of categories with the 2-Calabi-Yau property (2-CY for short) and their cluster-
tilting objects. Main early classes of examples were the cluster categories associated with finite
dimensional path algebras [BMR+06] and the preprojective algebras of Dynkin type [GLS06].
This paper is centered around the more general class of stably 2-CY and triangulated 2-CY
categories associated with elements in Coxeter groups [BIRS09a] (the adaptable case was done
independently in [GLS08]), and their relationship to the generalized cluster categories from
[Ami09a] (see Section 4 for definition).

Let Q be a finite connected quiver with vertices 1, . . . , n, and Λ the complete preprojective
algebra of the quiver Q over a field k. Denote by s1, . . . , sn the distinguished generators in
the corresponding Coxeter group WQ. To an element w in WQ, there is associated a stably
2-CY category SubΛw and a triangulated 2-CY category SubΛw. The definitions are based on
first associating an ideal Ii in Λ to each si, hence to any reduced word by taking products.
This way we also get a finite dimensional algebra Λw := Λ/Iw. Objects of the category SubΛw

are submodules of finite dimensional free Λw-modules. The cluster category is then equivalent
to SubΛw with w = c2, where c is a Coxeter element such that c2 is a reduced expression
[BIRS09a, GLS08]. When Λ is a preprojective algebra of Dynkin type, then the category modΛ
as investigated in [GLS06] is also obtained as SubΛw where w is the longest element [BIRS09a,
III 3.5].

Using the construction of ideals we get for each reduced expression w = su1su2 . . . sul
a chain

of ideals

Λ ⊃ Iu1 ⊃ Iu2Iu1 ⊃ . . . ⊃ Iw,

which gives rise to an interesting set of Λ-modules:

L1
w :=

Λ

Iu1

, L2
w :=

Iu1

Iu2Iu1

, . . . , Ll
w :=

Iul−1
. . . Iu1

Iw

which all turn out to be indecomposable and to lie in SubΛw.
The investigation of this set of modules, which we call layers, from different points of view,

including connections with tilting theory, is one of the main themes of this paper, especially for
a class of words called c-sortable.

The modules L1
w
, . . . , Ll

w
provide a natural filtration for the cluster-tilting object Mw asso-

ciated with the reduced expression w = su1 . . . sul
(see Section 1). These modules can be used

to show that the endomorphism algebras EndΛ(Mw) are quasi-hereditary [IR10]. Here we show

that these modules are rigid (Theorem 2.2), that is Ext1Λ(L
j
w, L

j
w) = 0 and that their dimen-

sion vectors are real roots (Theorem 2.6), so that there are unique associated indecomposable

kQ-modules (Lj
w)Q (which are not necessarily rigid).

The situation is especially nice when all layers are indecomposable kQ-modules, so that Lj
w =

(Lj
w)Q. This is the case for c-sortable words. An element w of WQ is c-sortable when there exists

a reduced expression of w of the form w = c(0)c(1) . . . c(m) with c(m) ⊆ . . . ⊆ c(1) ⊆ c(0) ⊆ c,
where c is a Coxeter element, that is, a word containing each generator si exactly once, and in
an order admissible with respect to the orientation of Q.

Starting with the tilting kQ-module kQ (when c(0) = c), there is a natural way of performing
exchanges of complements of almost complete tilting modules, determined by the given reduced
expression. We denote the final tilting module by Tw, and the indecomposable kQ-modules used

in the sequence of constructions by T j
w for j = 1, . . . , l. We show that Lj

w ≃ T j
w for all j (Theorem
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3.5) and that the indecomposable modules in the torsionfree class Sub (Tw) are exactly the T j
w

(Theorem 3.8). In particular this gives a one-one correspondence between c-sortable words and
torsionfree classes, as first shown in [Tho] using different methods.

There is another sequence U1
w, . . . U

l
w of indecomposable kQ-modules, defined using restricted

reflection functors, which coincide with the above sequences. This is both interesting in itself,

and provides a method for proving Lj
w ≃ T j

w for j = 1, . . . , l.
In another paper [AIRT], we give a description of the layers from a functorial point of view.

When the c-sortable word is cm, and c = s1 . . . sn, then the successive layers are given by

P1, . . . , Pn, τ
−P1, . . . , τ

−Pn, τ
−2P1, . . . , τ

−mPn

for the indecomposable projective kQ-modules Pi, where τ denotes the AR-translation. In the
general case we will give a description of the layers using specific factor modules of the above
modules.

The generalized cluster categories CA for algebras A of global dimension at most two were
introduced in [Ami09a]. It was shown that for a special class of words w, properly contained in
the dual of the c-sortable words, the 2-CY category SubΛw is triangle equivalent to some CA.
We show that the procedure for choosing A works more generally for any (dual of a) c-sortable
word (Theorem 4.10), with a simpler proof due to developments in the meantime.

The paper is organized as follows. We start with some background material on 2-CY categories
associated with reduced words, on complements of almost complete tilting modules and on
reflection functors. In Section 2 we show that for any reduced word w, the associated layers
are indecomposable rigid modules, which also are real roots. Hence there are unique associated
indecomposable kQ-modules. In Section 3 we show that our three series of indecomposable

modules {Lj
w}, {T

j
w} and {U j

w} coincide in the c-sortable case. The description of the layers
as specific factor modules of the τ−iP for P indecomposable projective is given in Section 4.
In Section 5 we show the relationship with generalized cluster categories in the c-sortable case.
Section 6 is devoted to examples and questions beyond the c-sortable case.

Some of this work was presented at a conference in Trondheim in August 2009.

Notation. Throughout k is an algebraically closed field. The tensor product −⊗−, when not
specified, will be over the field k. For a k-algebra A, we denote by modA the category of finitely
presented right A-modules, and by f.l.A the category of finite length right A-modules. For a
quiver Q we denote by Q0 the set of vertices and by Q1 the set of arrows, and for a ∈ Q1 we
denote by s(a) its source and by t(a) its target.

Acknowledgements. This work was done when the first author was a postdoc of NTNU,
Trondheim. She would like to thank the Research Council of Norway for financial support. Part
of this work was done while the second author visited NTNU during March and August 2009.
He would like to thank the people in Trondheim for their hospitality.

1. Background

1.1. 2-Calabi-Yau categories associated with reduced words. Let Q be a finite connected
quiver without oriented cycles and with vertices Q0 = {1, . . . , n}. For i, j ∈ Q0 we denote by
mij the positive integer

mij := ♯{a ∈ Q1| s(a) = i, t(a) = j} + ♯{a ∈ Q1| s(a) = j, t(a) = i}.

The Coxeter group associated to Q is defined by the generators s1, . . . , sn and relations

• s2i = 1,
• sisj = sjsi if mij = 0,
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• sisjsi = sjsisj if mij = 1.

In this paper w will denote a word (i.e. an expression in the free abelian group generated by
si, i ∈ Q0), and w will be its equivalence class in the Coxeter group WQ.

An expression w = su1 . . . sul
is reduced if l is smallest possible. An element c = su1 . . . sul

is
called Coxeter element if l = n and {u1, . . . , ul} = {1, . . . , n}. We say that a Coxeter element
c = su1 . . . sun is admissible with respect to the orientation of Q if i < j when there is an arrow
ui → uj.

The preprojective algebra associated to Q is the algebra

kQ/〈
∑

a∈Q1

(aa∗ − a∗a)〉

where Q is the double quiver of Q, which is obtained from Q by adding for each arrow a : i→ j
in Q1 an arrow a∗ : i← j pointing in the opposite direction. We denote by Λ the completion of
the preprojective algebra associated to Q and by f.l.Λ the category of right Λ-modules of finite
length.

The algebra Λ is finite-dimensional selfinjective if Q is a Dynkin quiver. Then the stable
category modΛ satisfies the 2-Calabi-Yau property (2-CY for short), that is, there is a functorial
isomorphism

DHomΛ(X,Y ) ≃ HomΛ(Y,X[2]),

where D := Homk(−, k) and [1] := Ω−1 is the suspension functor [AR96, CB00] (see [GLS07,
Rei06] for a complete proof).

When Q is not Dynkin, then Λ is infinite dimensional and of global dimension 2. In this
case the triangulated category Db(f.l.Λ) is 2-CY [CB00, GLS07, Boc08] (see [SY] for a complete
proof).

We now recall some work from [IR08, BIRS09a]. For each i = 1, . . . , n we have an ideal
Ii := Λ(1 − ei)Λ in Λ, where ei is the idempotent of Λ associated with the vertex i. We write
Iw := Iul

. . . Iu2Iu1 when w = su1su2 . . . sul
is a reduced expression of w ∈ WQ. We denote by

Si := Λ/Ii the simple bimodule corresponding to the vertex i.
We collect the following information which is useful for Section 2:

Proposition 1.1. [BIRS09a] Let Λ be a preprojective algebra.

(a) If w = su1 . . . sul
and w′ = sv1 . . . svl are two reduced expression of the same element in

the Coxeter group, then Iw = Iw′.
(b) If w = w′si with w′ reduced, then Iw ⊆ Iw′ . Moreover w is reduced if and only if

Iw  Iw′. And for j 6= i we have ejIw = ejIw′.

If Λ is not of Dynkin type we have moreover:

(c) Any finite product I of the ideals Ij is a tilting module of projective dimension at most
one, and EndΛ(I) ≃ Λ.

(d) If S is a simple Λ-module and I is a tilting module of projective dimension at most one,
then S ⊗Λ I = 0 or TorΛ1 (S, I) = 0.

(e) If Si = Λ/Ii and TorΛ1 (Si, I) = 0, then Ii
L

⊗Λ I = Ii ⊗Λ I = IiI for a tilting module I of
projective dimension at most one.

By (a) the ideal Iw does not depend on the choice of the reduced expression w of w. Thefore
we write Iw for the ideal Iw and Λw := Λ/Iw. This is a finite dimensional algebra. We denote by
SubΛw the category of submodules of finite dimensional free Λw-modules. This is a Frobenius
category, that is, an exact category with enough projectives and injectives, and the projectives
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and injectives coincide. Its stable category SubΛw is a triangulated category which satisfies the
2-Calabi-Yau property [BIRS09a]. The category SubΛw is then said to be stably 2-Calabi-Yau.

Recall that a cluster-tilting object in a Frobenius stably 2-CY category C with finite dimen-
sional morphisms spaces is an object T ∈ C such that

• Ext1C(T, T ) = 0
• Ext1C(T,X) = 0 implies that X ∈ addT .

For any reduced word w = su1 . . . sul
, we write M j

w := euj

Λ

Iuj
. . . Iu1

.

Theorem 1.2. [BIRS09a, Thm III.2.8] For any reduced expression w = su1 . . . sul
of w ∈ WQ,

the object Mw :=
⊕l

j=1M
j
w is a cluster-tilting object in the stably 2-CY category SubΛw.

For any reduced word w = su1 . . . sul
, we have the chain of ideals

Λ ⊃ Iu1 ⊃ Iu2Iu1 ⊃ . . . ⊃ Iw,

which is strict by Proposition 1.1 (b). For j = 1, . . . , l we define the layer

Lj
w :=

Iuj−1 . . . Iu1

Iuj
. . . Iu1

.

Using Proposition 1.1 (b) it is immediate to see the following

Proposition 1.3. We have isomorphisms in f.l.Λ:

Lj
w ≃ euj

Lj
w ≃ euj

Iui
. . . Iu1

Iuj
. . . Iu1

≃ Ker( M j
w

// // M i
w

),

where i is the greatest integer satisfying ui = uj and i < j.

Therefore the layers L1
w
, . . . , Ll

w
give a filtration of the cluster-tilting object Mw.

1.2. Mutation of tilting modules. Let Q be a finite connected quiver with vertices {1, . . . , n}
and without oriented cycles.

Definition 1.4. A basic kQ-module T is called a tilting module if Ext1kQ(T, T ) = 0 and it has
n non-isomorphic indecomposable summands.

For each indecomposable summand Ti of T , it is known that there is at most one indecompos-
able T ∗

i ≇ Ti such that (T/Ti)⊕ T ∗
i is a tilting module [RS91, Ung90], and that there is exactly

one if and only if T/Ti is a sincere kQ-module [HU89]. We then say that Ti (and possibly T ∗
i )

is a complement for the almost complete tilting module T/Ti. The (possibly) other complement
of T/Ti can be obtained using the following result:

Proposition 1.5. [RS91]

(a) If the minimal left add (T/Ti)-approximation Ti

f
// B is a monomorphism, then Cokerf

is a complement for T/Ti.

(b) If the minimal right add (T/Ti)-approximation B′
g

// Ti is an epimorphism, then Kerg

is a complement for T/Ti.

There is a one-one correspondence between tilting modules T and contravariantly finite tor-
sionfree classes F = SubT containing the projective modules.
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1.3. Reflections and reflection functors. Let Q be finite quiver with vertices {1, . . . , n} and
without oriented cycles. Let i ∈ Q0 be a source. Then the quiver Q′ := µi(Q) is obtained by
replacing all arrows starting at the vertex i by arrows in the opposite direction.

Write kQ = P1 ⊕ · · · ⊕ Pn where Pj is the indecomposable projective kQ-module associated
with the vertex j. Then using results of [BGP73] and [APR79] we have functors:

modkQ
Ri //

modkQ′

R−

i

oo

where Ri := HomkQ(M,−), R−
i := − ⊗kQ′ M and M := τ−Pi ⊕ kQ/Pi which induce inverse

equivalences

(modkQ)/[eikQ]
Ri //

(modkQ′)/[eiDkQ′]
R−

i

oo ,

where modkQ/[eikQ] (resp. modkQ′/[eiDkQ′]) is obtained from the module category modkQ
(resp. modkQ′) by annihilating morphisms factoring through Pi = eikQ (resp. eiDkQ′). Since
i is a source (resp. a sink) of Q (resp. Q′) we can regard the category modkQ/[eikQ] (resp.
modkQ′/[eiDkQ′]) as a full subcategory of modkQ (resp. modkQ′).

When the vertex i is not a sink or source, there is still defined a reflection on the level of the
Grothendieck group K0(modkQ). It is constructed using the semigroup with generators [X] for
X ∈ modkQ and relations [X]+ [Z] = [Y ] if there is a short exact sequence X // // Y // // Z .
This is a free abelian group with basis {[S1], . . . [Sn]}, where S1, . . . , Sn are the simple kQ-
modules. With respect to this basis we define

Ri([Sj ]) = [Sj] + (mij − 2δij)[Si],

where mij is the number of edges of the underlying graph of Q as before.
This definition is coherent with the previous one. Indeed if i is a source and M is indecom-

posable in modkQ which is not isomorphic to Pi, then we have

Ri([M ]) = [Ri(M)].

2. Layers associated with reduced words

Throughout this section let w be an element in the Coxeter group of an acyclic quiver Q, and
fix w = su1 . . . sul

a reduced expression of w. For j = 1, . . . , l we have defined in Section 1 the

layer Lj
w as the quotient

Lj
w
:=

Iuj−1 . . . Iu1

Iuj
. . . Iu1

.

In this section, we investigate some main properties of these layers. We show that each
layer can be seen as the image of a simple Λ-module under an autoequivalence of Db(f.l.Λ).
Hence they are rigid indecomposable Λ-modules of finite length, and we compute explicitly their
dimension vectors and show that they are real roots. Hence to each layer we can associate a
unique indecomposable kQ-module with the same dimension vector [Kac80], but which is not
necessarily rigid.

Note that some of the results of this section have been proven independently in [GLS10] but
with different proofs.
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2.1. Layers are simples up to autoequivalences.

Proposition 2.1. Let Q be a non-Dynkin quiver and Λ the complete preprojective algebra. For
j = 1, . . . , l we have isomorphisms in D(ModΛ):

Lj
w
≃ Suj

L

⊗Λ (Iuj−1 . . . Iu1) ≃ Suj

L

⊗Λ Iuj−1

L

⊗Λ · · ·
L

⊗Λ Iu1

where Suj
is the simple Λ-module associated to the vertex uj .

Proof. We set w′ := su1 . . . suj
and w′′ := su1 . . . suj−1 . Since w′′ is reduced, by Proposition

1.1(e) we have

Iw′′ ≃ Iuj−1 ⊗Λ . . .⊗Λ Iu1 ≃ Iuj−1

L

⊗Λ . . .
L

⊗Λ Iu1 ,

and hence we get the second isomorphism.
Since w′ = w′′suj

is reduced, we have Iw′ = Iuj
Iw′′  Iw′′ , and therefore TorΛ1 (Suj

, Iw′′) = 0
by Proposition 1.1 (d). Thus we have

Suj

L

⊗Λ Iw′′ ≃ Suj
⊗Λ Iw′′ ≃

Λ

Iuj

⊗Λ Iw′′ ≃
Iw′′

Iuj
Iw′′

= Lj
w
.

�

Immediately we have the following result, which implies that Lj
w is an indecomposable rigid

Λ-module of finite length.

Theorem 2.2. For j = 1, . . . , l we have

• if Λ is of non-Dynkin type:

dimExtiΛ(L
j
w
, Lj

w
) =

{
1 i = 0, 2,
0 otherwise.

• if Λ is of Dynkin type:

dimExtiΛ(L
j
w, L

j
w) =

{
1 i = 0, 2 (mod 6),
0 i = 1 (mod 6).

Note that one can write down explicitly the dimension for the other i in the Dynkin case by

using Ω3 ≃ νΛ [ES98]. In the non-Dynkin case, Lj
w is then said to be 2-spherical in the sense of

Seidel-Thomas [ST01].

Proof. We separate the proof when Λ is of non-Dynkin type and when Λ is of Dynkin type.

non-Dynkin case:
By Proposition 1.1 (c), Iw′′ is a tilting Λ-module with EndΛ(Iw′′) ≃ Λ. Hence the functor

−
L

⊗Λ Iw′′ is an autoequivalence of D(ModΛ). We have EndΛ(Sj) ≃ k and hence Ext2Λ(Sj , Sj) ≃ k

since Db(f.l.Λ) is 2-CY. Moreover since Q has no loops, Ext1Λ(Sj, Sj) vanishes and since Λ is
known to have global dimension 2, ExtnΛ(Sj, Sj) vanishes for n ≥ 3. Hence Sj is 2-spherical.

Since by Proposition 2.1 the layer Lj
w is the image of the simple Sj by an autoequivalence of

Db(f.l.Λ), it follows that Lj
w is also 2-spherical.

Dynkin case:

Let Q be a Dynkin quiver and Q̃ be an acyclic extended Dynkin quiver containing Q as

a subquiver. Let Λ := ΛQ and Λ̃ := Λ
Q̃

be the corresponding their complete preprojective

algebras. Then we have Λ ≃ Λ̃/Λ̃eΛ̃ where e is the idempotent associated to the additional
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vertex of Q̃. The restriction functor R : modΛ −→ mod Λ̃ is fully faithful and modΛ can be seen

as an extension closed subcategory of mod Λ̃.

It is immediate to check that for a reduced expression w of w ∈ WQ we have Lj
w,Λ ≃ Lj

w,Λ̃
.

Using the first part of the proof, we get

EndΛ(L
j
w
) ≃ End

Λ̃
(Lj

w
) ≃ k and Ext1Λ(L

j
w
, Lj

w
) ≃ Ext1

Λ̃
(Lj

w
, Lj

w
) = 0.

Finally using the fact that modΛ is stably 2-CY we get Ext2Λ(L
j
w, L

j
w) ≃ k.

�

Here we state a property about two consecutive layers of the same type, which gives rise to
special non-split short exact sequences in f.l.Λ.

Proposition 2.3. Let 1 ≤ i < j < k ≤ l be integers such that ui = uj = uk and such that j is
the only integer satisfying i < j < k and ui = uj = uk . Then we have

dimk Ext
1
Λ(L

j
w
, Lk

w
) = 1.

In order to prove this proposition, we first need a lemma. For 1 ≤ h ≤ l, we denote as before
by Mh

w the Λ-module Mh
w := euh

Λ
Iuh ...Iu1

.

Lemma 2.4. Let i < j < k be as in Proposition 2.3.

(1) The map HomΛ(M
k
w
,M j

w)→ HomΛ(M
k
w
,M i

w
) induced by the irreducible map M j

w →M i
w

is an epimorphism.

(2) The image of the map HomΛ(M
i
w
,M j

w) → HomΛ(M
j
w,M

j
w) induced by the irreducible

map M j
w →M i

w
is RadΛ(M

j
w,M

j
w) .

Proof. (1) Since i < j < k, then by Lemma III.1.14 of [BIRS09a], we have isomorphisms

HomΛ(M
k
w,M

j
w) ≃ e

Λ

Iuj
. . . Iu1

e and HomΛ(M
k
w,M

i
w) ≃ e

Λ

Iui
. . . Iu1

e,

where e is the idempotent e := eui
= euj

= euk
. Then the map HomΛ(M

k
w,M

j
w)→ HomΛ(M

k
w,M

i
w)

is the epimorphism e Λ
Iuj ...Iu1

euk
→ e Λ

Iui ...Iu1
euk

induced by the inclusion Iuj
. . . Iu1 ⊂ Iui

. . . Iu1 .

(2) It is clear that the image is contained in the radical. By Lemma III.1.14 of [BIRS09a], we
have isomorphisms

HomΛ(M
i
w
,M j

w
) ≃ e

Iuj
. . . Iui+1

Iuj
. . . Iu1

e and RadΛ(M
j
w
,M j

w
) ≃ e

Iuj

Iuj
. . . Iu1

e.

The map HomΛ(M
i
w
,M j

w)→ RadΛ(M
j
w,M

j
w) is induced by the inclusion of ideals Iuj

. . . Iui+1 ⊂
Iuj

. But since j is the only integer satisfying i < j < k and ui = ui = uk , we have

eIuj
. . . Iui+1e ≃ eIuj

e and hence the map HomΛ(M
i
w
,M j

w) → RadΛ(M
j
w,M

j
w) is an isomor-

phism. �

Proof of Proposition 2.3. By definition of the layers, we have the following short exact sequences

(j) Lj
w

// // M j
w

// // M i
w

and (k) Lk
w

// // Mk
w

// // M j
w

Let K be the kernel of the composition map Mk
w
→M j

w →M i
w
. Then we have a short exact

sequence

(l) K // // Mk
w

// // M i
w
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which gives rise to the following long exact sequence in modEndΛ(Mw), where Mw =
⊕l

h=1M
h
w

DExt1Λ(M
i
w,Mw) // DHomΛ(K,Mw) // DHomΛ(M

k
w,Mw) // DHomΛ(M

i
w,Mw) // 0

The space DExt1Λ(M
i
w,Mw) is zero by Lemma III.2.1 of [BIRS09a], and the EndΛ(Mw)-module

DHomΛ(M
k
w
,Mw) is indecomposable injective. Therefore the module DHomΛ(K,Mw) has sim-

ple socle, and hence K is indecomposable.
Moreover from the sequences (j), (k) and (l), we deduce that we have a short exact sequence

Lk
w

// // K // // Lj
w

which is non-split since K is indecomposable. Hence we get

dimk Ext
1
Λ(L

j
w
, Lk

w
) ≥ 1

From (j) we deduce the long exact sequence

· · · // HomΛ(M
k
w,M

j
w)

// HomΛ(M
k
w
,M i

w
) // Ext1Λ(M

k
w, L

j
w) // Ext1Λ(M

k
w,M

j
w) = 0 .

Hence by Lemma 2.4 (1) we get Ext1Λ(M
k
w, L

j
w) = 0.

From (j) we also deduce the long exact sequence

0 // HomΛ(M
i
w,M

j
w) // HomΛ(M

j
w,M

j
w) // HomΛ(L

j
w,M

j
w) // Ext1Λ(M

i
w,M

j
w) = 0 .

Hence by Lemma 2.4 (2) we get HomΛ(L
j
w,M

j
w) ≃ HomΛ(M

j
w,M

j
w)/RadΛ(M

j
w,M

j
w) which is

one dimensional since M j
w is indecomposable.

Finally using (k) we get the long exact sequence

· · · // Ext1Λ(M
k
w, L

j
w) // Ext1Λ(L

k
w, L

j
w) // Ext2Λ(M

j
w, L

j
w) // · · ·

By the 2-CY property and the previous remarks we have

Ext1Λ(M
k
w, L

j
w) = 0 and Ext2Λ(M

j
w, L

j
w) ≃ DHomΛ(L

j
w,M

j
w) ≃ k

and therefore

dimk Ext
1
Λ(L

j
w
, Lk

w
) ≤ 1.

�

2.2. The dimension vectors of the layers. In this section we investigate the action of the

functor −
L

⊗ΛIw at the level of the Grothendieck group of Db(f.l.Λ) when Λ is not of Dynkin type.
We show that this action has interesting connections with known actions of Coxeter groups. We

denote by [−
L

⊗Λ Iw] the induced automorphism of K0(D
b(f.l.Λ)).

Lemma 2.5. Let Q be a non-Dynkin quiver. For all i, j in Q0 we have

[Sj

L

⊗Λ Ii] = [Sj ] + (mij − 2δij)[Si]

in K0(D
b(f.l.Λ)), where mij is the number of arrows between i and j in Q.

Proof. Since Si = Λ/Ii, we have DSi ≃ Si as Λ-bimodules. Hence we have the following
isomorphisms in Mod (Λop ⊗ Λ):

Sj

L

⊗Λ Si ≃ DHomk(Sj

L

⊗Λ Si, k)
≃ DRHomΛ(Sj ,Homk(Si, k))
≃ DRHomΛ(Sj ,DSi)
≃ DRHomΛ(Sj , Si).
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Therefore we have

[Sj

L

⊗Λ Si] = (
∑

t

(−1)t dimExttΛ(Sj , Si))[Si] = (2δij −mij)[Si].

From the triangle Si[−1] // Ii // Λ // Si we get a triangle

Sj

L

⊗Λ Si[−1]
//
Sj

L

⊗Λ Ii
// Sj

//
Sj

L

⊗Λ Si
.

Hence we have [Sj

L

⊗Λ Ii] = [Sj]− [Sj

L

⊗Λ Si] = [Sj]− (2δij −mij)[Si]. �

From Lemma 2.5, we deduce the following results.

Theorem 2.6. Let Λ be the complete preprojective algebra of any type.

(1) For j = 1, . . . , l we have [Lj
w] = Ru1 . . . Ruj−1([Suj

]), where the Rt are the reflections

defined in Section 1. In particular all [Lj
w] are positive real roots.

(2) [L1
w], . . . , [L

l
w] are pairwise different in K0(D

b(f.l.Λ)).

(3) For j = 1, . . . , l, there exists a unique indecomposable kQ-module (Lj
w)Q such that [Lj

w] =

[(Lj
w)Q].

Proof. (1) As in the previous subsection we treat separately the Dynkin and the non-Dynkin
case. The non-Dynkin case is a direct consequence of Lemma 2.5 and Proposition 2.1.

For the Dynkin case, we can follow the strategy of the proof of Proposition 2.3. We introduce
an extended Dynkin quiver containing Q as subquiver. Then applying reflection functors asso-
ciated to the vertices of Q to modules whose support do not contain the additional vertex is the
same as applying the reflection functors of Q. Thus the equality coming from the non-Dynkin
quiver gives us the equality for Q.

(2) By [BB05, Prop. 4.4.4], [Su1 ], Ru1([Su2 ]), . . . , Ru1 . . . Rul−1
([Sul

]) are pairwise different.
Thus the assertion follows from (1).

(3) From (1) it follows that the dimension vector of the layer Lj
w is a positive real root, and

we get the result applying Kac’s Theorem [Kac80]. �

The layer Lj
w is always rigid as Λ-module, but the associated indecomposable kQ-module

(Lj
w)Q is not always rigid as shown in the following.

Example 2.7. Let Q be the quiver 2 ''OOO

1
77ooo // 3

, and w := s1s2s3s2s1s3. Then we have

L1
w
= 1 , L2

w
= 2

1 , L3
w
=

3
1 2

1
, L4

w
= 3

1 , L5
w
=

2 3
3 1 2

1 1
, and L6

w
=

2 3
3 1

1
.

Thus the associated indecomposable kQ-modules are the following:

(Lj
w
)Q = Lj

w
for j = 1, . . . 4, (L5

w
)Q =

3
1 2 3

1 2
1
, and (L6

w
)Q =

3
1 2 3

1
.

The module (L6
w
)Q lies in the tube of rank 2, with indecomposable objects 3

1 and 2 on the
border of the tube. Since (L6

w
)Q is not on the border of the tube, it is not rigid.

Definition 2.8. [BB05] Let Q be an acyclic quiver with n vertices, and WQ be the Coxeter
group of Q. Let V be the vector space with basis v1, . . . , vn. The geometric representation
W → GL(W ) of W is defined by reflections

sivj := vj + (mij − 2δij)vi.
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The contragradient of the geometric representation W → GL(V ) is then

siv
∗
j =

{
v∗j i 6= j

−v∗j +
∑

t6=j mtjv
∗
t i = j

The Grothendieck group K0(D
b(f.l.Λ)) has a basis consisting of the simple Λ-modules, and

K0(K
b(projΛ)) has a basis consisting of the indecomposable projective Λ-modules.

Proposition 2.9. Let Λ be the complete preprojective algebra of non-Dynkin type.

(1) The Coxeter group W acts on K0(D
b(f.l.Λ)) by w 7→ [−

L

⊗Λ Iw] as the geometric repre-
sentation.

(2) The Coxeter group W acts on K0(K
b(projΛ)) by w 7→ [−

L

⊗Λ Iw] as the contragradient of
the geometric representation.

Proof. (1) This follows directly from Lemma 2.5.
(2) This is shown in [IR08, Theorem 6.6]. It is assumed in [IR08] that Q is extended Dynkin,

but this assumption is not used in the proof for this statement. �

2.3. Reflection functors and ideals Ii. In this subsection, we state some basic properties of

the first layers. In particular we show that the equivalence −
L

⊗Λ Ii, when Q is not Dynkin, can
be interpreted as a reflection functor of the category Db(f.l.Λ).

Lemma 2.10. Let Q be an acyclic quiver, and Λ = ΛQ. Let c ∈ WQ be a Coxeter element

admissible with respect to the orientation of Q. Let i ∈ Q0 be a source of Q and R−
i : modkQ→

modkQ′ be the reflection functor for Q′ := µi(Q). Then we have the following isomorphisms in
modΛ:

(1) Λ/Ic ≃ kQ. So we view kQ-modules as Λ-modules annihilated by Ic.
(2) If cw′ is a subsequence of w, then Iw′/Iw is a kQ-module.
(3) Ii/Icsi is a kQ′op⊗kQ-module and isomorphic to τ−1Pi⊕kQ/Pi = R−

i (kQ) as a kQ′op⊗
kQ-module, where Pi = eikQ is the indecomposable projective kQ-module associated to i
and τ is the AR-translation of modkQ.

Proof. (1) This is Propositions II.3.2 and II.3.3 of [BIRS09a].
(2) Since Iw′Ic = Icw′ ⊂ Iw, we have that Iw′/Iw is annihilated by Ic.
(3) We separate the case whether Q is of Dynkin type and of non-Dynkin type. Note that by

Proposition 1.1 (b) we have ejIi = ejΛ and ejIcsi = ejIiIc = ejIc if j 6= i. Therefore by (1) it is
enough to prove that eiIi/Icsi ≃ τ−1(eikQ).

Assume first that Q is of non-Dynkin type. The projective resolution of eiIi in modΛ has the
form:

(∗) 0 // eiΛ //
⊕

a∈Q̄1,s(a)=i et(a)Λ // eiIi // 0

Applying the functor −⊗Λ Ic to the exact sequence (∗), we get an exact sequence

(∗∗) 0 // eiIc //
⊕

a∈Q̄1,s(a)=i et(a)Ic // eiIi ⊗Λ Ic // 0 .

By Proposition 1.1 (e), we have Ii ⊗Λ Ic = IiIc = Icsi . Hence we deduce from (∗) and (∗∗) the
short exact sequence

0 // ei
Λ
Ic

//
⊕

a∈Q̄1,s(a)=i et(a)
Λ
Ic

// ei
Ii
Icsi

// 0 .

Since i is a source in Q, we have the set equality

{a ∈ Q̄1, with s(a) = i} = {a ∈ Q1, with s(a) = i}.
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Therefore by (1) this short exact sequence is

0 // eikQ //
⊕

a∈Q1,s(a)=i et(a)kQ // ei
Ii
Icsi

// 0 .

Hence we have ei
Ii
Icsi
≃ τ−(eikQ).

Let Q be of Dynkin type. Denote by Q̃ an acyclic extended Dynkin quiver containing Q as

a subquiver and such that the additional vertex is a sink. Let Λ := ΛQ and Λ̃ := Λ
Q̃

be the

corresponding their complete preprojective algebras. Denote by cQ the Coxeter element of WQ

admissible with respect to the orientation of Q. Using the above argument for the quiver Q̃ and
for ĨcQ we get a short exact sequence

0 // eikQ̃
//
⊕

a∈Q̄1,s(a)=i et(a)kQ̃
// ei

Ĩi
ĨcQsi

// 0 .

Since the additional vertex i0 is a sink, we get that ejkQ̃ ≃ ejkQ for j 6= i0 and Λ̃/ĨcQ ≃
Λ/IcQ ≃ kQ. Hence we have

ei
Ii

IiIcQ
≃ eiIi ⊗Λ

Λ

IcQ
≃ eiĨi ⊗Λ̃

Λ̃

ĨcQ
≃ ei

Ĩi

ĨcQsi

≃ τ−1
Q̃

(eikQ) ≃ τ−1
Q (eikQ).

�

From Lemma 2.10 we deduce the following result which gives another interpretation of the
reflection functor.

Corollary 2.11. Let Q be an acyclic quiver which is not Dynkin, and Λ = ΛQ.

(1) Let i ∈ Q0 be a sink of Q. Let Q′ := µi(Q). Then the following diagram commutes

modkQ/[eiDkQ]
R−

i //
� _

��

modkQ′/[eikQ
′]

� _

��
Db(f.l.Λ)

−
L

⊗ΛIi

// Db(f.l.Λ)

,

where the vertical functors are the natural inclusions.
(2) Let c = su1 · · · sun be a Coxeter element and C− := R−

un
◦ · · · ◦R−

u1
: modkQ→ modkQ

the Coxeter functor. Then the following diagram commutes

modkQ/[DkQ]
C−

//
� _

��

modkQ′/[kQ′]
� _

��
Db(f.l.Λ)

−
L

⊗ΛIc

// Db(f.l.Λ)

,

where the vertical functors are the natural inclusions. In particular we have Icl/Icl+1 ≃
τ−l(kQ).

Proof. (1) Denote by c the Coxeter element admissible with respect to the orientation of Q, and
by c′ = sicsi the Coxeter element admissible with respect to the orientation of Q′. We have the
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following isomorphisms in Db(f.l.Λ).

kQ
L

⊗Λ Ii ≃ Λ/Ic
L

⊗Λ Ii by Lemma 2.10 (1)
≃ Λ/Ic ⊗Λ Ii by Proposition 1.1 (e)
≃ Ii/IcIi ≃ Ii/IiIc′
≃ τ−1Pi ⊕ kQ/Pi by Lemma 2.10 (3)

Thus we have −
L

⊗Λ Ii = −
L

⊗kQ (kQ
L

⊗Λ Ii) ≃ −
L

⊗kQ (τ−1Pi⊕kQ/Pi) = R−
i on modkQ/[eiDkQ].

(2) This is a direct consequence of (1). �

3. Tilting modules and c-sortable words

In this section Q is a finite acyclic quiver, Λ is the complete preprojective algebra associated
with Q and c a Coxeter element admissible with respect to the orientation of Q. The purpose of
this section is to investigate the layers for words w satisfying a certain property called c-sortable.

Definition 3.1. [Rea07] Let c be a Coxeter element of the Coxeter group WQ. Usually we fix a
reduced expression of c and regard c as a reduced word. An element w of WQ is called c-sortable

if there exists a reduced expression w of w of the form w = c(0)c(1) . . . c(m) where all c(t) are
subwords of c whose supports satisfy

supp(c(m)) ⊆ supp(c(m−1)) ⊆ . . . ⊆ supp(c(1)) ⊆ supp(c(0)) ⊆ Q0.

For i ∈ Q0, if si is in the support of c(t), by abuse of notation, we will write i ∈ c(t).

Then c-sortability does not depend on the choice of reduced expression of c. It is immediate
that the expression w = c(0)c(1) . . . c(m) is unique for any c-sortable element of WQ [Rea07].

Let w be an element of WQ, and w = su1 . . . sul
a reduced expression. Recall from Section 1

that for j = 1, . . . , l the layer Lj
w is defined to be the Λ-module:

Lj
w
= euj

Iuk
. . . Iu1

Iuj
. . . Iu1

=
Iuj−1 . . . Iu1

Iuj
. . . Iu1

where k < j satisfies uk = uj and is maximal with this property.
Here is a nice characterization of c-sortable words.

Theorem 3.2. Let w be an element of WQ and w = su1su2 . . . sul
be a reduced expression of w.

Then we have the following:

(1) if there exists a Coxeter element c such that w is c-sortable and w is the c-sortable

expression of w, then Lj
w is in modkQ for all j = 1, . . . , l, where Q is admissible for the

Coxeter element c;

(2) if for all j = 1, . . . , l the layer Lj
w is in modkQ for a certain orientation of Q, then w

is c-sortable, where c is the Coxeter element admissible for the orientation of Q.

Proof. (1) Assume that w = su1 . . . sul
is a c-sortable word. Let j ≥ 1, and k be the (possibly)

last index such that uj = uk and k < j. Sincew is c-sortable, the word su1 . . . suj
is a subsequence

of csu1 . . . suk
. Therefore we have that Lj

w = euj

Iuk
. . . Iu1

Iuj
. . . Iu1

is a kQ-module by Lemma 2.10(2).

(2) Without loss of generality, we can assume that Q is non-Dynkin by adding a vertex if
necessary. We prove this assertion by induction on the length of the word w. For l(w) = 1 the
result is immediate.

Assume that (2) is true for any word w of length ≤ l− 1 and let w := su1 . . . sul
be a reduced

expression such that Lj
w is a kQ-module for all j = 1, . . . , l. We first show that u1 is a source of
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the support of w. Assume it is not, then there exists k ≥ 2 such that there is an arrow uk → u1
in Q. Take the smallest such number. It is then not hard to check that the top of Lk

w is the
simple Suk

and that the kernel of the map Lk
w
→ Suk

contains Su1 in its top. Thus Lk
w

is not a
kQ-module, which is a contradiction.

Therefore u1 is a source of the support of w and we have Lj
w = Lj−1

w′

L

⊗Λ Iu1 for j = 2, . . . , l

by Proposition 2.1, where w′ := su2 . . . sul
. By Theorem 2.6 (1) we have [Lj

w] = Ru1 ◦ . . . ◦

Ruj−1([Suj
]) in the Grothendieck group K0(D(f.l.Λ)). By Theorem 2.6 (2) we then have [Lj

w] 6=

[Su1 ] for j ≥ 2. Thus Lj
w is not isomorphic to the simple projective eu1kQ = Su1 if j ≥ 2. Then

by Corollary 2.11, we get

Lj−1
w′ ≃ Ru1(L

j
w
) ∈ modkQ′/[eu1DkQ′]

where Q′ = µu1(Q). By induction hypothesis we get that w′ is c′-sortable where c′ is the Coxeter
element admissible for the orientation of Q′, i.e. c′ = su1csu1 . We get the conclusion using the
following criterion which detects c-sortability:

Lemma 3.3. [Rea07, Lemma 2.1] Let c := su1 . . . sun be a Coxeter element. If l(su1w) < l(w),
then w is c-sortable if and only if su1w is su1csu1-sortable.

�

3.1. Comparison of three series of kQ-modules. To the c-sortable word w = su1 . . . sul
=

c(0)c(1) . . . c(m), we associate two series of kQ-modules T j
w and U j

w, and show that they coincide

with Lj
w.

Definition 3.4. An admissible triple is a triple (Q, c,w) consisting of an acyclic quiver Q,
a Coxeter element c admissible with respect to the orientation of Q, and a c-sortable word
w = c(0)c(1) . . . c(m).

We denote by Q(j) the quiver Q restricted to the support of c(j).

Let (Q, c,w) be an admissible triple. For j = 1, . . . , l, we define kQ(0)-modules T j
w. For

1 ≤ j ≤ l(c(0)), T j
w is the projective kQ(0)-module euj

kQ. For j > l(c(0)), let k be the maximal

integer such that k < j and uk = uj. We define T j
w as the cokernel of the map

f j
w : T k

w → E

where f j
w is a minimal left add{T k+1

w
, . . . , T j−1

w }-approximation.

Let (Q, c,w) be an admissible triple with w = su1su2 . . . sul
. For j = 1, . . . , l, we define

kQ-modules U j
w by induction on l.

If l = 1 then we define U1
w = eu1kQ

(0), the simple projective kQ(0)-module associated to the
vertex u1.

Assume l ≥ 2. Then we write w = su1w
′. It is not hard to check that the triple

(Q′ = µu1(Q
(0)), su1csu1 ,w

′)

is an admissible triple with l(w′) = l − 1. Therefore by the induction hypothesis we have

kQ′-modules U1
w′ , . . . U

l−1
w′ . For j = 2, . . . , l we define

U j
w
= R−

u1
(U j−1

w′ )

where R−
u1

is the reflection functor

modkQ′ = modk(µu1Q
(0))

R−
u1 // modkQ(0)
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at the source u1 of Q(0).

Theorem 3.5. Let w = su1 . . . sul
be a c-sortable word where c is admissible for the orientation

of Q.

(1) We have Lj
w ≃ U j

w for j = 1, . . . , l.

(2) We have U j
w ≃ T j

w for j = 1, . . . , l and f j
w is a monomorphism for j = l(c(0)) + 1, . . . , l.

Proof. (1) By definition L1
w = eu1Λ/Iu1 = Su1 and U1

w = eu1kQ
(0) = Su1 . Hence we get

U1
w = L1

w.

Let w′ be the word su2 . . . sul
. We will prove that Lj

w = R−
u1
(Lj−1

w′ ) for j ≥ 2.

By Lemma 2.10 (3) we have R−
u1
(−) = −⊗kQ′

Iu1
Ic′Iu1

. Hence we can write

Lj−1
w′ =

euj
Iuk

. . . Iu2

euj
Iuj

. . . Iu2

=:
Y

X
.

We have the following exact sequence:

Y
X
⊗Λ Ic′Iu1

a // Y
X
⊗Λ Iu1

b // Y
X
⊗Λ

Iu1
Ic′Iu1

// 0

By Proposition 1.1 (b) we have the inclusion Y Ic′ ⊂ X since u2 · · · uj is a subword of c′u2 . . . uk.

Thus we have a(y ⊗ pq) = yp ⊗ q = 0 for any y ∈ Y
X
, p ∈ Ic′ and q ∈ Iu1 . Thus a = 0 and b is

an isomorphism. We have isomorphisms

R−
u1
(Lj−1

w′ ) =
Y

X
⊗Λ

Iu1

Ic′Iu1

b
≃

Y

X
⊗Λ Iu1 ≃

Y ⊗Λ Iu1

Im(X ⊗Λ Iu1 → Y ⊗Λ Iu1)
≃

Y ⊗Λ Iu1

X ⊗Λ Iu1

≃ Lj
w.

(2) We will now prove that U j
w ≃ T j

w. For j ≤ l(c(0)) this is clear because of a basic property
of reflection functors.

Assume j > l(c(0)). Let k be the maximal integer such that uk = uj and k < j. It exists

because j > l(c(0)) and w is c-sortable. We define the subwords w′′ = su1 . . . suk−1
and w′ =

suk
. . . suj

of w. Let c′ be suk
. . . suj−1 , and Q′ be the quiver µuk−1

◦· · ·◦µu1(Q). Then (Q′, c′,w′)

is an admissible triple. We have U1
w′ = Suk

and U j−k+1
w′ = R−

c′ (Suk
) = τ−1

kQ′(Suk
), thus we have

an almost split sequence:

0→ U1
w′ → E → U j−k+1

w′ → 0

Applying the reflection functor R−
w′′ := R−

uk−1
◦ · · · ◦R−

u1
: modkQ′ → modkQ to this short exact

sequence we still get a short exact sequence:

0→ R−
w′′(U

1
w′)→ R−

w′′(E)→ R−
w′′(U

j−k+1
w′ )→ 0

which is

0→ Uk
w → R−

w′′(E)→ U j
w → 0

and the left map is a left add{R−
w′′(U2

w′), . . . , R
−
w′′(U

j−k
w′ )}-approximation, thus a left add{Uk+1

w
, . . . , U j−1

w }-
approximation. �

Remark 3.6. Theorem 3.5 is also true for non-reduced words w = w′sul
= c(0)c(1) . . . c(m) such

that w′ is reduced and that all c(t) are subwords of c whose supports satisfy

supp(c(m)) ⊆ supp(c(m−1)) ⊆ . . . ⊆ supp(c(1)) ⊆ supp(c(0)) ⊆ Q0.

The proof above works without any change.
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Corollary 3.7. Let w be a c-sortable word, where c is admissible with respect to the orientation

of Q. Then the kQ-modules Lj
w satisfy the following properties:

(1) They are non-zero, indecomposable and pairwise non-isomorphic.

(2) The space HomkQ(L
j
w, L

k
w) vanishes if j > k.

Proof. (1) Since w is reduced, Lj
w is non-zero by Proposition 1.1 (b). Since reflection functors

preserve isoclasses, the U j
w are indecomposable and pairwise non-isomorphic.

(2) Using reflection functors, we can assume that Uk
w

is simple projective, and then this is
clear. �

Theorem 3.8. Let (Q, c,w = su1 . . . sul
) be an admissible triple. For i ∈ Q

(0)
0 , denote by tw(i)

the maximal integer such that utw(i) = i. Let

Tw :=
⊕

i∈Q
(0)
0

L
tw(i)
w .

(1) Tw is a tilting kQ(0)-module.
(2) We have Sub (Tw) = add{L1

w
, . . . , Ll

w
}.

Proof. (1) We prove that Tw is a tilting kQ(0)-module by induction on l = l(w).

If w = c(0), then the assertion is clear since Tw = kQ(0) by definition.
We consider the case w 6= c(0). Let k be the maximal integer such that k < l and uk = ul.

By induction hypothesis we know that Tw′ = (Tw/T
l
w)⊕ T k

w is a tilting kQ(0)-module where w′

is the word defined by w = w′sul
. By definition we have an exact sequence

T k
w

f
// E // T l

w
// 0

with a minimal left add{T k+1
w

, . . . , T l−1
w
}-approximation f . Then f is a minimal left add (Tw/T

l
w
)-

approximation, using the fact that w is c-sortable and Corollary 3.7 (2). Moreover f is a

monomorphism by Theorem 3.5. By Proposition 1.5, we have that Tw is a tilting kQ(0)-module.
(2) We prove that Sub (Tw) = add{L1

w
, . . . , Ll

w
} by induction on l = l(w).

If l(w) = 1, then the assertion is clear.
Assume that l ≥ 2 and write w = su1w

′.
Case 1: u1 is in the support of w′: this means that tw(u1) ≥ 2. Thus we have

Tw =
⊕

i∈Q
(0)
0

U
tw(i)
w

=
⊕

i∈Q
(0)
0

R−
u1
(U

tw(i)−1
w′ )

=
⊕

i∈Q
(0)
0

R−
u1
(U

t
w′ (i)

w′ )

= R−
u1
(T ′

w)

Then using the induction hypothesis we get

SubTw′ = add{U1
w′ , . . . , U

l(w′)
w′ }.

Moreover we have

add{U2
w, . . . , U

l(w)
w } = R−

u1
(SubTw′) ⊂ SubTw ⊂ add{U1

w, R
−
u1
(SubTw′)} = add{U1

w, . . . , U
l(w)
w }.

By definition of the T j
w there exists a short exact sequence:

U1
w = T 1

w
// E // T j

w
// 0
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where E is in add{T 2
w, . . . , T

j−1
w } and where j is the minimal integer such that uj = u1 and

j > 1. It exists since u1 is in the support of w′.
The approximation map is a monomorphism by Theorem 3.5 (2), thus U1

w is in Sub (E) ⊂

Sub (T 2
w
⊕ . . .⊕ T j−1

w ) ⊂ SubTw. Thus we have SubTw = add{U1
w
, . . . , U

l(w)
w }.

Case 2: u1 is not in the support of w′.
Then it is easy to see that

Tw = U1
w ⊕R−

u1
(Tw′).

And we get

SubTw = add{U1
w, R

−
u1
(U1

w′), . . . , R−
u1
(U

l(w′)
w′ )} = add{U1

w, U
2
w, . . . , U

l(w)
w }.

�

Remark 3.9. (a) The short exact sequence Lk
w

// f
// E // // Lj

w
in modkQ is an almost

split sequence in the category Sub (Tw).

(b) This almost split sequence is an element of Ext1Λ(L
j
w, L

k
w
), which is the ‘2-Calabi-Yau

complement’ of the short exact sequence Lj
w

// // K // // Lk
w

of Proposition 2.3.

3.2. Tilting modules with finite torsionfree class. In this section we establish the con-
verse of Theorem 3.8. Hence we get a natural bijection between tilting kQ-modules with finite
torsionfree class and c-sortable elements in WQ.

Let us start with some preparation. To any (not necessarily reduced) word w = su1 . . . sul
=

c(0)c(1) . . . c(m) such that all c(t) are subwords of c whose supports satisfy

supp(c(m)) ⊆ supp(c(m−1)) ⊆ . . . ⊆ supp(c(1)) ⊆ supp(c(0)) ⊆ Q0,

we can associate kQ(0)-modules T j
w for j = 1, . . . , l and Tw in the same way as in the c-sortable

case.

Lemma 3.10. Let w = su1 . . . sul
= w′sul

be as above. Assume that w is non-reduced and that

w′ is reduced. Then the number of indecomposable summands of Tw is strictly less than l(c(0)).

Proof. By Remark 3.6, we have T l
w
≃ Ll

w
. Since w is not reduced, this is zero by Proposition

1.1 (b). Since w′ is reduced, all T j
w ≃ Lj

w (j 6= l) are indecomposable by Theorem 2.2. Therefore
we have the assertion. �

Lemma 3.11. Let Q be an acyclic quiver and T be a tilting kQ-module.

(1) The category SubT has almost split sequences.
(2) If SubT has finitely many indecomposable modules, then the AR-quiver of SubT is a full

subquiver of the translation quiver ZQ.

Proof. (1) This is well-known [AS81].
(2) We only have to show that the AR-quiver is acyclic. We denote by τ the AR-translation

of SubT . Assume that there is an oriented cycle in the AR-quiver. Applying τ repeatedly, we
can assume that this cycle contains a projective kQ-module. Since the algebra kQ is hereditary,
all modules in this cycle are projective. This is a contradiction. �

From Lemma 3.10 we deduce a nice consequence.

Theorem 3.12. Let Q be an acyclic quiver. Let c be a Coxeter element admissible with respect
to the orientation of Q. Let T be a tilting kQ-module. Assume that SubT has finitely many
indecomposable modules. Then there exists a unique c-sortable word w such that Tw ≃ T .
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Proof. Without loss of generality, we assume c = s1s2 . . . sn. We denote by τ the AR-translation
of SubT . For any i ∈ Q0, we denote by m(i) the minimal number satisfying τ−m(i)−1(eikQ) = 0.
Then for t ≥ 0 we look at the set

{i ∈ Q0 | τ
−t(eikQ) 6= 0} = {i

(t)
1 < i

(t)
2 < · · · < i(t)pt

}

and set c(t) := s
i
(t)
1

s
i
(t)
2

. . . s
i
(t)
pt

. Then the word w := c(0)c(1) . . . c(m) where m := max{m(i) | i ∈

Q0} satisfies

supp(c(m)) ⊆ . . . ⊆ supp(c(1)) ⊆ supp(c(0)).

For each expression w = w′w′′, we define mw′(i) + 1 as the number of si (i ∈ Q0) appearing
in w′. By using induction on l(w′), we have

Tw′ ≃
⊕

i∈Q0

τ−m
w′ (i)(eikQ)

by using the almost split sequences in SubT and the shape of the AR-quiver of SubT given in
Lemma 3.11 (2). In particular the number of indecomposable direct summands of Tw′ is exactly

n since mw′(i) ≤ m(i) for any i ∈ Q0. Moreover we have Tw ≃
⊕

i∈Q0
τ−m(i)(eikQ) ≃ T since

mw(i) = m(i) for any i ∈ Q0.
We only have to check that w is reduced. Otherwise we take an expression w = w′w′′ such

that w′ is non-reduced and l(w′) is minimal with this property. By Lemma 3.10, the number of
indecomposable direct summand Tw′ is less than n, a contradiction. Thus w is reduced. �

As a consequence we get the following:

Corollary 3.13. If T is a tilting kQ-module such that SubT is of finite type, then all indecom-
posables in SubT are rigid as kQ-modules.

Combining Theorem 3.12 with Theorem 3.8 we get the following result which was first proved
using other methods in [Tho].

Corollary 3.14. There is a 1-1 correspondence

{finite torsionfree class of modkQ containing kQ} oo
1:1 // {c-sortable words with c(0) = c}

3.3. Example. Let Q be the following graph 2
KK

KK

1
ssss

3

, and let w be the word s1s2s3s1s2s1

in the Coxeter group WQ. An admissible orientation for Q is the following 2
%%KK

KK

1 //
99ssss

3

.

The standard cluster-tilting object Mw in SubΛw has the following indecomposable direct
summands

M1
w
= 1 , M2

w
= 2

1 , M3
w
=

3
1 2

1
, M4

w
=

1
2 3
1 2

1
, M5

w
=

2
3 1

1 2 3
1 2

1

, M6
w
=

1
2 3

3 1 2
1 1

.

Then we can easily compute the layers L1
w
, . . . , L6

w
. They are the indecomposable summands

of the M i
w

as kQ-modules:

L1
w
= 1 , L2

w
= 2

1 , L3
w
=

3
1 2

1
, L4

w
=

2 3
1 2

1
, L5

w
=

3
1 2 3

1 2
1

, and L6
w
= 3

1 .
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Let us compute the T j
w. For j ≤ 3 the T j

w are the projective kQ-modules, thus we have

T 1
w
= 1 , T 2

w
= 2

1 , and T 3
w
=

3
1 2

1
.

Then we have to compute approximations. We have a short exact sequence

0 // 1 // 2
1 ⊕

3
1 2

1
// 2 3

1 2
1

// 0 ,

where the map 1 // 2
1 ⊕

3
1 2

1
is the minimal left add (T 2

w
⊕ T 3

w
)-approximation of T 1

w
.

Hence we have T 4
w
=

2 3
1 2

1
. We have an exact sequence

0 // 2
1

// 3
1 2

1
⊕

2 3
1 2

1
//

3
1 2 3

1 2
1

// 0 ,

where 2
1

// 3
1 2

1
⊕

2 3
1 2

1
is the minimal left add (T 3

w
⊕T 4

w
)-approximation of T 2

w
. Hence

we have T 5
w =

3
1 2 3

1 2
1

. There is an exact sequence

0 // 2 3
1 2

1
//

3
1 2 3

1 2
1

// 3
1

// 0 ,

hence T 6
w = 3

1 . So we have T j
w = Lj

w as in Theorem 3.5.
The module Tw is by definition T 3

w
⊕ T 5

w
⊕ T 6

w
. It is easy to check Theorem 3.8. The module

Tw is a tilting module over kQ, and we have

SubTw = { 1 , 2
1 ,

3
1 2

1
,

2 3
1 2

1
,

3
1 2 3

1 2
1

, 3
1 }.

Let us now compute the U j
w’s. By definition U1

w
= 1 . Then we have

U2
w
= R−

1 ( 2 ) =
2
1 , U3

w
= R−

1 R
−
2 ( 3 ) = R−

1 (
3
2 ) =

1
2 3

2

and U4
w
= R−

1 R
−
2 R

−
3 ( 1 ) = R−

1 R
−
2 (

1
3 ) = R−

1 (
1

2 3
2
) =

2 3
1 2

1
.

And finally we have U5
w

= R−
1 R

−
2 R

−
3 R̃

−
1 ( 2 ) and U6

w
= R−

1 R
−
2 R

−
3 R̃

−
1 R̃

−
2 ( 1 ) where R̃−

i is the

reflection functor associated to the quiver 1 // 2 . Therefore we have

U5
w = R−

1 R
−
2 R

−
3 (

2
1 ) = R−

1 R
−
2 (

2
3 1

3
) = R−

1 (
3 1
2 3

2
) =

3
1 2 3

1 2
1

U6
w = R−

1 R
−
2 R

−
3 R̃

−
1 (

1
2 ) = R−

1 R
−
2 R

−
3 ( 2 ) = R−

1 R
−
2 (

2
3 ) = R−

1 ( 3 ) =
3
1 .

4. Equivalences with cluster categories associated with Auslander algebras

In this section Q is an acyclic quiver, c is the Coxeter element admissible with respect to the
orientation of Q and w = c(0)c(1) . . . c(m) is a c-sortable word with c(0) = c. We denote by Mw

the standard cluster-tilting object of SubΛw associated with the c-sortable expression w of w.
This section is devoted to proving that the triangulated category SubΛw is triangle equivalent

to a generalized cluster category associated to an algebra of global dimension at most two.
Note that the result also holds in the case of general words [ART09], but with a very different
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construction. A link between the construction given in this paper and the construction of
[ART09] is given in [Ami09b].

The first subsection is devoted to recalling results on Jacobian algebras defined in [DWZ08],
and on the endomorphism algebra of the cluster-tilting objectMw from [BIRS09a] and [BIRS09b].
In the second subsection we recall some definitions and basic properties for generalized cluster
categories. In the third subsection we construct an algebra A of global dimension at most two
such that the endomorphism algebra of the canonical cluster-tilting object in the generalized
cluster category CA is isomorphic to the endomorphism algebra of Mw in the category SubΛw

(Proposition 4.9). In the fourth subsection we construct a triangle functor from CA to the cat-
egory SubΛw using a consequence of the universal property of the generalized cluster category
(see Proposition 4.4). Using a criterion of [KR08] (Proposition 4.14), we show that this functor
is an equivalence. In the last subsection we describe an example.

4.1. Standard cluster-tilting objects of SubΛw. Quivers with potentials and their associ-
ated Jacobian algebras have been investigated in [DWZ08]. Let Q be a finite quiver. For each
arrow a in Q, the cyclic derivative ∂a with respect to a is the unique linear map

∂a : kQ/[kQ, kQ]→ kQ

which takes the class of a path p to the sum
∑

p=uav vu taken over all decompositions of the path

p (where u and v are possibly idempotent elements ei associated to the vertex i). An element
W in kQ/[kQ, kQ] is a potential on Q, and is given by a linear combination of cycles in Q. The
associated Jacobian algebra Jac(Q,W ) is by definition the algebra

kQ/〈∂aW ; a ∈ Q1〉.

There is a generalization of quivers with potentials (Q,W ) to frozen quivers with potentials
(Q,W,F ) in [BIRS09b] (see also [ART09]), where F = (F0, F1) is a pair of a subset F0 of
vertices of Q (called frozen vertices) and a subset F1 of arrows contained in the set {a ∈
Q1, s(a) ∈ F0 and t(a) ∈ F0} (called frozen arrows). The associated frozen Jacobian algebra is
by definition the algebra

Jac(Q,W,F ) = kQ/〈∂aW,a /∈ F1〉.

Let w = c(0)c(1) . . . c(m) be a c-sortable word. Assume that the orientation of Q is admissible
with respect to c and that c(0) = c. For t ≥ 0, we define Q(t) to be the full subquiver of Q with
vertices in the support of c(t). For each i in Q0 we denote by mi the integer such that i ∈ c(mi)

and i /∈ c(mi+1). Let Qw be the following quiver:

• the vertices are {(i, r), r = 0, . . . ,m, i ∈ c(r)}.

• for each r ≥ 1, for each i in Q
(r+1)
0 , one arrow pir : (i, r + 1)→ (i, r)

• for each a : i→ j ∈ Q1, if r < mi and r ≤ mj , one arrow ar : (i, r)→ (j, r),
• for each a : i→ j ∈ Q1, if mi ≤ mj, one arrow ami

: (i,mi)→ (j,mj),
• for each a : i→ j ∈ Q1, if r < mi and r < mj then one arrow a∗r : (j, r)→ (i, r + 1),
• for each a : i→ j ∈ Q1, if mj < mi, one arrow a∗mj

: (j,mj)→ (i,mi).

We define the potential Ww to be the sum

Ww =
∑

a:i→j




∑

r<mi,r<mj

pira
∗
rar −

∑

r≤mi,r<mj

pjrar+1a
∗
r




−
∑

a:i→j,mi≤mj

pjmi−1 . . . p
j
mj−1ami

a∗mi−1 +
∑

a:i→j,mi>mj

pmj
. . . pmi−1a

∗
mj

amj
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Let us denote by Q̄w the full subquiver of Qw with vertices (i, r) where r 6= mi. And let W̄w

be the potential

W̄w =
∑

a:i→j




∑

r<mi,r<mj

pira
∗
rar −

∑

r≤mi,r<mj

pjrar+1a
∗
r




Then we have the following result:

Theorem 4.1. [BIRS09b, Theorem 6.8] Let w = c(0) . . . c(m) be a c-sortable word. Then the
endomorphism algebra EndΛw(Mw) of the standard cluster-tilting object Mw is the frozen Jaco-
bian algebra Jac(Qw,Ww, F ) with frozen vertices being F0 = {(i,mi), i ∈ Q0} and frozen arrows
being F1 = {a ∈ Q1, s(a) ∈ F0 and t(a) ∈ F1}.

And the endomorphism algebra EndΛw
(Mw) is the Jacobian algebra Jac(Q̄w, W̄w).

4.2. Generalized cluster categories. In this subsection we recall some basic facts on the
generalized cluster categories associated to algebras of global dimension at most two introduced
in [Ami09a].

Let A be a finite dimensional k-algebra of global dimension at most two. We denote by Db(A)
the bounded derived category of finitely generated A-modules. It has a Serre functor that we
denote by S, which coincides with τ [1]. We denote by S2 the composition S[−2] = τ [−1].

The generalized cluster category CA of A has been defined in [Ami09a] as the triangulated
hull in the sense of [Kel05] of the orbit category Db(A)/S2. There is a triangle functor

πA : Db(A) // // Db(A)/S2
� � // CA

Theorem 4.2. [Ami09a, Theorem 4.10] Let A be a finite dimensional algebra of global dimension
≤ 2, and assume that the endomorphism algebra EndCA(π(A)) is finite dimensional. Then CA is
a Hom-finite, 2-CY category and π(A) ∈ CA is a cluster-tilting object.

The following result obtained from Theorem 6.11 a) of [Kel09] shows that the 2-CY-tilted
algebra given by the canonical cluster-tilting object in a generalized cluster category is Jacobian.
Recall that a 2-CY-tilted algebra is by definition the endomorphism algebra of a cluster-tilting
object in a Hom-finite 2-CY triangulated category.

Theorem 4.3 (Keller). Let A = kQ/I be an algebra of global dimension ≤ 2, such that I is
generated by a finite set of minimal relations (ri). The relation ri starts at the vertex s(ri) and
ends at the vertex t(ri). Then we have an isomorphism of algebras:

EndCA(π(A)) ≃ Jac(Q̃,W )

where the quiver Q̃ is the quiver Q with additional arrows ai : t(ri) → s(ri), and the potential
W is

∑
i airi.

There is the following criterion for constructing triangle functors from the generalized cluster
category to some stable category. It can be deduced from the universal property of the gen-
eralized cluster category (see [Kel05], subsection 1.3.1 of [Ami08] or appendix [IO09] for more
details).

Proposition 4.4. Let A be an algebra of global dimension ≤ 2 such that the algebra EndCA(π(A))
is finite dimensional. Let E be a Frobenius category, stably 2-CY with a cluster tilting object M .
Assume that M has a structure of left A-module. Then if there is a morphism in Db(Aop ⊗ E)

M −→ RHomA(DA,A)
L

⊗A M [2]
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whose cone lies in the thick subcategory thick(Aop ⊗ P) generated by Aop ⊗ P, where P is the
subcategory of E of projective-injectives, then there exists a triangle functor F : CA → E such
that we get following commutative diagram:

Db(A)
−

L

⊗AM //

π

��

Db(E)

��
CA

F // E .

Here the category Db(E) (respectively, Db(Aop ⊗ E)) denotes the bounded derived category
of E (respectively, Aop ⊗ E) as defined in [Kel94]. Objects are bounded complexes of objects
in E (respectively, objects in E with a structure of left A-modules). Note that the endofunctor

−
L

⊗ARHomA(DA,A)[2] ≃ RHomA(DA,−)[2] of Db(A) is isomorphic to the functor S−1
2 . Hence

this universal property requires that the image of A and of S−1
2 A under the composition

Db(A)
−

L

⊗AM // Db(E) // Db(E)/thick(P) ≃ E

are isomorphic. Here the category thick(P) is the thick subcategory of Db(E) generated by P.
The localization of Db(E) by thick(P) is equivalent to the stable category E by [KV87].

4.3. Computing endomorphism algebras. We define a quiver Γw by

• Γw,0 = {(i, t), i ∈ Q
(t)
0 , 0 ≤ t ≤ m}

• for any arrow a : i→ j in Q, we put an arrow a(t) : (i, t)→ (j, t) if i and j are in Q
(t)
0 ;

• for any arrow a : i→ j in Q, we put an arrow a(t) : (j, t)→ (i, t+1) if i is in Q
(t+1)
0 and

j is in Q
(t)
0 .

The quiver Γw is a translation quiver in a natural way.

Proposition 4.5. The translation quiver Γw is isomorphic to the Auslander-Reiten quiver of
SubTw, where Tw is the tilting kQ-module defined in Section 3.

Proof. We prove this by induction on l(w), starting with c(0). For c(0) both quivers are clearly

the quiver Q(0) = Q, which is a translation quiver with trivial translation.
Assume that the claim holds for the subword w′, containing c(r), but not c(r+1), for some r <

m. So Γw′ is isomorphic to the AR-quiver of SubTw′ = add{T 1
w, . . . , T

l(w′)
w } = add{T 1

w′ , . . . , T
l(w′)
w′ }.

In this proof, for i ∈ Q0 and r ≥ 0 we write T(i,r) = T k
w if uk = i and ♯{t < k|ut = i} = r. We

omit the index w since T k
w = T k

w′ . Consider the word w′′ = w′si where i ∈ c(r+1). Then we
have exactly one new mesh in Γw′′ , compared to Γw′ , namely

(k1, r)

%%K
KKKKKKKKKK

(ku, r)
**UUUUUUU

(i, r) //

;;vvvvvvvvvv
55kkkkkkk

))SSSSSS (l1, r + 1) // (i, r + 1)

(lv, r + 1)

44iiiiii
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By the induction assumption

(k1, r)

(i, r)

44iiiiiii

**UUUUUU

(lv, r + 1)

corresponds to a minimal left almost split map in SubTw′ = add{T 1
w, . . . , T

l(w′)
w }. Since all

k1, . . . , ku, l1, . . . , lv are the last vertices of their type in Γw′ , the corresponding indecomposable
modules are all in add (Tw′). Hence

(k1, r)

(i, r)

44iiiiiii

**UUUUUU

(lv, r + 1)

also corresponds to a minimal left add (Tw′/T(i,r))-approximation. Hence we have an exact
sequence

(∗) 0 // N(i,r)
g // (

⊕u
j=1N(kj ,r))⊕ (

⊕v
j=1N(lj ,r+1)) // N(i,r+1) // 0 ,

where N(s,t) denotes the indecomposable module associated with the vertex s. By the induction
hypothesis we have N(s,t) = T(s,t) for (s, t) 6= (i, r + 1). And by the short exact sequence (∗) we
have N(i,r+1) = T(i,r+1) ∈ SubTw′′ , which is a summand of the tilting module Tw′′ .

We have the exact sequence

HomkQ(T(i,r), (
⊕u

j=1 T(kj ,r))⊕ (
⊕v

j=1 T(lj ,r+1))) // HomkQ(T(i,r), T(i,r)) // Ext1kQ(T(i,r), T(i,r)) ,

where Ext1kQ(T(i,r), T(i,r)) = 0 since T(i,r) is a summand of the tilting module Tw′ . Hence g is a
minimal left almost split map also in SubTw′′ , and therefore (∗) is an almost split sequence in
SubTw′′ .

Since there is no nonzero map from T(i,r+1) to an indecomposable module in SubTw′ , the
irreducible maps in SubTw′ stay irreducible in SubTw′′ . The irreducible maps to T(i,r+1) in
SubTw′′ are given by the above almost split sequence, and correspond to the new arrows in
Γw′′ compared to Γw′ . Hence Γw′′ and the AR-quiver of SubTw′′ are isomorphic as translation
quivers.

�

For w a c-sortable word, we define

Aw := EndkQ(

l(w)⊕

j=1

Lj
w
).

Corollary 4.6. We have an isomorphism of algebras Aw ≃ kΓw/Iw, where Iw is the ideal
generated by the mesh relations

∑

s(a)=i

a(t)a(t) −
∑

e(b)=i

b(t+1)b
(t)

= 0 for any i ∈ c(t+1).

Proposition 4.7. There is an algebra morphism

Aw
// EndΛw(Mw) .

Proof. We define an algebra map G : kΓw → kQw by
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• G(i, r) = (i, r) for i ∈ Q(r),
• for a : i→ j in Q1, if r < mi and r ≤ mj , we define G(a(r)) = ar,

• for a : i→ j in Q1, if r < mi and r < mj , we define G(a(r)) = a∗r,

• for a : i→ j in Q1, if mi ≤ mj then G(a(mi)) is defined to be the composition G(a(mi)) =

pjmi . . . p
j
mj−1ami

• for a : i→ j in Q1, if mj < mi then G(a(mj )) is defined to be the composition G(a(mj )) =
pimj+1 . . . p

i
mi−1a

∗
mj

.

Then one can check that for any i ∈ c(t+1),

G(
∑

s(a)=i

a(t)a(t) −
∑

e(b)=i

b(t+1)b
(t)
) = ∂pitWw.

Since all arrows of Qw of type pit are not in F1, the morphism G yields a morphism of algebras
Aw → Jac(Qw,Ww, F ). Hence we get the result applying Theorem 4.1.

�

Let w′ be the subword w′ := c(1) . . . c(m) of w. The word w′ is also c-sortable.

Corollary 4.8. We have isomorphisms of algebras

Aw′ ≃ EndkQ(

l(w)⊕

j=l(c(0))+1

Lj
w
) ≃ EndkQ(

l(w)⊕

j=1

Lj
w
)

and Aw′ is an algebra of global dimension ≤ 2.

Proof. Morphisms Lj
w → Lk

w where j, k ≥ l(c(0)) + 1 do not factor through kQ. Thus we get
immediately that

EndkQ(

l(w)⊕

j=1

Lj
w) ≃ EndkQ(

l(w)⊕

j=l(c(0))+1

Lj
w).

For the same reason we have an isomorphism EndkQ(
⊕l(w)

j=l(c(0))+1
Lj
w) ≃ kΓw′/Iw′ . We get the

first isomorphism applying Corollary 4.6.
The word w′ = c(1)c(2) . . . c(m) is c(1)-sortable. Therefore Aw′ is the Auslander algebra of a

category which is stable under kernels, hence it is of global dimension at most two. �

Proposition 4.9. There is an isomorphism of algebras

EndC
w′
(π(Aw′)) ≃ EndΛw

(Mw),

where Cw′ is the generalized cluster category associated with Aw′ and π : Db(Aw′) → Cw′ is the
canonical map.

Proof. If i is in c(t+1) and t ≥ 1, the set
∑

s(a)=i a
(t)a(t) −

∑
e(b)=i b

(t)
b(t+1) forms a set of

minimal relations of Aw′ between the vertices (i, t) and (i, t+1). These relations form a basis of
minimal relations in Aw′ . Now using Proposition 4.3, we know that the algebra EndC

w′
(π(Aw′))

is a Jacobian algebra Jac(Γ̃,W ). The quiver Γ̃ is the same quiver as Γw′ with extra arrows
qti : (i, t+ 1)→ (i, t) for t ≤ 1, and the potential W is

W =
∑

t≥1

∑

i∈c(t+1)

qti




∑

s(a)=i

a(t)a(t) −
∑

e(b)=i

b(t+1)b
(t)



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Now we define an algebra morphism G : kΓ̃→ kQw by:

• G(i, r) = (i, r − 1) for i ∈ c(r);

• G(a(r)) = ar−1 and G(a(r)) = a∗r−1.

It is not hard to check that G(W ) = Ww. Thus the Jacobian algebras Jac(Γ̃,W ) and
Jac(Qw,Ww) are isomorphic.

�

4.4. Triangle equivalence. The aim of this subsection is to prove the following theorem.

Theorem 4.10. Let Q be an acyclic quiver. Let w = c(0) . . . c(m) be a c-sortable word with

c(0) = c admissible for the orientation of Q. Let Aw′ := EndkQ(
⊕l(w)

j=1 L
j
w), where the Lj

w are
defined in Section 3. Then there is a triangle equivalence

Cw′ ≃ SubΛw,

where Cw′ is the generalized cluster category associated to the algebra Aw′.

In order to prove this result, we will use the universal property (Proposition 4.4) of the
generalized cluster category associated to an algebra of global dimension ≤ 2.

Let Aw → Aw′ be the canonical projection sending the vertices (i, 0) to zero. It yields a
restriction functor

Db(Aw′)
Res // Db(Aw)

Let us denote by S the subcategory Sub (Tw) of modkQ and S the factor category S/[addkQ],
where Tw is the tilting module defined in Theorem 3.8. The projective (resp.injective) indecom-
posable Aw-modules are of the form S(−,X) (resp. DS(X,−)), where X is indecomposable in
S. The restriction in modAw of the projective (resp. injective) Aw′-modules are of the form
S(−,X) (resp. DS(X,−)) whereX is indecomposable non-projective. The category S = SubTw

is a category with almost split sequences. In this section, we will denote by τ the Auslander-
Reiten translation in S, (which is not the same as the AR-translation in modkQ). The category
S is finite and contains all projective modules eikQ. Hence as we already noticed in the proof
of Theorem 3.12, for X ∈ S, there exist unique p ≥ 0 and i ∈ Q0 such that X = τ−p(eikQ).

As before we denote by Mw the standard cluster-tilting object of SubΛw. Since there is a
canonical bijection between the indecomposable objects of S = SubTw and the direct summands
of Mw, if X = τ−p(eikQ) is an indecomposable object of S, then we will denote by MX the
summand M(i,p) of Mw.

By Proposition 4.7 we have a morphism of algebras Aw → EndΛw(Mw), thus Mw has a
structure of left Aw-module. Let F be the following composition

F : Db(Aw′)
Res // Db(Aw)

−
L

⊗Aw
Mw // Db(SubΛw)

� � // Db(Λ)

Lemma 4.11. Let X be an indecomposable object in S which is not projective. There exists an
exact sequence in modΛ

0 // MH0
// MH1

// MX
// MτX

// 0

where 0 // H0
// H1

// X // 0 is the projective resolution of X as kQ-module.
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Proof. The object X is of the form τ−p(eikQ) where p ≥ 1. By the previous part, it is Lj
w,

where j is the pth index in the word w of type i. By definition Lj
w is the kernel of the canonical

map M(i,p) →M(i,p−1). Hence we have a short exact sequence in modΛ

0 // X // MX
// MτX

// 0 .

Let 0 // H0
// H1

// X // 0 be the projective resolution of X as kQ-module. Since
the Hi’s are projective kQ-modules, MHi

is equal to Hi for i = 0, 1. Thus we have a short exact
sequence in modΛ

0 // MH0
// MH1

// X // 0 .

�

Lemma 4.12. Let X be an indecomposable non-projective object in S. The objects F (S(−,X))
and F (DS(X,−)) of Db(SubΛw) are quasi-isomorphic to complexes concentrated in degree 0.
Moreover there exists a short exact sequence in modΛ functorial in X

(∗) 0 // F (S(−,X)) // R0
// R1

// F (DS(X,−)) // 0

where R0 and R1 are projective-injective objects in SubΛw.

Proof. Let 0 // H0
// H1

// X // 0 be the projective resolution ofX as kQ-module.

It induces a short exact sequence in modAw

0 // S(−,H0) // S(−,H1) // S(−,X) // S(−,X) // 0

Thus the complex F (S(−,X)) is by definition

· · · // 0 // MH0
// MH1

// MX
// 0 // · · ·

By Lemma 4.11 it is quasi-isomorphic to the stalk complex MτX .
Since τX is not zero and in S = SubTw, there exists a short exact sequence

0 // τX // T0
// T1

// 0

where Ti is in add (Tw) for i = 0, 1. It yields a long exact sequence in modAw:

0 // S(−, τX) // S(−, T0) // S(−, T1) // Ext1kQ(−, τX)|S
// Ext1kQ(−, T0)|S

// · · ·

The functor Ext1kQ(−, T0) vanishes on the category S by definition. And by the Auslander-Reiten
formula we have an isomorphism of functors

Ext1kQ(−, τX) ≃ DHomkQ(X,−)

thus we have a short exact sequence in modAw

0 // S(−, τX) // S(−, T0) // S(−, T1) // DS(X,−) // 0 .

Hence by definition the complex F (DS(X,−)) is the complex

· · · // 0 // MτX
// MT0

// MT1
// 0 // · · · .

This is a stalk complex whose homology is in degree zero and isomorphic to Ω−2MτX , where Ω
is the syzygy functor.

Since the sequence

0 // τX // T0
// T1

// 0

is functorial in X we get a short exact sequence in modΛ functorial in X:
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(∗) 0 // F (S(−,X)) // MT0
// MT1

// F (DS(X,−)) // 0

The objects MTi
(i = 0, 1) are projective-injective since the Ti’s are in add (Tw).

�

Corollary 4.13. There exists a morphism F (DAw′)→ F (Aw′)[2] in the category Db(Aop
w′ ⊗Λ),

whose cone is in thick(Aop
w′⊗P), where P is the subcategory of SubΛw of the projective-injectives.

Proof. In the above lemma, if we take the sum of all X non-projective in S, then we get an
exact sequence in modΛ

0 // F (Aw′) // MT0
// MT1

// F (DAw′) // 0 .

Hence we get a morphism f : F (DAw′) → F (Aw′)[2] in Db(Λ) whose cone is quasi-isomorphic
to a bounded complex of projective-injective objects of SubΛw, namely is in thick(P), where P
is the subcategory of SubΛw of the projective-injectives. Since the sequence (∗) is functorial
in X and since F (Aw′) and F (DAw′) are stalk complexes, the morphism f can be lifted to a
morphism in Db(Aop

w′ ⊗ Λ). Its cone is in thick(Aop
w′ ⊗ P). �

We are now able to prove Theorem 4.10. First note that we have

F (Aw′) =
⊕

X∈ind (S),non-projective

MτX =
⊕

Y ∈ind (S),not in add (Tw)

MY = Mw/P,

where P is the sum of the indecomposable projective-injective objects of SubΛw. By Proposition
4.4 and Lemma 4.12, the functor F : Db(Aw′)→ Db(SubΛw) induces a triangle functor

F : CA
w′
→ SubΛw.

It sends the cluster-tilting object Aw′ to the cluster-tilting object Mw/P in SubΛw. By Propo-
sition 4.9 we have an isomorphism of algebras

EndCA
w′
(π(Aw′)) ≃ EndΛw

(Mw).

Hence by the following proposition, we get the result.

Proposition 4.14. [KR08, Lemma 4.5] Let T and T ′ be 2-Calabi-Yau triangulated categories.
Let T (resp. T ′) be a cluster-tilting object in T (resp. T ′). If we have a triangle functor
F : T → T ′ which sends T to T ′ and which induces an equivalence between add (T ) and add (T ′),
then F is an equivalence.

We also have the dual result which is a general version of a result in [Ami09a]. In [Ami09a]
the author proves it for a certain type of co-c-sortable words (w is co-c-sortable if w−1 is c−1-
sortable) which are associated to tilting modules in the preinjective component.

Theorem 4.15. Let w = c(r) . . . c(0) be a co-c-sortable word. Let w′ be the subword w′ =
c(r) . . . c(1). Then the algebra Aw′ = kΓw′/Iw′ is of global dimension at most 2 and we have a
triangle equivalence:

CA
w′
≃ SubΛw

sending the cluster-tilting object π(Aw′) to the cluster-tilting object Mw ∈ SubΛw.
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4.5. Example. We take the same example as in Section 3.
Let Q be the following graph 2

KK
KK

1
ssss

3

, and let w be the word w = s1s2s3s1s2s1 in the

Coxeter group WQ. The admissible orientation for Q is the following 2
%%KK

KK

1 //
99ssss

3

.

The standard cluster-tilting object Mw of SubΛw has the following indecomposable direct
summands

M1 = 1 , M2 = 2
1 , M3 =

3
1 2

1
, M4 =

1
2 3
1 2

1
, M5 =

2
3 1

1 2 3
1 2

1

, M6 =
1

2 3
3 1 2

1 1
.

The indecomposable projective-injective objects are M3, M5 and M6. The endomorphism
algebra EndΛw(Mw) has the following quiver

M2

))RRRRRRRRRRRR

��3
3
3

3
3
3

3
3
3

3
3 M5oo

""E
EE

EE

M1

<<yyyyy

))RRRRRRRRRRRR M4oo

<<yyyyy
M6oo

M3

FF

33hhhhhhhhhhhhhhhhhhh

.

The layers L1
w
, . . . , L6

w
are the following, as we have seen before.

T 1
w
= L1

w
= 1 , T 2

w
= L2

w
= 2

1 , T 3
w
= L3

w
=

3
1 2

1
,

T 4
w
= L4

w
=

2 3
1 2

1
, T 5

w
= L5

w
=

3
1 2 3

1 2
1

, T 6
w
= L6

w
= 3

1 .

As we already saw in section 3, the object Tw = T 3
w
⊕ T 5

w
⊕ T 6

w
is a tilting kQ-module. The

Auslander-Reiten quiver of the category Sub (Tw) is

T 2
w

((PPPPPPPPPPP

��0
0
0
0
0
0
0
0
0
0
0

T 5
w

  A
AA

AA

T 1
w

>>}}}}}

((PPPPPPPPPPP T 4
w

>>}}}}}
T 6
w

T 3
w

HH

>>}}}}}

.

which is the quiver of the algebra Aw. The algebra Aw′ is the endomorphism algebra EndkQ(T
4
w⊕

T 5
w
⊕ T 6

w
). It has the following quiver

5

��=
==

==

4

@@�����
6

.

The projective Aw-modules are

1 , 2
1 ,

3
1 2

1
,

4
2 3
1 2

1
,

5
3 4

1 2 3
1 2

1

,
6
5
3
1
.
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Now, we will check that the images of e5Aw′ and e5DAw′ [−2] through the functor

F : Db(Aw′)
Res // Db(Aw)

−
L

⊗Aw
Mw // Db(SubΛw) // // SubΛw

are isomorphic.
Let X be the non-projective module T 5

w. The projective Aw′-module e5Aw′ = 5
4 viewed in

Db(Aw) is quasi-isomorphic to the complex

· · · // 0 // 1 // 3
1 2

1
⊕

3
1 2

1
//

5
3 4

1 2 3
1 2

1

// 0 // · · ·

Hence its image through the functor

F : Db(Aw)
Res // Db(Aw)

−
L

⊗Aw
Mw // Db(SubΛw)

� � // Db(f.l.Λ)

is the complex

· · · // 0 // M1 // M3 ⊕M3 // M5 // 0 // · · ·

which is quasi-isomorphic to M2 = MτX . Note that the projective resolution of X in modkQ is

0 // T 1
w

// T 3
w
⊕ T 3

w
// X // 0

The injective Aw′-module e5DAw′ = 6
5 viewed in Db(Aw) is quasi-isomorphic to the complex

· · · // 0 // 2
1

// 3
1 2

1
//
6
5
3
1

// 0 // · · ·

Hence its image through the functor

F : Db(Aw′)
Res // Db(Aw)

−
L

⊗Aw
Mw // Db(SubΛw)

� � // Db(f.l.Λ)

is the complex

· · · // 0 // M2 // M3 // M6 // 0 // · · · .

Since M5 and M6 are projective injective, F (e5DAw′) is isomorphic to Ω2M2 in SubΛw.
Note that we have an exact sequence in Sub (Tw)

0 // T 2
w

// T 3
w

// T 6
w

// 0

Therefore we have an isomorphism in SubΛw:

F (e5DAw′) ≃ Ω2F (e5Aw′).

5. Problems and examples

In this section we discuss some possible generalizations of the description of the layers in
terms of tilting modules, beyond the c-sortable case. We pose some problems and give some
examples to illustrate limitations for what might be true.

Recall from Section 2 that to a reduced expression w of an element w in WQ we have asso-

ciated a set {Lj
w} of l(w) indecomposable rigid Λ-modules which we call layers, and which are

indecomposable rigid kQ-modules when w is c-sortable, where c is admissible with respect to
the orientation of Q. Under the same assumption (i.e. w is c-sortable), we constructed a set
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{T j
w} of l(w) indecomposable kQ-modules via minimal left approximations, starting with the

tilting module kQ, and ending up with a tilting module Tw. All minimal left approximations
were monomorphisms. We showed that the two sets of indecomposable modules coincide. In

particular, the module Lw := L
tw(1)
w ⊕ · · · ⊕ L

tw(n)
w , where for i ∈ Q0 = {1, . . . , n} the integer

tw(i) is the position of the last reflection si in the word w, is a tilting module over kQ.
We now consider the case of words w with the assumption that w = cw′, where c is a Coxeter

element admissible with respect to the orientation of Q. When w = csun+1 . . . sul
is a word, we

define Tw to be a tilting module associated with w if it is possible to carry out the following.
Start with kQ = P1⊕· · ·⊕Pn, where Pi is the indecomposable projective kQ-module associated
with the vertex i. If possible, exchange Pun+1 with a non-isomorphic indecomposable kQ-module
to get a tilting module T ′ = kQ/Pun+1 ⊕ P ∗

un+1
, then replace summand number i2 in T ′ by a

non-isomorphic indecomposable kQ-module to get a new tilting module T ′′, etc. If an exchange
is possible at each step, we obtain a tilting module Tw. We say that a word w = cw′ starting
with a Coxeter element is tilting if Tw exists, and w is monotilting if morever Tw is obtained by
only using left approximations. Hence c-sorta ble words are examples of monotilting words.

It is natural to ask the following question about tilting and monotilting words.

Problem 5.1. :

(a) Characterize the tilting words w. In particular is every reduced word w = cw′ starting
with a Coxeter element tilting?

(b) Characterize the monotilting words.
(c) When do two tilting wordsw1 andw2 give rise to the same tilting module? Or formulated

differently, for which tilting words w do we have Tw ≃ kQ?

Note that all these questions can also be translated into combinatorial problems for acyclic
cluster algebras.

Note that non-reduced words may be monotilting as the following example shows.

Example 5.2. Let Q be the quiver 2 ''OOO

1 ''OOO

77ooo
4

3
77ooo

and w := s1s2s3s4s3s1s4. Then w is not reduced,

but monotilting with Tw =
4

2 3 2
1 1

⊕ 2
1 ⊕

4
2
1
⊕ 2 .

Recall that in the c-sortable case, then w is monotilting and SubTw is of finite type. This
not the case in general.

Example 5.3. Let Q be the quiver 2 ''OOO

1 ''OOO

77ooo
4

3
77ooo

and w := s1s2s3s4s2s3s4s1. Then one can show

that w is monotilting and that Tw =
4 4
3 2
1

⊕
4
3
1
⊕

4
2
1
⊕ 4 . Then one can check easily that all

the modules of the form
4

2 3
1 1

,
4 4

2 3 2 3
1 1 1

,
4 4 4

2 3 2 3 2 3
1 1 1 1

, . . . are in Sub (
4 4
3 2
1

).

However, it may happen that SubTw is of finite type for a tilting word w which is not c-
sortable. It follows from Theorem 3.12 that there exists a unique c-sortable word w̃ such that
Tw = Tw̃. We then pose the following.

Problem 5.4. :

(a) Characterize the tilting words w with SubTw finite.
(b) For such words w, how can we construct the unique w̃ such that Tw = Tw̃?
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When w is monotilting, we have

{T 1
w
, . . . , T

l(w)
w } ⊆ SubTw = SubTw̃ = add{T 1

w̃
, . . . , T

l(w̃)
w̃
}.

Hence l(w) ≤ l(w̃) and we expect that w̃ is obtained by enlarging some rearrangement of w.

Example 5.5. Let Q be the quiver 2 ''OOO

1 ''OOO

77ooo
4

3
77ooo

andw := s1s2s3s4s2s3s1s4. Thenw is monotilting

and we have

Tw =
4 4

2 3 2 3
1 1 1

⊕
4
3
1
⊕

4
2
1
⊕

4 4 4
2 3 2 3 2 3

1 1 1 1
.

Then w is not c-sortable, SubTw is finite and one can check that w̃ = s1s2s3s4s1s2s3s4s2s3.

When w is c-sortable, w is a monotilting word and Tw coincides with Lw given by the layers.
In general Lw is not a kQ-module, but as we have seen there is an indecomposable kQ-module
associated with each indecomposable summand of Lw, and hence a kQ-module (Lw)Q associated
with Lw. In this connection we have the following questions:

Problem 5.6. :

(1) For which w does the following hold
(a) each indecomposable summand of (Lw)Q is rigid,
(b) (Lw)Q is a tilting module,
(c) w is tilting and Tw = (Lw)Q,
(d) w is monotilting and Tw = (Lw)Q.

(2) If w is monotilting and (Lw)Q is rigid, do we have Tw = (Lw)Q?

As we already saw in Example 2.7, it can happen that (a) fails. In this example, one can
check that w is monotilting.

Example 5.7. Let Q be the quiver 2 ''OOO

1
77ooo // 3

, and w := s1s2s3s2s1s2. The word w′ =

s1s2s3s2s1 is monotilting and we have Tw′ =
3

1 2 3
1 2

1
⊕ 3

1 ⊕
3

1 2
1
To exchange 3

1 we have to

use the minimal right approximation g :
3

1 2 3
1 2

1

// 3
1 . Hence w is a tilting word which

is not monotilting and we get Tw =
3

1 2 3
1 2

1
⊕

2 3
1 2

1
⊕

3
1 2

1
. The cluster-tilting object

Mw of SubΛw associated with w has the indecomposable summands:

Mw := 1 ⊕ 2
1 ⊕

3
1 2

1
⊕

2
3 1

1
⊕

1
2 3

3 1 2
1 1

⊕

2
1 3

3 2 1
2 1

1

We then see that Tw = (Lw)Q, even though w is not a monotilting word.

Example 5.8. Let Q and w be as in Example 5.5. Then we have

Mw = 1 ⊕ 2
1 ⊕

3
1 ⊕

4
2 3

1 1
⊕

2
1 4

3
1
⊕

3
1 4

2
1
⊕

1
2 3

4 1 4
3 2

1 1

⊕
4

2 3
1 4 1

.

Therefore we obtain (Lw)Q =
4 4

3 2 3 2
1 1 1

⊕
4
3
1
⊕

4
2
1
⊕ 4 . Each indecomposable summand is

rigid, but (Lw)Q is not a tilting module. Therefore we can have (a) without (b).



32 CLAIRE AMIOT, OSAMU IYAMA, IDUN REITEN, AND GORDANA TODOROV

References

[AIRT] C. Amiot, O. Iyama, I. Reiten, and G. Todorov, Functorial approach to the layers of modules associated

to words in Coxeter groups, in preparation.
[Ami09a] C. Amiot, Cluster categories for algebras of global dimension 2 and quivers with potential, Ann. Inst.

Fourier (2009), Vol. 59 no 6, pp 2525–2590.
[Ami08] , Sur les petites catégories triangulées, Ph.D. thesis (2008), http://www.math.uni-

bonn.de/people/amiot/these.pdf.
[Ami09b] , A derived equivalence between cluster equivalent categories, preprint (2009), arXiv: math.

RT/0911.5410.
[APR79] M. Auslander, M. I. Platzeck, and I. Reiten, Coxeter functors without diagrams, Trans. Amer. Math.

Soc. 250 (1979), 1–46.
[ART09] C. Amiot, I. Reiten, and G. Todorov, The ubiquity of the generalized cluster categories, preprint (2009),

arXiv:math. RT/0911.4819.
[AR96] M. Auslander, I. Reiten, DTr-periodic modules and functors, Representation theory of algebras (Co-

coyoc, 1994), 39–50, CMS Conf. Proc., 18, Amer. Math. Soc., Providence, RI, 1996.
[AS81] M. Auslander, S. O. Smalo, Almost split sequences in subcategories, J. Algebra 69 (1981), no. 2,

426–454.
[BB05] A. Björner and F. Brenti, Combinatorics of Coxeter groups, Graduate Texts in Mathematics, vol. 231,

Springer, New York, 2005.
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