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ANALYSIS OF A FINITE VOLUME METHOD
FOR A CROSS-DIFFUSION MODEL IN POPULATION DYNAMICS

BORIS ANDREIANOV†, MOSTAFA BENDAHMANE?, AND RICARDO RUIZ BAIER‡

Abstract. The main goal of this work is to propose a convergent finite volume method for a

reaction-diffusion system with cross-diffusion. First, we sketch an existence proof for a class of

cross-diffusion systems. Then standard two-point finite volume fluxes are used in combination with
a nonlinear positivity-preserving approximation of the cross-diffusion coefficients. Existence and

uniqueness of the approximate solution are addressed, and it is also shown that the scheme converges

to the corresponding weak solution for the studied model. Furthermore, we provide a stability anal-
ysis to study pattern-formation phenomena, and we perform two-dimensional numerical examples

which exhibit formation of nonuniform spatial patterns. From the simulations it is also found that
experimental rates of convergence are slightly below second order. The convergence proof uses two

ingredients of interest for various applications, namely the discrete Sobolev embedding inequali-

ties with general boundary conditions and a space-time L1 compactness argument that mimics the
compactness lemma due to S.N. Kruzhkov. The proofs of these results are given in the Appendix.

1. Introduction

1.1. Scope and presentation of the problem. The interaction between species has been widely
studied with reaction-diffusion models. Species may interact both by affecting each other’s demogra-
phy and/or by influencing each others dispersal patterns. If one considers that most organisms are
neither simple diffusers nor move always randomly, but can display preferential directions of move-
ment [2], then the underlying model could include a cross-diffusion term, which will allow to take
into account the population pressures induced by competing species. Shigesada and Kawasaki [44]
examined the invasion process in a Lotka-Volterra type competition with diffusion. In the studied
phenomenon, the entire domain is initially occupied by the resident species, and a few individuals of
the invading species arrive. The spread of the invading species turns out to be a traveling wave and
it is known that depending on the parameters of the model, the invading species either completely
displaces the resident, or the system reaches a coexistent value. It is also known that, under certain
conditions, if the invading species has only a slight competitive advantage over the resident species, the
displacement process will be slower. In a related context, Okubo et al. [41] investigated the invasion
process of grey squirrels (Sciurus carolinensis) after their introduction in Britain, which displaced the
red squirrel (Sciurus vulgaris). A two-species Lotka-Volterra reaction-diffusion competition system
modeling the interaction between these squirrels was proposed by Shigesada, Kawasaki and Teramoto
in [45] (the well known SKT system).
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Of particular interest for us is the following strongly coupled nonlinear cross-diffusion system

∂tu−D1∆u− div
(A11(u, v)∇u+A12(u, v)∇v) = u(a1 − b1u− c1v),

∂tv −D2∆v − div
(A21(u, v)∇u+A22(u, v)∇v) = v(a2 − b2u− c2v), (x, t) ∈ QT := Ω× (0, T ],
∂u

∂η
=
∂v

∂η
= 0, u(x, 0) = u0(x), v(x, 0) = v0(x),

(1.1)

where A =
(
Aij

)
1≤i,j≤2

is the cross-diffusion matrix that we take equal to

A(u, v) =
(
u+ v u
v u+ v

)
. (1.2)

Here Ω ⊂ Rl, l = 2 or l = 3, is a bounded open domain with piecewise smooth boundary ∂Ω.
The quantities of interest u(x, t), v(x, t) denote population densities in (x, t) of red and grey squirrels
(resident and invading species respectively). The change in distribution range is caused only by self
diffusion, cross-diffusion, and growth. In addition a1, a2 are the Malthusian growth coefficients, and
b1, c2 and b2, c1 are the coefficients of intra- and inter-species competition, respectively. We consider
that the diffusive constants D1, D2 are positive. It is convenient, although not necessary, to assume
that the intra-species competition coefficients b1, c2 are also strictly positive. Written in matrix form
with the unknown u := (u, v) (understood as a column vector), (1.1) reads

∂tu− div
[(

D1 0
0 D2

)
∇u
]
− div [A(u)∇u] =

(
F (u)
G(u)

)
,

where the reaction terms are given by

F (u, v) := u (a1 − b1u− c1v), G(u, v) := v (a2 − b2u− c2v). (1.3)

A simpler model herein considered is given by the following Lotka-Volterra two species competition
model with self-diffusion [39, 41]:

∂tu−D1∆u = u(a1 − b1u− c1v),

∂tv −D2∆v = v(a2 − b2u− c2v).
(1.4)

Such system is known to possess global smooth non-negative solution. Moreover, as the classical
Lotka-Volterra differential equations, it is known [40] that (1.4) uniformly oscillates around a non-
trivial, neutrally stable equilibrium point. Recent studies dealing with systems of this type also include
[7, 12, 32, 37, 42, 43] (the list of references is far from being complete).

The more involved system (1.1),(1.2) has received a considerable attention as well. Many works have
been proposed to investigate the conditions for existence and uniqueness of weak/global solutions, and
stability/instability issues. Recent results include for instance [15], where the method of “additional
generating conditions” is used to find exact solutions to the SKT model in the one-dimensional case.
In [16, 33, 38, 46] precise conditions are given for the existence of unstable equilibrium points for
SKT-type systems, other works include analysis of weak solutions of cross-diffusion systems [9], global
existence and uniform boundedness of solution [47]. From the numerical analysis viewpoint, the
list of references is drastically narrowed. In [26, 27] the authors prove the convergence of a semi-
discretization in time scheme in one space dimension by introducing a transformation of the unknowns.
Several results in one spatial dimension using a deterministic particle method are presented in [28].
In [6], the authors propose a fully discrete finite element scheme for a cross-diffusion system using
an entropy inequality, and also present one-dimensional examples. Using a finite difference scheme,
global existence of a weak solution is obtained in [13], and the global existence of a SKT-type model is
established in [14] via a positivity-preserving Euler-Galerkin method. Our contribution aims to present
a finite volume scheme to obtain approximate solutions to the SKT model (1.1),(1.2). These numerical



NUMERICAL ANALYSIS OF A CROSS-DIFFUSION SYSTEM 3

approximations are shown to converge to the corresponding weak solutions, and we provide two-
dimensional numerical examples illustrating the accuracy and performance of the scheme. Moreover,
we report on the formation of nonuniform spatial patterns following the analysis presented in [46].

The method we apply works if the diffusion matrix A(u) in (1.2) is replaced by a general matrix

A(u, v) =
( A11 A12

A21 A22

)
satisfying the assumptions

∀u, v ≥ 0 A12(0, v) = 0, and A21(u, 0) = 0, (1.5)

∀u, v ≥ 0 ∀w ∈ R2
(
A(u, v)w,w

)
≥ 1

C
‖A(u, v)‖ ‖w‖2, (1.6)

where
(
· , ·
)

is the usual scalar product on R2, and

∀u, v ≥ 0 ‖A(u, v)‖ ≤ C
(

1 + ur + vr
)

with r <

{
4, if l = 2

10/3, if l = 3. (1.7)

Notice that (1.6) entails

∀u, v ≥ 0 A11(u, v) ≥ 0 and A22(u, v) ≥ 0. (1.8)

Assumptions (1.8),(1.5) allow for nonnegative solutions; assumption (1.6) expresses the positivity of
the cross-diffusion matrix; and (1.7) is a kind of growth assumption on A. Clearly, (1.2) satisfies the
above assumptions.

The analysis of this paper is restricted to the case of positive cross-diffusion matrices A. This case
is sometimes referred to as “weak cross-diffusion”. It has been shown by Chen and Jüngel [13] that
a class of cross-diffusion systems (1.1) with matrices A generalizing (1.2) possesses an entropy that
allows to establish existence without the positivity assumption on A. The numerical approximation
of such “strong cross-diffusion” problems will be the subject of a forthcoming paper.

1.2. Outline of the paper. The remaining part of this paper is organized as follows. In Section 2,
we define weak solutions to system (1.1),(1.2), and briefly discuss the existence issue. In Section 3 we
introduce some notations for the finite volume method, and we present our numerical scheme and the
main theorem of convergence. The proof of this convergence result is divided into Section 4 (basic
a priori estimates and existence of a solution to the scheme), Section 5 (compactness for discrete
solutions) and Section 6 (convergence to a weak solution). Notice that the result of Section 5 is based
upon a discrete analogue of the Kruzhkov L1 compactness lemma (cf. [34]); the statement and the
proof of the Lemma are postponed to Appendix A. This compactness result is of interest for a wide
variety of finite volume approximations of evolution equations; therefore Appendix A contains the
essential notation and it can be read independently of the rest of the paper. Similarly, Appendix B is
independent of the rest of the paper; it contains a proof (adapted from the idea of Eymard, Gallouët
and Herbin [24]) of the discrete Sobolev embedding inequalities for the case of Neumann or mixed
boundary conditions. Finally, in Section 7 we present numerical examples in two space dimensions,
putting into evidence the good performance of the scheme, and we provide the corresponding error
histories. In Section 9 we outline a stability-instability analysis to deduce sufficient conditions for
spatial patterns to appear.

2. Weak solutions

Definition 2.1. A pair u = (u, v) of functions is a weak solution of (1.1) if u, v ∈ L2(0, T ;H1(Ω)),
and the following identities hold for all test functions ϕ, ξ ∈ D([0, T )× Ω̄):

−
∫∫

ΩT

u∂tϕ dx dt+D1

∫∫
ΩT

∇u · ∇ϕdx dt+
∫∫

ΩT

[A11(u, v)∇u+A12(u, v)∇v] · ∇ϕdx dt
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=
∫∫

ΩT

F (u, v)ϕdx dt+
∫

Ω

u0(x)ϕ(0, x) dx,

−
∫∫

ΩT

v∂tξ dx dt+D2

∫∫
ΩT

∇v · ∇ξ dx dt+
∫∫

ΩT

[A21(u, v)∇u+A22(u, v)∇v] · ∇ξ dx dt

=
∫∫

ΩT

G(u, v)ξ dx dt+
∫

Ω

v0(x)ξ(0, x) dx.

In model (1.1), we are only interested in non-negative solutions, i.e. in (u, v) such that u ≥ 0,
v ≥ 0 a.e. on QT . In fact, existence of a weak non-negative solution for system (1.1) will be shown by
proving convergence of our numerical scheme; notice that, at least in the case of the cross-diffusion
(1.2), existence can be proved directly (see [8, 9, 10] for details). Here we sketch a somewhat simpler
convergence proof, which is the one mimicked in Sections 4, 5, 6.

Theorem 2.2. Assume that the cross-diffusion matrix A fulfills the requirements (1.5)–(1.7). Then
for all u0, v0 ∈ L2(Ω) there exists a non-negative weak solution of (1.1).

Proof. (sketched) The proof of the existence result is based on introducing the following penalized
systems

∂tu−D1∆u− div
(Ah11(u+, v+)∇u+Ah12(u+, v+)∇v) = Fh(u+, v+),

∂tv −D2∆v − div
(Ah21(u+, v+)∇u+Ah22(u+, v+)∇v) = Gh(u+, v+), (x, t) ∈ QT := Ω× (0, T ],

∂u

∂η
=
∂v

∂η
= 0, u(x, 0) = u0(x), v(x, 0) = v0(x).

(2.1)

Here for all h > 0, one can choose e.g. Ah(r+, s+) = A(min{r+, 1
h},min{s+, 1

h}), and apply the
same truncation procedure to F,G in order to obtain Fh, Gh. In particular, Ah and Fh, Gh are L∞

functions that approximate A and F,G, respectively, in C2(K), for all compact K in R2. These
approximate problems being uniformly parabolic, and existence of an L2(0, T ;H1(Ω)) solution is well
known. Moreover, since u0, v0 ≥ 0, using the test functions u−,v− and assumptions (1.5),(1.8) one
easily shows the non-negativity of u and v solving (2.1).

Let us denote the solution of (2.1) by uh = (uh, vh) and sketch a version of the passage to the limit
argument that we will reproduce at the discrete level. We have

(uh, vh) ∈
(
L2(0, T ;H1(Ω)) ∩ C(0, T ;L2(Ω))

)2

with ‖Ah(uh, vh)‖
(
|∇uh|2 + |∇vh|2

)
∈ L1(QT )

with a uniform estimate of the norms. Indeed, multiplication of the first and the second equation in
(2.1) (where u and v are replaced by uh and vh respectively) by uh and vh, respectively, gives

‖uh‖L∞(0,T ;L2(Ω)) + ‖vh‖L∞(0,T ;L2(Ω)) ≤ C,
‖∇uh‖L2(QT ) + ‖∇vh‖L2(QT ) ≤ C,∫∫

QT

(
max

1≤i,j≤2
|Ahij(uh, vh)|

) (
|∇uh|2 + |∇vh|2

)
dx dt ≤ C,

(2.2)

where C is independent of h. Here assumption (1.6) is used (notice that Ah inherits the structure
properties of A). Then we use the following version of the compactness lemma of [34].

Lemma 2.3 (Kruzhkov [34]; see also [5]).
Let Ω be an open domain in Rl, T > 0, QT = (0, T ) × Ω. Assume that the families of functions
(wh)h, (Fhα )h,α are bounded in L1(QT ) and satisfy ∂

∂tw
h =

∑
|α|≤mD

αFhα in D′(QT ). Assume that
wh can be extended outside QT , and one has

sup
| dx|≤∆

∫∫
QT

|wh(t, x+ dx)−wh(t, x)| dxdt ≤ ω(∆), with lim
∆→0

ω(∆) = 0,
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where ω(·) does not depend on h. Then (wh)h is relatively compact in L1(QT ).

Clearly, one can apply this lemma locally inside [0, T ]× Ω.
From (2.2), it is easy to derive a uniform space translation estimate of the form (9.11) for uh

and vh. Further, using the sharp Sobolev embedding and the interpolation between L2(0, T ;L2∗(Ω))
and L∞(0, T ;L2(Ω)), from the growth assumption (1.7) we infer that the quantities Ahij(uh, vh) are
bounded in L1(QT ) (moreover, they are equi-integrable in QT ). Now uniform L1 estimates on uh, vh,
for the fluxes (in particular, the estimates for the cross-diffusion Ah(uh)∇uh ) and for the reaction
terms are easily obtained from (2.2) and from the Cauchy-Schwarz inequality.

Therefore, using the weak form of equations (2.1), by Lemma 2.3 we infer that uh and vh converge
(up to extraction of a subsequence) to some limits u and v a.e. in QT . Now by the Vitali theorem,
from the aforementioned equi-integrability property we infer that Ahij(uh, vh) converges to Aij(u, v)
strongly in L1(QT ).

In order to conclude the proof, we rewrite the cross-diffusion terms under the form√
A11

(√
A11 ∇u

)
, signA12

√
|A12|

(√
|A12| ∇v

)
and so on. Then we consider the terms√

Ah11(uh, vh)∇uh,
√
|Ah12(uh, vh)| ∇vh,√

|Ah21(uh, vh)| ∇uh,
√
Ah22(uh, vh)∇vh

in the approximate weak formulation; thanks to (2.2), these terms are all bounded in L2(QT ). Their
weak L2 limits (along a subsequence) can be identified, via the weak L1(QT ) convergence, with the
terms √A11(u, v)∇u, √|A12(u, v)| ∇v,√|A21(u, v)| ∇u, √A22(u, v)∇v,
respectively; here we use the strong L2(QT ) compactness of

(√
|Ahij(uh, vh)|

)
h

and the weak L2(0, T ;H1(Ω))

compactness of (uh)h, (vh)h. Using once more the strong L2 compactness of
(

signAhij(uh, vh)
√
|Ahij(uh, vh)|

)
h
,

we are in a position to pass to the limit in the cross-diffusion terms of the weak formulation of (2.1).
Finally, the a.e. convergence of uh, vh to u, v and the Lr(QT ), r > 2, bound on uh, vh permit us to pass
to the strong limit in the reaction terms Fh(uh, vh) and Gh(uh, vh). Thus we infer that u := (u, v) is
a nonnegative weak solution of (1.1),(1.2). �

Remark 2.1. In the case of space dimension l = 3, the growth assumption (1.7) can be relaxed in
some particular cases. For instance, if the lower bound ‖A(u, v)‖ ≥ 1

C (ur + vr) holds with r = 10/3,
we can use estimates (2.2) to get L2(QT ) bounds of ∇ur/2+1, ∇vr/2+1. Using the optimal Sobolev
embedding H1(Ω) ⊂ L2∗(Ω), we infer a uniform L2(0, T ;L(r/2+1)2∗(Ω)) bound on uh, vh. Then the
interpolation with L∞(0, T ;L2(Ω)) allows to take a higher value of r in (1.7).
Bootstrapping this argument, eventually we can allow for ‖A(u, v)‖ with polynomial growth of order
r < 4 at infinity, as in the case of dimension l = 2.

3. Finite Volume Approximation

We assume that Ω ⊂ Rl, l = 2 (respectively, l = 3) is an open bounded polygonal (resp., polyhedral)
connected domain with boundary ∂Ω. Following [20], we consider a family Th of admissible meshes
of the domain Ω consisting of disjoint open and convex polygons (resp., polyhedra) called control
volumes. The parameter h has the sense of an upper bound for the maximum diameter of the control
volumes in Th. Whenever Th is fixed, we will drop the subscript h in the notation.

A generic volume in T is denoted by K. Because we consider the zero-flux boundary condition,
we do not need to distinguish between interior and exterior control volumes; only inner interfaces
between volumes are needed in order to formulate the scheme.
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K

xK

xL

σK,L

LTK,L

T

Figure 1. Control volumes, centers and diamonds (in dashed lines).

For all K ∈ T , we denote by |K| the l-dimensional Lebesgue measure of K. For all K ∈ T , we
denote by N(K) the set of the neighbors of K (i.e. the set of control volumes of T which have a
common interface with K); a generic neighbor of K is often denoted by L. For all L ∈ N(K), we
denote by σK,L the interface between K and L; we denote by ηK,L the unit normal vector to σK,L
outward to K. We have ηL,K = −ηK,L. For an interface σK,L, |σK,L| will denote its (l−1)-dimensional
measure.

By saying that T is admissible, we mean that there exists a family (xK)K∈T such that the straight
line xKxL is orthogonal to the interface σK,L. The point xK is referred to as the center of K
(notice that in general, xK need not belong to K). In the case where T is a simplicial mesh of Ω (a
triangulation, in dimension l = 2), one takes for xK the center of the circumscribed ball of K. We
also require that ηK,L · (xL − xK) > 0 (in the case of simplicial meshes, this restriction amounts to
the Delaunay condition, see e.g. [20]). The “diamond” constructed from the neighbor centers xK , xL
and the interface σK,L is denoted by TK,L; e.g. in the case xK ∈ K, xL ∈ L, TK,L is the convex hull

of xK ,xL and σK,L) (see Figure 1). We have Ω = ∪K∈T
(
∪L∈N(K)TK,L

)
.

We denote by dK,L the distance between xK and xL. We require local regularity restrictions on
the family of meshes Th; namely,

∃γ > 0 ∀h ∀K ∈ Th ∀L ∈ N(K) diam (K) + diam (L) ≤ γdK,L, (3.1)

∃γ > 0 ∀h ∀K ∈ Th ∀L ∈ N(K) |σK,L|dK,L ≤ γ |K|. (3.2)
The first restriction is used in the proof of Lemma 9.2 which ensures discrete L1 compactness. The
second restriction is used in the proof of the discrete Sobolev embeddings (Proposition 9.3), and it
can be bypassed (see Remark 5.1).

A discrete function on the mesh Th is a set (wK)K∈Th . Whenever convenient, we identify it with
the piecewise constant function wh on Ω such that wh|K = wK . Finally, the discrete gradient ∇hwh
of a constant per control volume function wh is defined as the constant per diamond TK,L function,
Rl-valued, with the values (

∇hwh
)∣∣∣
TK,L

= ∇K,Lwh := l
wL − wK
dK,L

ηK,L. (3.3)

3.1. Formulation of the scheme and the main result. To formulate the underlying scheme, we
choose an admissible discretization of QT consisting of an admissible mesh Th of Ω and of a time step
size ∆th > 0; both ∆th and the size maxK∈Th diam(K) tend to zero as h → 0. We define Nh > 0 as
the smallest integer such that (Nh + 1)∆th ≥ T , and set tn := n∆th for n ∈ {0, . . . , Nh}. Whenever
∆th is fixed, we will drop the subscript h in the notation.
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The terms Fn+1
K , Gn+1

K will approximate the averages

1
|K|

∫
K

F
(
u(x, tn), v(x, tn)

)
dx,

1
|K|

∫
K

G
(
u(x, tn), v(x, tn)

)
dx,

and are defined by

Fn+1
K = F

(
un+1
K

+
, vn+1
K

+)
, Gn+1

K = G
(
un+1
K

+
, vn+1
K

+)
. (3.4)

In order to approximate the diffusive terms, we introduce the terms An+1
ij,K . Herein, we make the choice

An+1
ij,K,L := Aij

(
min {un+1

K

+
, un+1
L

+},min{vn+1
K

+
, vn+1
L

+}
)

(3.5)

Remark 3.1. Let us stress that the choice of the minimum in the discretization of An+1
12,K,L, An+1

21,K,L is
imposed in order to justify the non-negativity property (see property (1.5) and the proof of Lemma 4.1
below). Then the choice of the diagonal terms An+1

11,K,L, An+1
22,K,L is made in order to preserve, at the

discrete level, the structure of the cross-diffusion matrix A, namely the coercivity property (1.6). It
should be pointed out that the above scheme actually approximates the penalized system (2.1); the
nonnegativity Lemma 4.1 is necessary in order to conclude that the scheme does approximate (1.1).

In practice, if one takes e.g. the simple scheme with

An+1
12,K,L :=

un+1
K +un+1

L

2
, An+1

21,K,L :=
vn+1
K +vn+1

L

2
, An+1

ii,K,L :=
un+1
K +un+1

L +vn+1
K +vn+1

L

2
, i = 1, 2,

then no negative values appear in the numerical studies that we have made.

The computation starts from the initial cell averages

u0
K =

1
|K|

∫
K

u0(x) dx, v0
K =

1
|K|

∫
K

v0(x) dx. (3.6)

To advance the numerical solution from tn to tn+1 = tn + ∆t, we use the following implicit finite
volume scheme: Determine (un+1

K )K∈Th , (vn+1
K )K∈Th such that

|K|u
n+1
K − unK

∆t
−D1

∑
L∈N(K)

|σK,L|
dK,L

(un+1
L − un+1

K )

−
∑

L∈N(K)

|σK,L|
dK,L

[
An+1

11,K,L(un+1
L − un+1

K ) +An+1
12,K,L(vn+1

L − vn+1
K )

]
= |K|Fn+1

K ,

(3.7)

|K|v
n+1
K − vnK

∆t
−D2

∑
L∈N(K)

|σK,L|
dK,L

(vn+1
L − vn+1

K )

−
∑

L∈N(K)

|σK,L|
dK,L

[
An+1

21,K,L(un+1
L − un+1

K ) +An+1
22,K,L(vn+1

L − vn+1
K )

]
= |K|Gn+1

K ,

(3.8)

for all K ∈ Th and n ∈ [0, Nh]. As usual, the homogeneous Neumann boundary condition is taken
into account implicitly. Indeed, the parts of ∂K that lie in ∂Ω do not contribute to the

∑
L∈N(K)

terms, which means that the flux zero is imposed on the external edges of the mesh.

The set of values (un+1
K , vn+1

K )K∈T ,n∈[0,Nh] satisfying (3.6), (3.7) and (3.8) will be called a discrete
solution. Whenever convenient, we will assimilate a discrete solution of the scheme at the time step
n to the couple un+1

h = (un+1
h , vn+1

h ) of piecewise constant on Ω functions given by

∀K ∈ Th ∀n ∈ [0, Nh] un+1
h |K = un+1

K , vn+1
h |K = vn+1

K .
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We will write uh for the discrete solution on QT , assimilated to the piecewise constant function(∑
K∈Th,n∈[0,Nh]

un+1
K 11(tn,tn+1]×K ,

∑
K∈Th,n∈[0,Nh]

vn+1
K 11(tn,tn+1]×K

)
.

Because in practical computations, one does not let the discretization parameter go to zero but fixes
it to some small value, let us indicate the following mild restriction on the time step:

∆t < sup
{

1
2a1

,
1

2a2

}
, (3.9)

which will be used to prove the existence of solutions to the scheme.
Our main result is

Theorem 3.1. Assume that u0 ∈ (L2(Ω))+ and v0 ∈ (L2(Ω))+. Assume that the cross-diffusion
matrix A fulfills (1.5), (1.6) and (1.7). Let uh be the discrete solution generated by the finite vol-
ume scheme (3.6), (3.7) and (3.8) on a family of meshes satisfying (3.1),(3.2). Then, as h → 0,
uh converges (along a subsequence) a.e. on QT to a limit u = (u, v) that is a weak solution u of
(1.1),(1.2).

4. A priori estimates and existence

4.1. Nonnegativity. We have the following lemma.

Lemma 4.1. Let (un+1
K , vn+1

K )K∈T ,n∈[0,Nh] be a solution of the finite volume scheme (3.6), (3.7) and
(3.8). Then, (un+1

K , vn+1
K )K∈T ,n∈[0,Nh] is nonnegative.

Proof. Let us prove, by induction, that for all n ∈ [0, Nh], min {un+1
K }K∈Th ≥ 0. The proof for the

component v is completely analogous.
Recall that u0

K ≥ 0 for all K. For n ≥ 0, we fix K such that un+1
K = min {un+1

L }L∈Th . Multiplying

equation (3.7) by −∆tun+1
K

−
, we deduce

−|K|un+1
K

−
(un+1
K − unK) =−D1∆t

∑
L∈N(K)

|σK,L|
dK,L

(un+1
L − un+1

K )un+1
K

−

− ∆t
∑

L∈N(K)

|σK,L|
dK,L

[
An+1

11,K,L(un+1
L − un+1

K ) +An+1
12,K,L(vn+1

L − vn+1
K )

]
un+1
K

−

− ∆t|K|Fn+1
K un+1

K

−
.

(4.1)

By the choice of K and the non-negativity of An+1
11,K,L, we have

∆t
∑

L∈N(K)

|σK,L|
dK,L

(
D1 +An+1

11,K,L

)
(un+1
L − un+1

K )un+1
K

− ≥ 0.

In addition, due to assumption (1.5) and to the choice (3.5) of An+1
12,K,L, we have

∆t
∑

L∈N(K)

|σK,L|
dK,L

An+1
12,K,L(vn+1

L − vn+1
K )un+1

K

−
= 0,

Similarly, by the definition of Fn+1
K we have

Fn+1
K un+1

K

−
= (a1 − b1 un+1

K

+ − c1 vn+1
K

+
)un+1

K

+
un+1
K

−
= 0. (4.2)

Finally we use the identity un+1
K = (un+1

K )+ − (un+1
K )− and the nonnegativity of unK to deduce from

(4.1)-(4.2) that (un+1
K )− = 0. By induction in n, we infer that

0 ≤ un+1
L for all n ∈ [0, Nh] and L ∈ Th.

�
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4.2. Discrete a priori estimates.

Proposition 4.2. Let (un+1
K , vn+1

K )K∈T ,n∈[0,Nh], be a solution of the finite volume scheme (3.6), (3.7)
and (3.8). Then there exist a constant C > 0, depending on Ω, T , ‖u0‖2, ‖v0‖2, a1, a2, D1, D2 such
that

max
[0,Nh]

∑
K∈Th

|K| ∣∣un+1
K

∣∣2 + max
[0,Nh]

∑
K∈Th

|K| ∣∣vn+1
K

∣∣2 ≤ C, (4.3)

b1

Nh∑
n=0

∑
K∈Th

|K| ∣∣un+1
K

∣∣3 + c2

Nh∑
n=0

∑
K∈Th

|K| ∣∣vn+1
K

∣∣3 ≤ C, (4.4)

Nh∑
n=0

∆t
∑
K∈T

∑
L∈N(K)

|σK,L|
dK,L

∣∣un+1
K − un+1

L

∣∣2 +
Nh∑
n=0

∆t
∑
K∈T

∑
L∈N(K)

|σK,L|
dK,L

∣∣vn+1
K − vn+1

L

∣∣2 ≤ C, (4.5)

and
Nh∑
n=0

∆t
∑
K∈T

∑
L∈N(K)

|σK,L|
dK,L

max
1≤i,j≤2

|An+1
11,K,L|

(∣∣un+1
K − un+1

L

∣∣2 +
∣∣vn+1
K − vn+1

L

∣∣2 )≤ C. (4.6)

Proof. The estimates actually hold under the assumption (1.6) on A.
We multiply the first and the second equation in (3.7) by ∆tun+1

K and ∆tvn+1
K , respectively, and

add together the outcomes. Summing the resulting equation over K and n yields

S1 + S2 + S3 + S4 = 0,

where

S1 =
Nh∑
n=0

∑
K∈T

|K|
(

(un+1
K − unK)un+1

K + (vn+1
K − vnK)vn+1

K

)
,

S2 = −
Nh∑
n=0

∆t
∑
K∈T

∑
L∈N(K)

|σK,L|
dK,L

(
D1(un+1

L − un+1
K )un+1

K +D2(vn+1
L − vn+1

K )vn+1
K

)
,

S3 = −
Nh∑
n=0

∆t
∑
K∈T

∑
L∈N(K)

|σK,L|
dK,L

([
An+1

11,K,L(un+1
L − un+1

K ) +An+1
12,K,L(vn+1

L − vn+1
K )

]
un+1
K

+
[
An+1

21,K,L(un+1
L − un+1

K ) +An+1
22,K,L(vn+1

L − vn+1
K )

]
vn+1
K

)
,

S4 = −
Nh∑
n=0

∆t
∑
K∈T

|K|
(
Fn+1
K un+1

K +Gn+1
K vn+1

K

)
.

From the inequality “a(a− b) ≥ 1
2 (a2 − b2)”, we obtain

S1 =
Nh∑
n=0

∑
K∈T

|K|
(

(un+1
K − unK)un+1

K + (vn+1
K − vnK)vn+1

K

)

≥ 1
2

Nh∑
n=0

∑
K∈T

|K|
(∣∣un+1

K

∣∣2 − |unK |2 +
∣∣vn+1
K

∣∣2 − |vnK |2)
=

1
2

∑
K∈T

|K|
(∣∣∣uNh+1

K

∣∣∣2 − ∣∣u0
K

∣∣2 +
∣∣∣vNh+1
K

∣∣∣2 − ∣∣v0
K

∣∣2) .
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Gathering by edges, we obtain

S2 =
Nh∑
n=0

∆t
∑
K∈T

∑
L∈N(K)

|σK,L|
dK,L

(
D1

2

∣∣un+1
K − un+1

L

∣∣2 +
D2

2

∣∣vn+1
K − vn+1

L

∣∣2).
Similarly, using the property (1.6) and the fact that An+1

ij,L,K = An+1
ij,K,L, we infer

S3 =−
Nh∑
n=0

∆t
∑
K∈T

∑
L∈N(K)

|σK,L|
dK,L

([
An+1

11,K,L(un+1
L − un+1

K ) +An+1
12,K,L(vn+1

L − vn+1
K )

]
un+1
K

+
[
An+1

21,K,L(un+1
L − un+1

K ) +An+1
22,K,L(vn+1

L − vn+1
K )

]
vn+1
K

)

≥ 1
2C

Nh∑
n=0

∆t
∑
K∈Th

∑
L∈N(K)

|σK,L|
dK,L

max
1≤i,j≤2

|An+1
ij,K,L|

[∣∣un+1
L − un+1

K

∣∣2 +
∣∣vn+1
L − vn+1

K

∣∣2] .
Now we use the nonnegativity of un+1

K and vn+1
K and the expressions (1.3) of F,G to deduce

S4 ≥ −
Nh∑
n=0

∆t
∑
K∈T

|K|
(
a1

∣∣un+1
K

∣∣2 + a2

∣∣vn+1
K

∣∣2 )+
Nh∑
n=0

∆t
∑
K∈T

|K|
(
b1
∣∣un+1
K

∣∣3 + c1
∣∣vn+1
K

∣∣3 ).
Collecting the previous inequalities we obtain

1
2

∑
K∈T

|K|
(∣∣∣uNh+1

K

∣∣∣2 − ∣∣u0
K

∣∣2 +
∣∣∣vNh+1
K

∣∣∣2 − ∣∣v0
K

∣∣2)+
Nh∑
n=0

∆t
∑
K∈T

|K|
(
b1
∣∣un+1
K

∣∣3 + c1
∣∣vn+1
K

∣∣3 )

+
Nh∑
n=0

∆t
∑
K∈T

∑
L∈N(K)

|σK,L|
dK,L

(
D1

2

∣∣un+1
K − un+1

L

∣∣2 +
D2

2

∣∣vn+1
K − vn+1

L

∣∣2)

+
1

2C

Nh∑
n=0

∆t
∑
K∈Th

∑
L∈N(K)

|σK,L|
dK,L

max
1≤i,j≤2

|An+1
ij,K,L|

[∣∣un+1
L − un+1

K

∣∣2 +
∣∣vn+1
L − vn+1

K

∣∣2]

≤
Nh∑
n=0

∆t
∑
K∈Th

|K|
(
a1

∣∣un+1
K

∣∣2 + a2

∣∣vn+1
K

∣∣2 ).

(4.7)

In view of the discrete Gronwall inequality, (4.3) follows from (4.7). Consequently, (4.7) entails the
estimates (4.4)–(4.6). This concludes the proof of Proposition 4.2. �

4.3. Existence of a solution for the finite volume scheme. The existence of a solution for the
finite volume scheme is given in the following proposition.

Proposition 4.3. Let Th be an admissible discretization of QT and assume that (3.9) holds. Then
the discrete problem (3.6), (3.7) and (3.8) admits at least one solution (un+1

K , vn+1
K )(K,n)∈Th×[0,Nh].

For a proof, which is by induction in the time step, the elliptic counterpart of the coercivity
estimates of the previous subsection is used. At this stage, we need an upper bound on the time step
∆t that permits to control the contribution of the terms a1u, a2v on the right-hand side by the terms
coming from the discrete time differencing of u and v, respectively. Condition (3.9) is sufficient to do
this.

As soon as the estimates are achieved, a homotopy/topological degree argument allows to deduce
existence starting from the existence of a discrete solution for a linear coercive system, see [20] for
details.

Notice that in the place of the below argument, based upon the Brouwer fixed point theorem in
the version of Ref. [36], the topological degree argument can be used, following Ref. [20]. At a price
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of more involved estimates, (3.9) can be relaxed, but an upper bound on the time step is necessary in
order to ensure existence of solution for a pure Neumann boundary problem.

Proof. First we introduce the Hilbert space

Eh = Hh(Ω)×Hh(Ω),

of couples uh = (uh, vh) of discrete functions on Ω under the norm

‖uh‖2Eh := |uh|2Hh(Ω) + |vh|2Hh(Ω) + ‖uh‖2L2(Ω) + ‖vh‖2L2(Ω) ,

where the ‘discrete H1
0 seminorm” | · |2Hh(Ω) is given by

|wh|2Hh(Ω) :=
1
2

∑
K∈Th

∑
L∈N(K)

|TK,L|
∣∣∣∣wL−wKdK,L

∣∣∣∣2,
and the L2(Ω) norm of wh is given by

‖wh‖2L2(Ω) :=
∑
K∈Th

|K| |wK |2.

Let Φh = (ϕh, ξh) ∈ Eh and define the discrete bilinear forms

Th(uh,Φh) =
∑
K∈Th

|K|
(
uKϕK + vKξK

)
,

a1,h(un+1
h ,Φh) =

1
2

∑
K∈Th

∑
L∈N(K)

|σK,L|
dK,L

(
(un+1
L −un+1

K )(ϕn+1
L −ϕn+1

K ) + (vn+1
L − vn+1

K )(ξn+1
L − ξn+1

K )
)
.

Similarly, for given matrices An+1
h :=

((
An+1
ij,K,L

)
1≤i,j≤2

)
K∈Th,L∈N(K)

, define the bilinear form

a2,h(An+1
h ; un+1

h ,Φh) =
1
2

∑
K∈Th

∑
L∈N(K)

|σK,L|
dK,L

[
An+1

11,K,L(un+1
L − un+1

K )(ϕn+1
L − ϕn+1

K )

+An+1
12,K,L(un+1

L − un+1
K )(ϕn+1

L − ϕn+1
K ) +An+1

21,K,L(vn+1
L − vn+1

K )(ξn+1
L − ξn+1

K )

+An+1
22,K,L(vn+1

L − vn+1
K )(ξn+1

L − ξn+1
K )

]
.

Multiplying (3.7) and (3.8) by ϕK and ξK , respectively, summing in K ∈ Th, we get the equation
1

∆t

(
Th(un+1

h ,Φh)−Th(unh,Φh)
)

+a1,h(un+1
h ,Φh)+a2,h(An+1

h (un+1
h ); un+1

h ,Φh)+Th(Rh(un+1
h ),Φh) = 0;

here the entries An+1
ij,K,L of An+1

h are defined from un+1
h with the help of formulas (3.5), furthermore,

Rh(un+1
h ) := (Fn+1

h , Gn+1
h ) with the discrete functions Fn+1

h , Gn+1
h defined from un+1

h by formulas
(3.4). It is clear that, unh being given, there exists a solution un+1

h of the above equation if and only if
there exists a discrete solution of (3.7),(3.8) at the time step (n+ 1). Now we define, by duality, the
mapping P from Eh into itself:

∀Φh ∈ Eh [P(un+1
h ),Φh] =

1
∆t

(Th(un+1
h ,Φh)− Th(unh,Φh))

+ a1,h(un+1
h ,Φh) + a2,h(An+1

h (un+1
h ); un+1

h ,Φh) + Th(Rh(un+1
h ),Φh).

The continuity of the mapping P follows from the continuity of the nonlinearities F,G,
(Aij)1≤i,j≤2

and from the continuity of ah,1(·, ·), ah,2(An+1
h ; ·, ·) and Th(·, ·). Now we are looking for un+1

h ∈ Eh
such that P(un+1

h ) = 0. According to [36], in order to prove the existence of un+1
h it remains to show

that
[P(un+1

h ),un+1
h ] > 0 whenever

∥∥un+1
h

∥∥
Eh

= r > 0, (4.8)
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for a sufficiently large r. We observe that

[P(un+1
h ),un+1

h ] =
1

∆t

∑
K∈Th

|K| ∣∣un+1
K

∣∣2 +
1

∆t

∑
K∈Th

|K| ∣∣vn+1
K

∣∣2
+ a1,h(un+1

h ,un+1
h ) + a2,h(An+1

h (un+1
h ); un+1

h ,un+1
h ) + Th(Rh(un+1

h ),un+1
h )

− 1
∆t

∑
K∈Th

|K|unKun+1
K − 1

∆t

∑
K∈Th

|K|vnKvn+1
K .

(4.9)

Using the definition of Fn+1
K and Gn+1

K , estimate (1.6) and Young’s inequality we deduce from (4.9)

[P(un+1
h ),un+1

h ]

≥ 1
∆t

∑
K∈Th

|K| ∣∣un+1
K

∣∣2 +
1

∆t

∑
K∈Th

|K| ∣∣vn+1
K

∣∣2 +D1

∥∥un+1
h

∥∥2

Hh(Ω)
+D2

∥∥vn+1
h

∥∥2

Hh(Ω)

+
1

2C

Nh∑
n=0

∆t
∑
K∈Th

∑
L∈N(K)

|σK,L|
dK,L

max
1≤i,j≤2

|An+1
ij,K,L|

[∣∣un+1
L − un+1

K

∣∣2 +
∣∣vn+1
L − vn+1

K

∣∣2]
− 1

2∆t

∑
K∈Th

|K| ∣∣un+1
K

∣∣2 − 1
2∆t

∑
K∈Th

|K| |unK |2 −
1

2∆t

∑
K∈Th

|K| ∣∣vn+1
K

∣∣2 − 1
2∆t

∑
K∈Th

|K| |vnK |2

− a1

∑
K∈Th

|K| ∣∣un+1
K

∣∣2 − a2

∑
K∈Th

|K| ∣∣vn+1
K

∣∣2
≥ D1

∥∥un+1
h

∥∥2

Hh(Ω)
+D2

∥∥vn+1
h

∥∥2

Hh(Ω)

+
( 1

2∆t
− a1

) ∑
K∈Th

|K| ∣∣un+1
K

∣∣2 +
( 1

2∆t
− a2

) ∑
K∈Th

|K| ∣∣vn+1
K

∣∣2 − const(∆t,unh)

≥ const(D1, D2, a1, a2,∆t)
(∣∣un+1

h

∣∣2
Hh(Ω)

+
∣∣vn+1
h

∣∣2
Hh(Ω)

+ ‖uh‖2L2(Ω) + ‖vh‖2L2(Ω)

)
− const(∆t,unh).

The constant const(D1, D2, a1, a2,∆t) in the above expression is greater than zero, provided (3.9)
holds. This implies that (4.8) holds for r large enough (recall that

∥∥un+1
h

∥∥
Eh

= r). By induction in
n, we deduce the existence of at least one solution to the scheme (3.7). �

5. Compactness arguments

In this section, with the help of a discrete compactness tool inspired by Lemma 2.3 we justify that
the family uh of discrete solutions constructed in Proposition 4.3 is relatively compact in L1(QT ).

Denote by Ah the 2× 2 matrix on QT with the entries Ahij given by

Ahij :=
1
2

Nh∑
n=0

∑
K∈Th

∑
L∈N(K)

An+1
ij,K,L 11(tn,tn+1]×TK,L .

We have the following convergence results along a subsequence:

Proposition 5.1. There exists a couple u ∈ (Lr(QT ))2 ∩L2(0, T ;H1(Ω))2 (recall that r is defined in
(1.7)) and a subsequence of uh = (uh, vh), not labelled, such that, as h→ 0,

(i) uh → u strongly in L1(QT ) and a.e. in QT ,

(ii) ∇huh −→ ∇u weakly in (L2(QT ))2l,

(iii) Ah∇huh −→ A(u)∇u weakly in (L1(QT ))2l,

(iv) (F (uh), G(uh)) −→ (F (u), G(u)) weakly in (L1(QT ))2.
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The above convergence properties are the ones needed to conclude the convergence proof; actually,
strong Lp(QT ) convergences of uh and of the associated reaction terms hold, for adequate values
of p. On the contrary, the convergence of the intra-species diffusion fluxes ∇huh and of the cross-
diffusion fluxes Ah∇huh cannot be upgraded to a strong convergence. One possibility to ensure strong
convergence of discrete gradients is to replace the schemes used in this paper by schemes with more
careful construction of the discrete gradients (essentially, one needs that the discrete gradients be
consistent with affine functions). Another possibility is to perform an a posteriori reconstruction of
the gradients, e.g. as in Ref. [21].

Proof. We first apply Lemma 9.2 (see Appendix A), using the estimates shown in Proposition 4.2.
The discrete solution (un+1

h )n∈[0,Nh] being given, we may consider that the evolution of the first
component (un+1

h )n∈[0,Nh] of the solution is governed by the system of discrete equations

un+1
K − unK

∆t
=

1
|K|

∑
L∈N(K)

|σK,L| ~Fn+1
K,L ·ηK,L + fn+1

K (5.1)

obtained from (3.7); here we have assigned

fn+1
K := F (un+1

K , vn+1
K ) = un+1

K (a1 − b1 un+1
K − c1 vn+1

K ),

~Fn+1
K,L := D1

un+1
L − un+1

K

dK,L
ηK,L +An+1

11,K,L

un+1
L − un+1

K

dK,L
ηK,L +An+1

12,K,L

vn+1
L − vn+1

K

dK,L
ηK,L

≡ 1
l

[
D1∇K,Lun+1

h +An+1
11,K,L∇K,Lun+1

h +An+1
12,K,L∇K,Lun+1

h

]
.

Equations (5.1) have the form (9.8) required in Lemma 9.2.
It remains to check that the local L1 bounds (9.9),(9.10) are verified. We actually have the global

L1(QT ) uniform estimates on the families

uh :=
∑Nh

n=0
un+1
h 11(tn,tn+1], ~Fh :=

1
2

∑Nh

n=0

∑
K∈Th

∑
L∈N(K)

~Fn+1
K,L 11(tn,tn+1]×TK,L

fh :=
∑Nh

n=0
fn+1
h 11(tn,tn+1], ∇huh :=

1
2

∑Nh

n=0

∑
K∈Th

∑
L∈N(K)

∇K,Lun+1
h 11(tn,tn+1]×TK,L .

Indeed, the quadratic growth of F,G and the L2(QT ) estimate on the discrete solutions, trivially de-
rived from (4.3), ensures the L1(QT ) bound on (fh)h. Combined with the Cauchy-Schwarz inequality,
the same bound yields the L1(QT ) estimate of (uh)h.

As in the proof of Theorem 2.2, we now use the growth assumption (1.7) (here we can take advantage
of the choice of the min in formulas (3.5) for An+1

ij,K,L). Using the critical discrete Sobolev embedding
(see Proposition 9.3 in Appendix B) and the interpolation between Lpt(0, T ;Lpx(Ω)) spaces, from
the L∞(0, T ;L2(Ω)) estimate (4.3) and the discrete L2(0, T ;H1(Ω)) estimate (4.5) we get a uniform
Lr(QT ) bound on uh and a uniform L1(QT ) bound on the terms Ahij .

Finally, the estimate (4.6) is exactly the L2(QT ) estimate of the product
√
|Ah|∇huh (in this

abusive notation, we mean that the square root of Ah is taken componentwise). The two latter
bounds permit to control Ahuh in L1(QT ).

Now, because ~Fh is precisely the first component of the vector 1
l

[
D1∇huh+Ah∇huh

]
, and D1∇huh

is L2(QT ) bounded by estimate (4.5), by the Cauchy-Schwarz inequality we infer a uniform L1(QT )
estimate of ~Fh and also the one of ∇huh. Thus (9.9),(9.10) are verified; the uniform L1(Ω) bound
on the initial data u0

h is also clear from (3.6), and Lemma 9.2 can be applied to derive the L1(QT )
compactness of (uh)h.

The arguments for the second component of uh, denoted by vh, is entirely similar. Thus we can
define the limit u = (u, v) of (a subsequence of) uh and obtain the claim (i).

Further, the claim (ii) is deduced from the estimate (4.5). Indeed, one uses (4.5) to bound ∇huh
in L2(QT ). Upon extraction of a further subsequence, we have e.g. uh → u in L2(QT ) and ∇huh → χ
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in (L2(QT )l, where χ has yet to be identified. For this purpose, one takes a smooth compactly
supported vector-function φ on QT and proves, using the definition (3.3) together with the discrete
summation-by-parts and the consistency of the finite volume approximation of divφ, that∫ T

0

∫
Ω

∇u · φ = −
∫ T

0

∫
Ω

udivφ.

This shows that u ∈ L2(0, T ;H1(Ω)) and that χ identifies with ∇u (cf. Ref. [24]; our discrete gradient
is less elaborate than the one of Ref. [24], but the idea of the proof is the same). The proof for ∇hvh
is identical.

Finally, the claims (iii),(iv) follow because the uniform L2(QT ) estimates of uh and of
√
|Ahij | (see

the arguments above) can be upgraded to adequate Lp(QT ) estimates with p > 2. Using in addition
the quadratic growth of F and the a.e. convergence of uh to u, by the Vitali theorem we get (iv).

Similarly, we get the strong L2(QT ) convergence of
√
|Ahij | to

√|Aij(u)|. Then, as in the proof of

Theorem 2.2, we pass to the limit first in
√
|Ahij |∇huh and then in Ah∇huh; hence we get (iii). �

Remark 5.1. In the above compactness proof, one can bypass the use of the discrete Sobolev em-
beddings of Appendix B, if one uses the L3(QT ) estimate (4.4) (which is valid under the assumption
b1, c2 > 0), and if the restriction r < 3 is taken in (1.7). In this way, restriction (3.2) on the family
of meshes can de dropped.

6. Convergence Analysis

Our final goal is to prove that the limit function u = (u, v) constructed in Proposition 5.1 constitute
a weak solution of system (1.1). Let us pass to the limit in (3.7) to get the first equality in Definition
2.1; the arguments for the passage to the limit in (3.8) are entirely similar.

Let ϕ ∈ D([0, T ) × Ω). Set ϕnK := ϕ(tn, xK) for all K ∈ Th and n ∈ [0, Nh + 1]. Multiply the
discrete equation (3.7) by ∆tϕn+1

K and sum up in K ∈ Th and n ∈ [0, Nh]. This yields

Sh1 + Sh2 + Sh3 = Sh4 ,

where

Sh1 =
Nh∑
n=0

∑
K∈Th

|K| (un+1
K − unK)ϕn+1

K ,

Sh2 = −
Nh∑
n=0

∆t
∑
K∈Th

∑
L∈N(K)

|σK,L|
dK,L

D1(un+1
L − un+1

K )ϕn+1
K ,

Sh3 = −
Nh∑
n=0

∆t
∑
K∈T

∑
L∈N(K)

|σK,L|
dK,L

[
An+1

11,K,L(un+1
L − un+1

K ) +An+1
12,K,L(vn+1

L − vn+1
K )

]
ϕn+1
K ,

Sh4 =
Nh∑
n=0

∆t
∑
K∈T

|K|Fn+1
K ϕn+1

K .

Making summation by parts in time and keeping in mind that ϕNh+1
K = 0 for all K ∈ Th, by

classical arguments (cf. [20]) we get

Sh1 = −
Nh∑
n=0

∑
K∈Th

|K|un+1
K (ϕn+1

K − ϕnK)−
∑
K∈Th

|K|u0
Kϕ

0
K

= −
Nh∑
n=0

∑
K∈Th

∫ tn+1

tn

∫
K

un+1
K ∂tϕ(t, xK) dx dt−

∑
K∈Th

∫
K

u0(x)ϕ(0, xK) dx =: −Sh1,1 − Sh1,2.
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Next, we introduce

Sh,∗1 = −
Nh∑
n=0

∑
K∈Th

∫ tn+1

tn

∫
K

uh(t, x)∂tϕ(t, x) dx dt−
∫

Ω

u0(x)ϕ(0, x) dx =: −Sh,∗1,1 − Sh,∗1,2 .

Then

|Sh1,2 − Sh,∗1,2 | ≤
(∫

Ω

|u0(x)|2 dx
∑
K∈Th

∫
K

|ϕ(0, xK)− ϕ(0, x)|2 dx
)1/2

≤ Ch,

due to the Lipschitz continuity of ϕ. Next, from the definition of the piecewise constant function uh,

Sh1,1 − Sh,∗1,1 =
Nh∑
n=0

∑
K∈Th

(∫ tn+1

tn

∫
K

un+1
K ∂tϕ(t, xK) dx dt−

∫ tn+1

tn

∫
K

un+1
K ∂tϕ(t, x) dx dt

)

=
Nh∑
n=0

∑
K∈Th

un+1
K

∫ tn+1

tn

∫
K

(
∂tϕ(t, xK)− ∂tϕ(t, x)

)
dx dt.

Using again the regularity of ∂tϕ and the Cauchy-Schwarz inequality, we obtain∣∣∣Sh1,1 − Sh,∗1,1

∣∣∣ ≤ Ch( Nh∑
n=0

∆t
∑
K∈Th

|K| ∣∣un+1
K

∣∣2)1/2

≤ Ch,

in view of the L∞(0, T ;L2(Ω)) estimate (4.3). Thus

lim
h→0

∣∣∣Sh1,2 − Sh,∗1,2

∣∣∣ = 0, lim
h→0

∣∣∣Sh1,1 − Sh,∗1,1

∣∣∣ = 0.

Then it is clear from Proposition 5.1(i) that, along a subsequence,

lim
h→0

Sh1 = lim
h→0

Sh,∗1 = −
∫ T

0

∫
Ω

u∂tϕ−
∫

Ω

u0ϕ(0, ·).

lim
h→0

Sh1 = −
∫ T

0

∫
Ω

u∂tϕ−
∫

Ω

u0ϕ(0, ·),
along a subsequence. Indeed, the adaptation of the convergence argument of [20] starting from the
L1 compactness of (uh)h, instead of the L2 compactness, is straightforward.

Further, again along a subsequence, we have

lim
h→0

Sh2 = D1

∫∫
QT

∇u · ∇ϕ, lim
h→0

Sh3 =
∫∫

QT

(
A11(u, v)∇u+A12(u, v)∇v

)
· ∇ϕ.

Our proof is slightly different from the classical one (cf. [20]), adapted to the definition (3.3) of the
discrete gradient and to the associated weak convergence statements of Proposition 5.1 items (ii) and
(iii). Let us put forward the arguments for the term Sh2 . Gathering by edges and using the definition
(3.3) of ∇h, we have

Sh2 =
D1

2

Nh∑
n=0

∆t
∑
K∈Th

∑
L∈N(K)

1
l
|σK,L| dK,L l

un+1
L − un+1

K

dK,L

ϕn+1
L − ϕn+1

K

dK,L

=
D1

2

Nh∑
n=0

∆t
∑
K∈Th

∑
L∈N(K)

|TK,L|
(
∇K,Lun+1

h · ηK,L
) (
∇ϕ(tn+1, xK,L) · ηK,L

)
,

where xK,L is some point on the segment with the endpoints xK , xL. Moreover, because the values
of ∇K,L are directed by ηK,L, we actually have(

∇K,Lun+1
h · ηK,L

) (
∇ϕ(tn+1, xK,L) · ηK,L

)
≡ ∇K,Lun+1

h · ∇ϕ(tn+1, xK,L).
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u(x, y, t) v(x, y, t)

Figure 2. Lotka-Volterra model: Spread of a population at time t = 20 for species
u, v (Example 1).

Since each term corresponding to TK,L appears twice in the above formula,

Sh2 = D1

∫ T

0

∫
Ω

∇huh · (∇ϕ)h,

where

(∇ϕ)h|(tn,tn+1]×TK,L := ∇ϕ(tn+1, xK,L).

Observe that from the continuity of ∇ϕ we get (∇ϕ)h → ∇ϕ in L∞(QT ). Hence using the weak L1

convergence of ∇huh to ∇u, we pass to the limit in Sh2 , as h→ 0. The proof of the convergence claim
for Sh3 is entirely similar, using Proposition 5.1(iii) in the place of Proposition 5.1(ii).

Finally, using Proposition 5.1(iv), we readily deduce that Sh4 converges to
∫∫

QT

F (u, v)ϕ as h→ 0.

Gathering the obtained results, we justify the first equality in Definition 2.1 and end the proof of
Theorem 3.1.

7. Numerical Examples

Numerical results presented hereafter refer to systems (1.1)-(1.2) and (1.4). In all cases the compu-
tations correspond to simple square domains, and numerical simulations are carried out using uniform
meshes of N = 65536 control volumes.

Due to the lack of exact solutions for the forthcoming examples, we compute errors in different
norms using a numerical solution on an extremely fine mesh as reference. To measure errors between
such a reference solution zref and an approximate solution zh, at time tn, we will use normalized
Lp-errors:

enp =
‖znref − znh‖p
‖znref‖p

p = 1, 2,∞,
where

‖znref − znh‖∞ = max
K∈Th

∣∣znref,K − znhK
∣∣; ‖znref − znh‖p =

(
1
|K|

∑
K∈Th

∣∣znref,K − znhK
∣∣p)1/p

, p = 1, 2.
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Here znref,K stands for the projection of the reference solution onto the control volume K. For the
computation of convergence rates for the scalar field z, we herein use

r(z) =
log(e(z)/e∗(z))

log(h/h∗)
,

where e(z) and e∗(z) denote the respective errors computed for two consecutive meshes of sizes h
and h∗. For solving the corresponding nonlinear system arising from the implicit finite volume scheme,
we have used the Newton method, where at each time step, only a few iterations are required to achieve
convergence. In addition, the linear systems involved in Newton’s method are solved by the GMRES
method.

7.1. Example 1: Squirrel war without cross-diffusion. The first numerical test corresponds
to the Lotka-Volterra system with diffusion (1.4) endowed with zero-flux boundary conditions. The
spatial domain is Ω = [−1, 1]2 and to perform the numerical simulations we adopt a set of parameters
used in [44]: D1 = 1 Km2/year, D2 = 18 Km2/year, a1 = 0.61/year, a2 = 0.82/year, b1 = 0.4575, b2 =
0.31, c1 = 9.5, c2 = 8.2. The carrying capacities for both species are a1/b1 = 0.75/ha and a2/b2 =
10/ha respectively. The initial distribution corresponds to the u-species at their constant carrying
capacity u0(x) = 0.75/ha, and the v-species concentrated in small pockets at two spatial points. The
system is evolved and a snapshot of the corresponding numerical solution at time t = 20 is shown in
Figure 2. It is observed that grey squirrels had spread outward and red squirrels started to recede.
A numerical rate of convergence slightly under h2 for different norms, is noticed from Table 1 and
Figure 3(a).

N h L1−error r1(u) L2−error r2(u) L∞−error r∞(u)
1024 3.90× 10−3 1.35× 10−3 − 2.72× 10−3 − 1.21× 10−2 −
4096 9.77× 10−4 1.01× 10−4 1.9021 2.01× 10−4 1.9131 9.12× 10−4 1.8917
16384 2.44× 10−4 7.59× 10−6 1.8932 1.49× 10−5 1.9049 6.67× 10−5 1.9239
65536 6.10× 10−5 5.65× 10−7 1.9046 1.11× 10−6 1.9108 4.92× 10−6 1.9126

Table 1. Number of control volumes N , meshsize h, approximate errors in different
norms for u and observed convergence rates r at simulated time t = 20 (Example 1).

7.2. Example 2: Squirrel war with cross-diffusion. As a second numerical example, consider
model (1.1),(1.2), where we have chosen the same coefficients of intra- and inter-specific competition
as in Example 1. From Figure 4, it can be seen that the system behaves in a qualitatively similar
fashion as in Example 1. Notice however, from the snapshot of the u-species, that the resident species
start to compete with the invading species, specifically near the gradient of density. A comparison
of the species’ behavior in both Examples 1 and 2 can be analyzed from Figure 5, where we display
profiles of the numerical solutions at time t = 20 in a 1D slice of the domain, namely the level y = 0.
The asynchrony of both species is clear from these plots. The concentration of resident species (in
the left plot) in two small regions driven by cross diffusion suggest the creation of spatial niches that
allows the survival of residents that would otherwise be completely depleted.

The corresponding convergence history for Example 2 is given in Table 2 and Figure 3(b). It is
clearly seen that the method provides an experimental rate of convergence between h3/2 and h2.

7.3. Example 3: Cross-diffusion and pattern formation. For the last example, all parameters
are set as in Example 2, except for a2 = 0.52/year and the initial distribution for the species, which is
now chosen to be a normally distributed random perturbation around the equilibrium state (u∗, v∗) =
(0.0769, 0.0605) on the entire domain, with a variance lower than the amplitude of the final patterns.
The approach of perturbing an equilibrium point and studying the formation of nonuniform spatial
patterns is by now standard (see e.g. [35]). The choice for the parameters is such that the sufficient
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Figure 3. Meshsize h and errors for u in: (a) different norms versus the number
of control volumes N , where the simulated time is t = 20 (Example 1); and (b)
L1−norm versus the number of control volumes N for different simulated times (Ex-
ample 2).

u(x, y, t) v(x, y, t)

Figure 4. Model with cross-diffusion: Spread of a population at time t = 20 for
species u, v (Example 2).

conditions for the development of instabilities (see Section 9) are satisfied. Figure 11 displays the
Turing spaces for the parameter pairs a1, a2 b1, b2 and c1, c2. Inside the marked regions, obtained
according to conditions (i) and (ii) from Section 9, the system is expected to exhibit unstable spatial
patterns.

From Figure 6 it is clearly seen that the system evolves from noise to spatial patterns qualitatively
similar as those produced in the previous examples (smooth interfaces between both species). We also
provide a profile view of the same simulation in Figure 7. It consists of a cut of the numerical solution
at the level y = 0 (this is, a 1D slide of the computational domain). It can be observed that even



NUMERICAL ANALYSIS OF A CROSS-DIFFUSION SYSTEM 19

N h L1−error r1(u) L1−error r1(u) L1−error r1(u)
Time t = 20 t = 10 t = 1

1024 3.90× 10−3 5.68× 10−3 − 2.34× 10−3 − 9.12× 10−4 −
4096 9.77× 10−4 4.97× 10−4 1.7423 1.91× 10−4 1.8136 7.57× 10−5 1.7953
16384 2.44× 10−4 3.96× 10−5 1.8361 1.54× 10−5 1.8260 6.24× 10−6 1.8035
65536 6.10× 10−5 3.20× 10−6 1.8213 1.27× 10−6 1.8027 5.21× 10−7 1.7896

Table 2. Number of control volumes N , meshsize h, approximate L1−errors for u
and observed convergence rates r at different simulated times (Example 2).
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Figure 5. Profiles at time t = 20 and y = 0 for species u, v. The two cases correspond
to the model without (left) and with (right) cross-diffusion (Examples 1 and 2).

when the solution seems to fall in the constant equilibrium state (at t = 0.1), instabilities driven by
cross-diffusion lead the solution to a stationary nonuniform spatial pattern.

8. On the formation of spatial patterns

The formation of spatial patterns through cross-diffusion in the long run has been addressed nu-
merically in Section 7.3. We have shown that there exist nonuniform equilibrium solutions which
exhibit spatial segregating patterns. The obtained state of coexistence is known to take place due to
cross-diffusion. Here we present a brief study of the cross-diffusion driven instability of (1.1),(1.2). To
this end, first note that the nontrivial constant equilibrium point of (1.1),(1.2), i.e., the pair (u∗, v∗)
such that u∗(a1 − b1u∗ − c1v∗) = 0 and v∗(a2 − b2u∗ − c2v∗) = 0, is given by (see Figure 10)

u∗ =
a2c1 − a1c2
b2c1 − b1c2 , v∗ =

a2b1 − a1b2
b1c2 − b2c1 . (8.1)

This solution in (9.1) is positive (which means that there exists a coexistence state) if
b1
b2
>
a1

a2
>
c1
c2

or
b1
b2
<
a1

a2
<
c1
c2
.

The state (u∗, v∗) is also an equilibrium point for the following kinetic formulation associated to
(1.1),(1.2):

∂tu = u(a1 − b1u− c1v),

∂tv = v(a2 − b2u− c2v), (x, t) ∈ QT (8.2)
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u(x, y, 0.1) u(x, y, 5) u(x, y, 10)

v(x, y, 0.1) v(x, y, 5) v(x, y, 10)

Figure 6. Model with cross-diffusion: Spread of a population at times t = 1, t = 5,
and t = 10 for species u (top) and v (bottom) starting from random initial data
(Example 3). The figure for v(x, 10) has been rotated only for visualization purposes.

and (u∗, v∗) is linearly stable with respect to this system if

tr(J) < 0 and det(J) > 0, (8.3)

where

J =
[
∂u(u(a1 − b1u− c1v)) ∂v(u(a1 − b1u− c1v))
∂u(v(a2 − b2u− c2v)) ∂v(v(a2 − b2u− c2v))

]
.

This yields to the condition

b1
b2
>
a1

a2
>
c1
c2
.

Obviously, there exist other equilibrium points, namely the trivial solution (0, 0) and the semi-trivial
solutions (a1

b1
, 0) and (0, a2

c2
), but these points are unstable with respect to the ODE (9.2).

For the instability of (u∗, v∗) with respect to (1.1),(1.2), Tian et al. [46] recently obtained the
following result:

Lemma 8.1. Suppose that (u∗, v∗) is a constant equilibrium of (9.2) satisfying (9.3), tr(D) > 0,
det(D) > 0, and 0 < k1 ≤ µm,n ≤ k2. Then (u∗, v∗) is an unstable equilibrium solution with respect
to (1.1),(1.2). Here

D =
[
∂u(u(v + 1

2u+ 1)) ∂v(u(v + 1
2u+ 1))

∂u(v(u+ 1
2v + 1)) ∂v(v(u+ 1

2v + 1))

]
,
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Figure 7. Model with cross-diffusion: Profile view at y = 0 of the spread of a
population at times t = 0, t = 0.1, t = 1, t = 5, t = 10 and t = 20 for species u and
v (Example 3).
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Figure 8. Phase portrait for the ODE system (9.2). The system nullclines (in dashed
lines) are the lines u = 0, v = 0 (not shown), v = a1/c1− b1/c1u, v = a2/c2− b2/c2u.
Three computed trajectories are displayed starting from the states A = (0.45, 0.06),
B = (0.3, 0.035) and C = (0.15, 0.047). After 500 time steps all of them reach
the equilibrium point (u∗, v∗) = (0.0769, 0.0605). The used parameters are a1 =
0.61/year, a2 = 0.52/year, b1 = 0.4575, b2 = 0.31, c1 = 9.5, c2 = 8.2.

µm,n =
π2

4
(m+ n)2, m,n = 1, 2, 3, . . . are the eigenvalues of the Neumann problem −∆w = µm,nw,

∂nw = 0 on the square domain Ω = [−1, 1]2, and

k1 =
det(J) + det(D)−√(− det(J)− det(D))2 − 4 det(D) det(J)

2 det(D)
,
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Figure 9. Sketched instability regions for the SKT model. The parameter spaces
are determinate by fixing the remaining parameters and varying only one parameter
pair: a1, a2 (a) b1, b2 (b) and c1, c2 (c) (Example 3).

k2 =
det(J) + det(D) +

√
(−det(J)− det(D))2 − 4 det(D) det(J)

2 det(D)
.

A further analysis, following [3, 40, 46], allows us to conclude that the fulfillment of the following
conditions is sufficient for the positive equilibrium point (u∗, v∗) being linearly unstable with respect
to the particular case of system (1.1),(1.2):

(i)
b1
b2
>
a1

a2
>
c1
c2

.

(ii) max
{
c1
b1
,
b2
c2

}
> max

{
u∗

v∗
,
v∗

u∗

}
.

Figure 11 sketches the parameter spaces where these conditions hold. The specified curves separate
the regions where unstable solutions to (1.1),(1.2) arise. In Figure 11(a) the following parameters are
fixed: b1 = 0.4575, b2 = 0.31, c1 = 9.5, c2 = 8.2, while in Figures 11(b) and 11(c), the fixed parameters
are a1 = 0.61/year, a2 = 0.52/year, c1 = 9.5, c2 = 8.2 and a1 = 0.61/year, a2 = 0.52/year, b1 =
0.4575, b2 = 0.31 respectively.

9. On the formation of spatial patterns

The formation of spatial patterns through cross-diffusion in the long run has been addressed nu-
merically in Section 7.3. We have shown that there exist nonuniform equilibrium solutions which
exhibit spatial segregating patterns. The obtained state of coexistence is known to take place due to
cross-diffusion. Here we present a brief study of the cross-diffusion driven instability of (1.1),(1.2). To
this end, first note that the nontrivial constant equilibrium point of (1.1),(1.2), i.e., the pair (u∗, v∗)
such that u∗(a1 − b1u∗ − c1v∗) = 0 and v∗(a2 − b2u∗ − c2v∗) = 0, is given by (see Figure 10)

u∗ =
a2c1 − a1c2
b2c1 − b1c2 , v∗ =

a2b1 − a1b2
b1c2 − b2c1 . (9.1)

This solution in (9.1) is positive (which means that there exists a coexistence state) if

b1
b2
>
a1

a2
>
c1
c2

or
b1
b2
<
a1

a2
<
c1
c2
.
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Figure 10. Phase portrait for the ODE system (9.2). The system nullclines (in
dashed lines) are the lines u = 0, v = 0 (not shown), v = a1/c1 − b1/c1u, v =
a2/c2 − b2/c2u. Three computed trajectories are displayed starting from the states
A = (0.45, 0.06), B = (0.3, 0.035) and C = (0.15, 0.047). After 500 time steps all of
them reach the equilibrium point (u∗, v∗) = (0.0769, 0.0605). The used parameters
are a1 = 0.61/year, a2 = 0.52/year, b1 = 0.4575, b2 = 0.31, c1 = 9.5, c2 = 8.2.

The state (u∗, v∗) is also an equilibrium point for the following kinetic formulation associated to
(1.1),(1.2):

∂tu = u(a1 − b1u− c1v),

∂tv = v(a2 − b2u− c2v), (x, t) ∈ QT (9.2)

and (u∗, v∗) is linearly stable with respect to this system if

tr(J) < 0 and det(J) > 0, (9.3)

where

J =
[
∂u(u(a1 − b1u− c1v)) ∂v(u(a1 − b1u− c1v))
∂u(v(a2 − b2u− c2v)) ∂v(v(a2 − b2u− c2v))

]
.

This yields to the condition

b1
b2
>
a1

a2
>
c1
c2
.

Obviously, there exist other equilibrium points, namely the trivial solution (0, 0) and the semi-trivial
solutions (a1

b1
, 0) and (0, a2

c2
), but these points are unstable with respect to the ODE (9.2).

For the instability of (u∗, v∗) with respect to (1.1),(1.2), Tian et al. [46] recently obtained the
following result:

Lemma 9.1. Suppose that (u∗, v∗) is a constant equilibrium of (9.2) satisfying (9.3), tr(D) > 0,
det(D) > 0, and 0 < k1 ≤ µl,m ≤ k2. Then (u∗, v∗) is an unstable equilibrium solution with respect to
(1.1),(1.2). Here

D =
[
∂u(u(v + 1

2u+ 1)) ∂v(u(v + 1
2u+ 1))

∂u(v(u+ 1
2v + 1)) ∂v(v(u+ 1

2v + 1))

]
,

µl,m =
π2

4
(l +m)2, l,m = 1, 2, 3, . . . are the eigenvalues of the Neumann problem −∆w = µl,mw,

∂nw = 0 on the square domain Ω = [−1, 1]2, and

k1 =
det(J) + det(D)−√(− det(J)− det(D))2 − 4 det(D) det(J)

2 det(D)
,

k2 =
det(J) + det(D) +

√
(− det(J)− det(D))2 − 4 det(D) det(J)

2 det(D)
.
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Figure 11. Sketched instability regions for the SKT model. The parameter spaces
are determinate by fixing the remaining parameters and varying only one parameter
pair: a1, a2 (a) b1, b2 (b) and c1, c2 (c) (Example 3).

A further analysis, following [3, 40, 46], allows us to conclude that the fulfillment of the following
conditions is sufficient for the positive equilibrium point (u∗, v∗) being linearly unstable with respect
to the particular case of system (1.1),(1.2):

(i)
b1
b2
>
a1

a2
>
c1
c2

.

(ii) max
{
c1
b1
,
b2
c2

}
> max

{
u∗

v∗
,
v∗

u∗

}
.

Figure 11 sketches the parameter spaces where these conditions hold. The specified curves separate
the regions where unstable solutions to (1.1),(1.2) arise. In Figure 11(a) the following parameters are
fixed: b1 = 0.4575, b2 = 0.31, c1 = 9.5, c2 = 8.2, while in Figures 11(b) and 11(c), the fixed parameters
are a1 = 0.61/year, a2 = 0.52/year, c1 = 9.5, c2 = 8.2 and a1 = 0.61/year, a2 = 0.52/year, b1 =
0.4575, b2 = 0.31 respectively.

Appendix A. A discrete L1 compactness lemma

The space-time compactness lemma stated and proved in this Appendix is a result that can be
used in many situations, yet in most cases simpler techniques apply. For the case of non-degenerate
parabolic equations, the L2 techniques of [20] have been successfully used for many schemes and
applications. These techniques generalize to the degenerate parabolic-elliptic and parabolic-hyperbolic
problems, see [22] and [23],[4], respectively. The argument of [4] is L1-based, and it works in the
case of a non-Lipschitz degeneracy. The below lemma is also L1-based; we state it for the non-
degenerate parabolic case, the adaptation to the parabolic-elliptic degeneracy of the kind considered in
[22],[5] being straightforward. Notice that the arguments of the lemma cannot apply to the parabolic-
hyperbolic problems, as the ones considered in [23],[4].

In order to state the lemma so that it apply to a large class of finite volume schemes, let us recall
and somewhat enrich the notation. Indeed, the result of the lemma is valid for a wide class of finite
volume discretizations of evolution equations (see Remark 9.1 below), and the proof appears simpler
when the general structure of the discrete equations is exhibited.

As in Section 3, (Th)h is a family of admissible meshes of Ω ⊂ Rl, l ≥ 1, and (∆th)h are the
associated time steps; both ∆th and the size of the mesh Th tend to zero as h → 0. We retain the
notation K, xK for the volumes and their centers, and the notation σK,L for the interface associated
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with a volume K and its neighbor L ∈ N(K). Let us mark as “boundary volumes” the volumes
located adjacent to the boundary ∂Ω.1

As previously, dK,L denotes the distance between the centers of neighbor volumes and ηK,L, the
unit normal vector to σK,L that points from K towards L. In addition, we introduce the notation
~FK,L for an arbitrary Rl vector associated with the interface σK,L; we only require that ~FK,L = ~FL,K .
Therefore we denote by Eh the set of all interfaces σK,L = σL,K between neighbor volumes, and index
the entries ~FK,L by the interfaces σK,L ∈ Eh.

Further, a diamond TK,L is constructed upon the interface σK,L, having xK ,xL for vertices (see
Figure 1). Both volumes K and diamonds TK,L = TL,K form partitions of Ω (up to a set of measure
zero). Therefore we assimilate a discrete function (wK)K∈Th on Ω to the piecewise constant function
wh :=

∑
K∈Th wK 11K ; a discrete function wh is said to be null on ∂Ω, if the entry wK is zero for all

boundary volume K. Similarly, a discrete field ( ~FK,L)σK,L∈Eh is assimilated to the piecewise constant
vector-function

~Fh :=
∑

σK,L∈Eh
~FK,L 11TK,L .

The l-dimensional (respectively, the (l − 1)-dimensional) measures of K, TK,L (respectively, σK,L)
are denoted by |K|, |TK,L| (respectively, by |σK,L|). For Ω′ ⊂ Ω, the localized L1 norms of wh, ~Fh are
defined as

‖wh‖L1(Ω′) :=
∑

K∈Th :K ∩Ω′ 6=∅ |K| |wK |, ‖ ~Fh‖L1(Ω′) :=
∑

σK,L∈Eh :σK,L ∩Ω′ 6=∅ |TK,L| | ~FK,L|.

In particular, the above norms are used for discrete gradients; indeed, for a given discrete function wh,
its discrete gradient is a certain discrete field ~Fh = ∇hwh. In the case of classical two-point schemes
on orthogonal meshes (cf. [20]) that we consider in this paper, ∇hwh is defined by (3.3), that is,

∇K,Lwh := l
wL − wK
dK,L

ηK,L.

Remark that the local proportionality constraint (3.1) on the family of meshes (Th)h entails the
following property of stability for the discrete gradient ∇h of functions in W 1,∞(Ω) discretized on the
mesh Th: ∣∣∣∣∣∣∣

whenever wh = (wK)K∈Th with wK =
1
|K|

∫
K

w for some w ∈W 1,∞(Ω),

one has max
K,L∈Eh

|∇K,Lwh| ≤ C ‖∇w‖∞.
(9.4)

Finally, let us notice that for all discrete function wh on Ω,

|wK − wL|
dK,L

≤ C |∇K,Lwh|. (9.5)

Here and in the sequel, C denotes a generic constant independent of the discretization parameter h
and of the discrete functions and fields considered.

Further, for a given discrete field ~Fh, its discrete divergence is defined as the discrete function
wh = divh ~Fh with the entries

divK ~Fh :=
1
|K|

∑
L∈N (K)

|σK,L| ~FK,L ·ηK,L.

1This convention is only used to state (9.7). While discretizing boundary conditions for the underlying PDE, one

can make different choices, that are also reflected in the definition of the discrete gradient and divergence operators in
volumes adjacent to the boundary. Yet, the compactness result of Lemma 9.2 being local, it does not depend on the

way the boundary conditions are taken into account.
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A key point of the mathematical analysis of the two-point finite volume schemes on admissible meshes
is the following kind of discrete duality property:∣∣∣∣∣∣

for all discrete function wh on Ω which is null on ∂Ω, for all discrete field ~Fh on Ω,∑
K∈Th

|K| wK
(

divK ~Fh
)

=
1
l

∑
σK,L∈Eh

|σK,L| ~FK,L · ∇K,Lwh.
(9.6)

Formula (9.6) stems from the definitions of the discrete operators ∇h, divh and expresses, in a con-
densed way, the summation-by-parts procedure. For the purpose of proving Lemma 9.2 below, the
only important consequence of the discrete duality (9.6) is the following localized estimate:∣∣∣∣∣∣∣

for all discrete function wh on Ω which is null on ∂Ω, for all discrete field ~Fh on Ω,∣∣∣∣∑
K

|K|wK
(

divK ~Fh
)∣∣∣∣ ≤ C max

σK,L∈Eh
|∇K,Lwh| × ‖ ~Fh‖L1(Ω′)

(9.7)

where Ω′ is the support of wh.

Lemma 9.2. Let Ω be an open domain in Rl, T > 0, QT = (0, T ) × Ω. Let (T h)h be an admissible
family of meshes of Ω satisfying the restriction (3.1); let (∆th)h be the associated time steps.

For all h > 0, assume that discrete functions
(
un+1
h

)
n∈[0,Nh]

,
(
fn+1
h

)
n∈[0,Nh]

and discrete fields(
~Fn+1
h

)
n∈[0,Nh]

satisfy the discrete evolution equations

for n ∈ [0, Nh],
un+1
h − unh

∆t
= divh [ ~Fn+1

h ] + fn+1
h (9.8)

with a family (u0
h)h of initial data. Assume that for all Ω′ b Ω, there exists a constant M(Ω′) such

that ∑Nh

n=0
∆t
∥∥∥un+1

h

∥∥∥
L1(Ω′)

+
∑Nh

n=0
∆t
∥∥∥ fn+1

h

∥∥∥
L1(Ω′)

+
∑Nh

n=0
∆t
∥∥∥ ~Fn+1

h

∥∥∥
L1(Ω′)

≤M(Ω′). (9.9)

and, moreover, ∑Nh

n=0
∆t
∥∥∥∇hun+1

h

∥∥∥
L1(Ω′)

≤M(Ω′). (9.10)

Assume that the family (uh0 )h is bounded in L1
loc(Ω). Then there exists a measurable function u on

QT such that, along a subsequence,∑Nh

n=0

∑
K∈Th

un+1
K 11(tn,tn+1]×K −→ u in L1

loc([0, T ]× Ω) as h→ 0.

Remark 9.1. (i) The assumption on (uh0 )h can be bypassed easily, but it is not restrictive in practice.
(ii) The proof of the lemma does not use the specific structure of the space mesh and of the discrete
gradient and divergence operators, but only the three properties (9.4), (9.5) and (9.7) that are shared
by many known schemes. Therefore the lemma is not restricted to the finite volume schemes on
admissible (i.e., orthogonal) meshes with the two-point gradient reconstruction, as considered in this
paper. For instance, for the so-called DDFV schemes (see Hermeline [31], Domelevo and Omnès [18],
Andreianov, Bendahmane and Karlsen [4] and references therein) or the “complementary volumes”
schemes such as those of Afif and Amaziane [1] and Handlovičová, Mikula and Sgallari [30], the lemma
can be stated in exactly the same way.
(iii) As it is stated, the lemma is a local result and does not depend of the boundary conditions for the
scheme. Clearly, the compactness of the family of discrete solutions in the sense of the a.e. convergence
follows by the diagonal extraction argument. Moreover, if a uniform up-to-the-boundary Lp bound on
the discrete solutions is given, the strong Lq(QT ) convergence (along a subsequence) follows by the
Vitali theorem, for all q < p.
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Proof. The proof of Lemma 9.2 is divided into four steps, the heart of it being Step 3.

We will denote by uh(t, x) the discrete solution
∑Nh
n=0 u

n+1
h (x)11(tn,tn+1](t); similarly, we introduce

the functions fh and ~Fh in L1
loc(QT ).

Step 1 : Assumption (9.5) and the uniform estimate (9.10) of the discrete gradient imply the uniform
local estimate of the space translates of uh:

sup
| dx|≤∆

∫ T

0

∫
Ω′
|uh(t, x+ dx)−uh(t, x)| dxdt ≤ ∆CM(Ω′∆) (9.11)

of space translates of uh. Here Ω′∆ :=
{
x ∈ Ω |dist (x,Ω′) < |∆|

}
, and ∆ is assumed to be smaller

than the distance between ∂Ω and Ω′.
The technique of the proof of (9.11) is standard, following Eymard, Gallouët and Herbin [20]; we

give it here for the sake of completeness. Notice that we only need L1
loc translations, so that no

geometric restriction on the mesh is needed (cf. the argument in Appendix of the Ref. [24], recalled
in Appendix B of the present paper).

Denote by V(Ω′,∆) the set of all interfaces σK,L of the mesh T such that σK,L∩Ω′∆ 6= ∅. For x ∈ Ω′,
set ψK,L(x) = 1, in case the segment [x, x + dx] crosses σK,L, and ψK,L(x) = 0 otherwise. Clearly,

ψK,L ≡ 0 if x /∈ Ω′∆. Also note that
∫

Ω′
ψK,L(x) dx ≤ |σK,L|∆. We have

∫ T

0

∫
Ω′
|uh(t, x)− uh(t, x+ dx)| dxdt ≤

Nh∑
n=0

∑
σK,L∈Eh

∆th |un+1
K − un+1

L |
∫

Ω′
∆

ψK,L(x) dx

≤ ∆

Nh∑
n=0

∑
σK,L∈V(Ω′,∆)

∆th |σK,L| |un+1
K − un+1

L | ≤ C ∆

Nh∑
n=0

∑
σK,L∈V(Ω′,∆)

∆th |σK,L|dK,L |∇K,Luh|,

where we have used (9.5) at the last step. The right-hand side of the above inequality is exactly

Cl∆

Nh∑
n=0

∥∥∥∇huh,n ∥∥∥
L1(Ω′

∆
)
,

and we conclude using (9.10).

Step 2 : We replace the study of discrete functions uh (constant per cylinder QnK) by the study of
functions ūh piecewise continuous in t for all x, constant in x for all volume K, defined as

ūh(t, x) =
Nh∑
n=0

∑
K∈Th

1
∆th

(
(t− n∆th)un+1

K + ((n+ 1)∆th − t)unK
)

11QnK (t, x).

We also extend ūh by the constant in time value uh,Nh+1 on [∆t(Nh+1),+∞); as to ~Fh and fh, they
are extended by zero values for t > ∆t(Nh+1). The above definitions permit us to rewrite equation
(9.8) under the form

∂

∂t
ūh = divh ~Fh + fh, (9.12)

where the equation is satisfied in W 1,1(R+) in time, for a.e. x ∈ Ω.
In addition, we have∫ +∞

0

∫
Ω′
|ūh(t, x+ dx)−ūh(t, x)| dxdt ≤ 2

∫ T

0

∫
Ω′
|uh(t, x+ dx)−uh(t, x)| dxdt+ 2∆th

∫
Ω′

∆

|uh0 (x)| dx.

By the result of Step 1, the assumption ∆th → 0 as h→ 0 and the boundedness of (uh0 )h in L1(Ω′∆),
the space translates of ūh on Ω′ are estimated uniformly for all sequence (hi)i convergent to zero.
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The boundedness of (ūhi)i in L1
loc([0, T ] × Ω) is shown in the same way. In the sequel, we drop the

subscript i in the notation.

Step 3 : Now we adapt the idea of Lemma 2.3. We show that, provided uh solves a discrete evolution
equation of the form (9.12) with terms bounded in L1

loc and the estimate (9.11) of the space translates
of (ūh)h is available, there is also a uniform estimate of the time translates of (ūh)h :

for all ∆ ∈ (0, τ ],
∫ +∞

0

∫
Ω

|ūh(t+∆, x)−ūh(t, x)| dxdt ≤ ω̃(τ) (9.13)

uniformly in h. Here ω̃ : R+ −→ R+ is a modulus of continuity, i.e., lim
τ→0

ω̃(τ) = 0.

Let us construct ω̃(·) verifying (9.13). First fix h and fix ∆ ∈ (0, τ ]. Denote by Ih(∆) the left-hand
side of (9.13). For t ≥ 0, set wh(t, ·) = ūh(t+ ∆, ·)− ūh(t, ·). Notice that wh(t, ·) ≡ 0 for large t.

Take a standard family (ρδ)δ of mollifiers on Rl defined as ρδ(x) := δ−lρ(x/δ), where ρ is a Lipschitz
continuous, nonnegative function supported in the unit ball of Rl, and

∫
Rl ρ(x) dx = 1. In particular,

we have
|∇ρδ| ≤ C

δl+1
.

Here and throughout the proof, C will denote a generic constant independent of h and δ. For all
t > 0, define the function ϕ(t, ·) : Rl −→ R by ϕ(t) := ρδ ∗ (signwh(t)11Ω′). In order to lighten
the notation, we do not stress the dependence of ϕ on h and δ. Discretize ϕ(t, ·) on the mesh Th
by setting ϕK(t) = 1

|K|
∫
K
ϕ(t, x) dx; we denote ϕh(t) the corresponding discrete function. Denote

size (Th) := maxK∈Th diam (K). By the definition of ϕ(t, ·), the discrete function ϕh(t) is null on the
set
{
x ∈ Ω

∣∣∣ dist (x,Ω′) ≥ δ + size (Th)
}

, for all t. Thus for all sufficiently small h and δ, the support

of ϕh(t) is included in some domain Ω′′, Ω′′ b Ω.
Now for for all x ∈ K, we multiply equation (9.12) by |K|ϕ(t)K , integrate in t on [s, s + ∆], and

make the summation over all K. Finally, we integrate the obtained equality in s over R+ to get∫ +∞

0

∑
K

|K|ϕK(s)wK(s) ds =
∫ +∞

0

∫ s+∆

s

∑
K

|K|ϕK(t)
(

divK [ ~Fh(t)] + (fh(t))K

)
dtds. (9.14)

Denote by Ihδ (∆) the left-hand side of (9.14). Denote Q′′ = (0, (Nh + 1)∆t) × Ω′′. Using hypothesis
(9.7), the definitions of discrete norms and the Fubini theorem, we infer

Ihδ (∆) ≤ C∆

( ∥∥∥ ~Fh ∥∥∥
L1(Q′′)

max
t>0

max
σK,L
|∇K,Lϕh(t)| + ‖ϕh‖L∞(Q′′)‖fh‖L1(Q′′)

)
.

Now the the L1
loc([0, T ]×Ω) bounds (9.9) on ( ~Fh)h,(fh)h, the bounds |ϕ(t, ·)| ≤ 1, |∇ϕ(t, ·)| ≤ C/δl+1,

and assumption (9.4) yield the estimate

Ihδ (∆) ≤ C∆(1 + δ−l−1) (9.15)

for all h and δ small enough, uniformly in h. Now, notice that by the definition of ϕK(t),

|K|
(
|wK(t)|−wK(t)ϕK(t)

)
= |K| |wh(t, x)|−wK(t)

∫
K

ϕ(t, x) dx =
∫
K

(
|wh(t, x)|−wh(t, x)ϕ(t, x)

)
dx;

therefore

Ih(∆)− Ihδ (∆) =
∫ +∞

0

∫
Ω

(
|wh(t, x)|−wh(t, x)ϕ(t, x)

)
dxdt. (9.16)

Starting from this point, the argument of Kruzhkov [34] applies exactly as for the “continuous” case
of Lemma 2.3. Set U ′δ :=

{
x ∈ Rl

∣∣∣ dist (x, ∂Ω′) < δ
}

; notice that U ′δ ⊂ Ω′′ b Ω for all δ small
enough. Notice that without loss of restriction, the boundary of Ω′ can be chosen regular enough
so that to ensure that meas (U ′δ) goes to zero as δ → 0. By the result of Step 1 of the lemma and

the Frechet-Kolmogorov theorem, the family
(∫ +∞

0

|wh(t, ·)|dt
)
h

is relatively compact in L1
loc(Ω).
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Therefore these functions are equi-integrable on Ω′′, so that
∫ +∞

0

∫
U ′δ

|wh(t, x)|dxdt ≤ ω̂(δ) uniformly

in h, with limδ→0 ω̂(δ) = 0. Now by the definition of ϕ, from formula (9.16) we deduce that

|Ih(∆)−Ihδ (∆)| ≤ 2
∫ +∞

0

∫
U ′δ

|wh(t, x)|dxdt+
∫ +∞

0

∫
Ω′\U ′δ

∣∣∣∣|wh(t, x)| − wh(t, x)(ρδ ∗ signwh(t))(x)
∣∣∣∣ dxdt;

the first term in the right-hand side accounts for the action of the truncation 11Ω′ in the definition of
ϕ. Using the standard properties of ρδ, we infer

|Ih(∆)−Ihδ (∆)| ≤ 2ω̂(δ) +
∫ +∞

0

∫
Ω′\U ′δ

∫
Rl
ρδ(x−y)

∣∣∣∣|wh(t, x)| − wh(t, x) signwh(t, y)
∣∣∣∣ dydxdt.

Now note the key inequality:

∀a, b ∈ R
∣∣∣|a| − a sign b

∣∣∣ ≤ 2 |a− b|.
Setting σ := (x−y)/δ, we infer

|Ih(∆)−Ihδ (∆)| ≤ 2ω̂(δ) + 2
∫ +∞

0

∫
Ω′

∫
Rl
ρδ(x−y)|wh(t, x)−wh(t, y)| dydxdt ≤

≤ 2ω̂(δ) + 2
∫

Rl
ρ(σ)

∫ +∞

0

∫
Ω′
|ūh(t, x)−ūh(t, x−δσ)| dxdt dσ ≤ 2ω̂(δ) + 2ω(δ),

(9.17)

where ω(·) is the modulus of continuity controlling the space translates of ūh in Ω′. Indeed, by Steps
1 and 2 of the proof, one can choose ω(·) independent of h. Combining (9.15) with (9.17), we conclude
that the function

ω̃(τ) := inf
δ>0

C
{
τ (1 + δ−l−1) + 2ω̂(δ) + 2ω(δ)

}
upper bounds the quantity Ih. Because ω̃(τ) tends to 0 as τ → 0, this proves (9.13).

Step 4 : By the Riesz-Frechet-Kolmogorov compactness criterion, the relative compactness of (ūh)h
in L1

loc([0, T ]×Ω) is a consequence of the estimates of Steps 2 and 3. In order to conclude, it suffices
to show that ‖uh − ūh‖L1(Ω′) → 0 as h→ 0.

An easy calculation shows that for all a, b ∈ R,
∫ 1

0
|θa + (1 − θ)b| dθ ≥ 1

2 (|a| + |b|). Applying this
inequality to a = u

(n+1)
h − unh, b = unh − u(n−1)

h , from the definition of ūh we deduce∫ T

0

∫
Ω′
|uh(t, x)− ūh(t, x)| dxdt ≤ 2

∫ T+∆th

0

∫
Ω′
|ūh(t+∆th, x)− ūh(t, x)| dxdt.

Since ∆th tends to zero as h → 0, estimate (9.13) of Step 3 implies that the right-hand side of the
above inequality converges to zero as h tends to zero. This ends the proof of the lemma. �

Appendix B. Discrete Sobolev embedding inequalities.

Under different assumptions, discrete Sobolev embeddings with Neumann boundary conditions in
the case p = 2 was recently derived by Chainais-Hillairet and Droniou in [11] (see also Filbet [25]) and
by Glitzky and Griepentrog [29]. Here we give a straightforward adaptation to the case of Neumann
or mixed boundary conditions of the proof of Eymard, Gallouët, Herbin (see the appendix of [24]),
initially written for the Dirichlet case. We look at a slightly more general finite volume meshes than
those considered in the main part of the paper.

We consider an open polygonal domain Ω of Rd, d ≥ 2. A mesh T of Ω is a finite volume mesh
in the sense of [20, 24] (without the orthogonality condition on the mesh) and with the two following
admissibility conditions:∣∣∣∣ For all neighbor volumes K,L, the angle αK,L between −−−→xKxL and the interface σK,L

is separated from 0 and π, meaning that reg(T ) cosαK,L ≥ 1 (9.18)
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(this condition replaces the mesh orthogonality assumption), and

For all volume K and interface σK,L, |σK,L|dK,L ≤ reg(T ) |K|. (9.19)

Here reg(T ) is a constant measuring the distortion of the mesh.
It is evident that the latter condition can replace the usual “commeasurability” assumption on the

two parts dK,σ and dL,σ of dK,L, used in [20, 24]. Notice that the assumption (9.19) even allows xK
to leave K (as it happens, e.g., if one takes for K a triangle with an angle greater than or equal to
π/2, and picks for the center xK of K the point equi-distant of the vertices of K). Notice that for
the Poincaré inequality, even (9.19) can be relaxed (see the proof in [5])2; actually one merely needs
|σK,L|dK,L ≤ reg(T ) max{|K|, |L|}. For symplectic meshes with the choice

xK = the point equi-distant from the vertices of K,

the latter assumption is ensured by the usual Delaunay condition.
A discrete function on T is the piecewise constant function

u(x) =
∑

K∈h uK11K(x);

the Lp norm of its discrete gradient can be defined as

‖∇hu‖Lp(Ω) :=
∑

K,L∈E |σK,L|dK,L
∣∣∣∣uL − uKdK,L

∣∣∣∣p,
where the summation runs on the set E of all interfaces between neighbor volumes. Notice that this
definition is most accurate for the case of meshes with the orthogonality condition. In general, a more
natural definition would involve a constant C(reg(T )) in the left-hand side related to assumption
(9.18).

The following result states the Sobolev embedding inequalities for discrete functions with control by
a mean value (either inside the domain, or on a part of the boundary). These inequalities are useful
for study of PDEs with, respectively, Neumann boundary conditions and mixed non homogeneous
Dirichlet/Neumann boundary conditions. The compactness of the subcritical embeddings is an easy
consequence. The key assumption we make is that the corresponding Poincaré inequality is already
known. This is the case if p = 2; we refer to Coudière, Gallouët and Herbin [17] (see also [20]) for
d = 2, 3 and to Glitzky and Griepentrog [29] for an argument that allows for general d. The proofs
can be adapted to the case p 6= 2. Notice that the assumption (9.19) is enough for these proofs to
work.
Proposition 9.3. Let u be a discrete function on the mesh T , ω ⊂ Ω be a fixed open set and Γ ⊂ ∂Ω
be a fixed part of the boundary with positive (d− 1)-dimensional measure. Set

either mu :=
1
|ω|
∫
ω

u, or mu :=
1
|Γ|
∫

Γ

u

(with | · | representing the d and the (d− 1)-dimensional Lebesgue measures, respectively).
Assume that the following Poincaré inequality holds:

‖u−mu‖Lp(Ω) ≤ C(Ω, d, p, ω,Γ, reg(T )) ‖∇hu‖Lp(Ω), (9.20)

where reg(T ) is the regularity constant of the mesh in the sense of (9.18) and (9.19).
Then also the Sobolev embedding inequalities hold:

‖u‖Lq(Ω) ≤ C(Ω, p, q, ω,Γ, reg(T ))
(
‖∇hu‖Lp(Ω) + mu

)
(9.21)

for all q ∈ [1, p∗] if p < d, p∗ = pd
d−p , and for all q ∈ [1,+∞) if p ≥ d.

2actually, the hint of [5] also gives the discrete embedding of W 1,p into L
p d
d−1 = Lp1∗ ,

but one cannot attain exponents q ∈ (p1∗, p∗] with the same technique.
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The proof is based upon the following “BV version” of the W 1,1 compactness for discrete functions:

Lemma 9.4. For all discrete function u on a polygonal partition T of Ω satisfying (9.18),∥∥∥∥u− 1
|Ω|
∫

Ω

u

∥∥∥∥
L1∗ (Ω)

≤ C(Ω, reg(T )) ‖∇hu‖L1(Ω),

where 1∗ := d
d−1 .

Lemma 9.4 is deduced from the classical critical embedding inequality for W 1,1(Ω) functions. In
the first step, the variation on Ω of a discrete function u is controlled by∑

K,L∈E |σK,L| |uL − uK | ≡ ‖∇hu‖L1(Ω)

(see Lemma 5.1 in [24]). Then u is extended in a small neighbourhood of Ω with a control on the
variation; because Ω is polygonal, its boundary ∂Ω is Lipschitz, and we can use a partition of unity
on the boundary, rectification and reflexion technique (see e.g. [19]) in order to construct the desired
extension of u. Finally, the regularization technique by convolution permits to go from the W 1,1(Ω)
functions to the BV functions (see the proof of Lemma 5.1 in [24]).

From Proposition 9.3 we readily get

Corollary 9.5. Let (uh)h be a family of discrete functions on meshes with uniformly bounded regu-
larity constant reg(T ). Assume that muh and ‖∇huh‖Lp(Ω) are uniformly bounded. Then the family
(uh)h is relatively compact in Lq(Ω) for all q < +∞ (if p ≥ d) and for all q < p∗ (if p < d).

Indeed, as indicated in the proof of Lemma 9.4, the Lp bound of the discrete gradients ∇huh also
yields the BV bound on uh. Then (using the uniform L1 bound on uh coming from Proposition 9.3)
by the Helly theorem we deduce that the family (uh)h is relatively compact in L1(Ω). Then using the
interpolation of Lebesgue spaces and the uniform bounds of Proposition 9.3, we prove the claim of
Corollary 9.5.

Now we turn to the proof of the Sobolev embedding inequalities of Proposition 9.3. The proof uses
a bootstrap argument in q starting at q = p (the Poincaré case); the technique is the one of Lemma
5.2 in [24], which in turn follows the original proof of L. Nirenberg.

Proof. Thanks to the Hölder inequality, without loss of generality we may assume that p < d; thus
p∗ < +∞.

In the first step, we notice that (9.21) with q = p follows from the Poincaré inequality (9.20). In
particular, we derive the bound

1
|Ω|
∫

Ω

|u|α ≤ C(Ω, d, p, ω,Γ, reg(T ))
((∥∥∥∇hu‖Lp(Ω)

)α
+ (mu)α

)
(9.22)

with, for the time being, α = p.
Then we apply Lemma 9.4 to the discrete function v := |u|α with α = p. As in the proof of

Lemma 5.2 of [24] , using the fact that∣∣∣∣ |uL|α − |uK |αdK,L

∣∣∣∣ ≤ C(α)
∣∣∣∣uL − uKdK,L

∣∣∣∣ (|uL|α−1 + |uK |α−1
)
, (9.23)

using the Hölder inequality on the above product and using hypothesis (9.19) to upper bound
|σK,L|dK,L by |K| and by |L| (this replaces the mesh proportionality assumption made in [24]) we get
the inequality

∫
Ω

|u|α1∗ ≤ C(Ω, d, p, ω,Γ, reg(T ))

{ (∥∥∥∇hu‖Lp(Ω) ×
(∫

Ω

|u|(α−1) p
p−1

) p−1
p

)1∗
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+
(∥∥∥∇hu‖Lp(Ω)

)α1∗

+ (mu)α1∗

}
. (9.24)

Because we have α = p, there holds

α ≤ p(d− 1)
d− p . (9.25)

From (9.25) one easily deduces that there is a continuous embedding of L(α−1) p
p−1 (Ω) into Lα1∗(Ω).

Using the weighted Young inequality, we derive∫
Ω

|u|α1∗ ≤ C(Ω, d, p, ω,Γ, reg(T ))

( (∥∥∥∇hu‖Lp(Ω)

)α1∗

+ (mu)α1∗

)
+

1
2

∫
Ω

|u|α1∗ .

This yields the desired inequality (9.21) with q = p1∗.
In the second step, we bootstrap the obtained estimate using the same technique. Namely, we set

α := min{p1∗, p∗/1∗}. Notice that from the result of the previous step, the bound (9.22) follows.
Using (9.24) and (9.25) once more, we get (9.21) either for q = p∗ (this would end the proof), of

for q = p(1∗)2 (in which case we set α = min{p(1∗)2, p∗/1∗} and bootstrap the argument). Because
p(1∗)k goes to +∞ as k → +∞, in a finite number of steps (thus, keeping the constant C finite) we
get (9.21) for q = p∗. �

As a concluding remark, notice that the following more precise version of (9.21), well known in the
continuous case:

‖u−mu‖Lq(Ω) ≤ C(Ω, d, p, q, ω,Γ, reg(T )) ‖∇hu‖Lp(Ω) (9.26)

does not seem attainable with the above technique. Notice that Glitzky and Griepentrog [29] do prove
the subcritical embeddings in the form (9.26), for p = 2 and on Voronöı meshes.
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[27] G. Galiano, M.L. Garzón and A. Jüngel, Analysis and numerical solution of a nonlinear cross-diffusion system

arising in population dynamics, Rev. R. Acad. Cien. Serie A. Mat. 95 (2001) 281–295.
[28] G. Gambino, M.C. Lombardo and M. Sammartino, A velocity-diffusion method for a Lotka-Volterra system with

nonlinear cross and self-diffusion, Appl. Num. Math. 59 (2009) 1059-1074.

[29] A. Glitzky and J.A. Griepentrog, Discrete Sobolev-Poincaré inequalities for Voronöı finite volume approximations,
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