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Abstract—Approximating a belief function (with a probability In this paper, the investigation of such proxies is pushed
distribution or with another belief function with a restricted  fyrther in a particular direction, inspired by an article of
number of focal elements) is an important issue in Dempster- R. Haenni [6]. He shows that several popular operators of
Shafer Theory. The reason is that such approximations are really .
useful in two different situations: (1) decision making and (2) Dempster-Shafer .Th('eory gan be expressgd In ter_ms of a
computational saving. In this paper, we propose to consider Dempster’s combination with a SpECIaI belief function. He
the definition of a proxy for a belief function as the result of considers several operators: Discounting, disjunctivalioa-
the Dempster's combination of two belief functions: The first tion, refinement, etc. but there is no study on approximating
one is the belief function to approximate and the second one operators. They are considered in this paper.

is a Bayesian belief function which encodes a meta-information Section 2 qi the state-of-th ¢ taini brief |
describing the support of the approximation (i.e. the set of the ection = gives a the state-ol-the-art containing a briet in

potential focal elements of the proxy). ventory of the Bayesian/non-Bayesian proxies in the lites

Keywords: belief function theory, Dempster-Shafer The- and a summary of the framework of [6]. Then, this frame-
ory, Bayesian approximation, k-additive belief functions work is used in Section 3 to redefine an already well-known

hidden Dempster's combination Bayesian proxy (the relative plausibility). It is explatheshy
the contextualization of this result into Haenni's workseop
I. INTRODUCTION new issues: it allows for the generalization of this proxy in

several non-Bayesian ways. Finally, Section 4 is an outlook

Dempster-Shafer Theory [1] (as well as several of iign future works.
extensions, such as [2]) is a very popular tool to handle émpr
cision and uncertainty in knowledge discovery. Nonettreles
two major drawbacks have prevented its early and completelet X be a variable which takes its value dnx =
spreading into other communities with similar scientifialgo (1,22, ..,2x). The piece of informatioiZ] availablé on
such as statistic, data mining, Bayesian machine leareityg, the outcome ofX is equivalently encoded in the four following

The first one is the computational burden [3]: In théunctions defined orP(€2x): The mass functionn[?, the
formalism of belief functions, it is necessary to deal with &elief function Belg], the plausibility functionPl_,?] and
distribution defined on a powerset rather than a set. Thehe commonality function]g]. It is possible to switch from
the computational cost grows in an exponential manner witine form to another by means of sum functions or with
respect to the size of the state-space. Hence, more compdoébius inversions [7]. The core of a mass function is the
representations are sought, i.e. by means of belief fumgtiaunion of its focal elements. Here, we calpportthe set
with a restricted number of focal elements. of potential focal elements according to the membership to

The second drawback is the lack of intuitive significance dedicated familly of mass functiohsThe core and the
for a belief function with several focal elements of diffete support are notedr (m[;]) ={F,...,F.}, ¢ <2/l and
cardinality. As explained in [4], [5], it is not trivial forra 7]
expert to capture the very meaning of a each of these focga(mX ) = {51,...,5c}. Of course, we have
elements. Consequently, decision making in such a corgext i (7] 7]
not intuitive. On the other hand, there are many representat F (mX ) e (mX ) :

which are easier to handle (such as probabilities or neégessi A proxy is defined by an operatd® that maps the set of
measures, etc.), and a popular solution is to convert thiefbemass functions ofP(€2x ) onto the same set, so that the image
function into another belief function with a more intuitij@nd

. e 1 . . .

ften mor m t t of definition. Depending on the context, the piece of informatj@h may correspond to
° e. ° e co _pac) s€ .0 qe 0 %lf) a partial knowledge derived from sample data, (2) theesive opinion
Finally, in spite of their differences, these two problemgs'an agent or (3) the fusion of several other pieces of inféiona

have led to the same question: How can a belief function?Hence, this definition is not unique, and it is mainly used topify the

be approximated with another more compact belief functiorftion of proxy. For instance, the support of any Bayesiafeb&inction is
= bvi th imati ft the set of all the singletons, eventhough some of these simgl@re not focal
Or Obvious reasons, these approximations are orten BI{ye%lements 1 no mass is associated to non-singleton, and a masteatialy

belief functions, but other kinds of proxies are also inééirey. be associated to any of the singletons.

Il. STATE OF THE ART



of the mapping (the proxy) has a smaller support: in a formal way in 1989 [3] by Voorbraak as a normalization

s(o[mE < s (m? up tp 1 of the valu_eg of the_commonality pf the singlefons
= X but its use for decision making came earlier, as the problem

A “good” proxy is defined so that the piece of informatiorPf finding the most plausible configuratiowas previously
7] expressed in the original mass function is “well preserve@ddressed (e.g. [13], [14]). In spite of its lack of domingti
in the proxy. Depending on the authors, this “preservatioroperties, it has been widely studied by various authods an
is impersonated by differentonsistency propertiethat the widely justified. Hence, it has numerous names in the litera-
proxy must verify: Commutativity with respect to Dempsser'ture, such agayesian approximatiof] (1989), proportional
combination [8], convex linearity [9], dominance propert}plausibility probability [15] (2001), plausibility transform([8]
[10], consistency with upper and lower bounds (for Bayesia(gOOS),Cautious probabilistic transfornfil6] (2006), relative
proxies) [11], etc. In this paper, the commutativity wittPlausibility of singletor{10], etc.
Dempster's combination plays a major role, but it does not!n @ similar logic, it is possible to derive a proxy by
diminish the interest of other consistency properties. normalizing the belief of singletons. As long 88 € F(mly')
First, the most popular Bayesian approximations of a beligich tha 7’| = 1, it is defined by:
function are recalleiThen, non-Bayesian proxies are con-

(L,
sidered. Finally, we summarize the procedure described in m[}ffelBE” (z;) = _ Bely (zi) Ve, € Q
i ; oo i ' (7] ¢
[6] by Haenni to uncover Dempster's combinations in several Z Belk (x;)
operators of belief function theory. z;€Qx
A. Bayesian proxies Basically, using this proxy means dropping the focal eleimen

Given a mass functiom[;], the pignistic probabilitydistri-

bution is defined as :

with cardinality greater than or equal to 2. This proxy has
several interesting properties: In [15] (2001), Sudaneflyri
introduced it as theproportional belief probability Then,

7z
mBeP (5,) = 1 m5 (A) Ve, € Qy It was introduced [19] (2003) and extensively studied [16]
X Yooa-wlBey 2 1Al ’ (2006) by Daniel as thelisjunctive probabilistic transform
ACOx In the latter, Daniel also briefly discussed the interactioh

The corresponding operator is called thignistic transform several transforms with belief and plausibility functicinsm
Because it does not commute with Dempster's combinatich,geometric point of view. Meanwhile, Cuzzolin invested in
the pignistic probability is not used as a computationall§ deeper way the geometric properties of the space of belief
efficient proxy. Nonetheless, its convex linearity [9], stsper- functions [10] and used them a few years later to derive the
position with the barycenter of the dominating probaliti €xistence of this proxy, that he called thelative belief of
[12] and its obvious interpretation throughout the insigfit  Singletons[17], [18] (2008). Interestingly enough, this proxy
reason principt® makes it a major tool for decision makinghas alternatively been proposed for decision making and for
in the Transferable Belief Model [2]. Finally, Daniel [16]computational saving.

proposed using a mass functied)”) to weight the pignistic In @ similar way, Cuzzolin derived from geometric con-

transform according to prior knowledgeéz; € Qy: siderations theorthogonal projectionand the intersection
W] [ probability [10]. The probability deficiency proportional plau-
mWBetPl () 1 myx (zi)  mx(A) sibilites, was very briefly introduced by Sudano [15] and
X 1-mi20) 20 Speam¥(B) |Al shares important similarities with the intersection phuitity.
ACQx Both of them have the following structure:
The only proxy which is as popular as the pignistgc] proba- ]
bility is simply defined by normalizing the values 8y’ of izl y 4 |4 _ S Bz EY (xzz)
singletons so that they sum ov@ry up to 1.Vz; € Qx: Nt Z EX (x))
[RelPl] (1) = Pl[;] (x:) _ Pl[;] (i) x; €Qx
* L Z Pl[)f] (x;) Z m[)f] (A)-]14]  Vz; € Qx, with ngl = Pl[)f] for Sudano’s proxy, and with
; €Qx ACQx Eg] = Pl[;] - m[;] for Cuzzolin's.
This proxy is really interesting as it is both computatidyial  Finally, Daniel [16] and Sudano [15] proposed several other

efficient and useful for decision making: It was first intredd proxies. A part of them share a structure similar to the revi
3 (3], “Bayesi o . icular ppoithe relat ones, but the probability masses are weighted with the mass
n [3], “Bayesian approximation” refers to a particular pyoithe relative : : :
plausibility). In this paper, a Bayesian approximation i tresult of an values (in Ordel.’ to b? ConSISte,nt with uppgr and IO\_Ner bounds
approximation operator that maps the set of belief function® dhe set [11]). The proliferation of various Bayesian proxies shows
of Bayesian belief functions (i.e. the support of the Bagresproxy isQ2).  that the search for new proxies and a better understanding of

Hence, Voorkraak’s proxy is one among the various Bayesignoapmations : - : :
We consider. their definition are real issues. In a larger perspectiveyeso

4The insufficient reason principle helps to understand theition of the - -
pignistic transform, but it does not justify it, as stressgdSmets [9]. 5Pl[X] and q[X] are equivalent for singletons.



authors consider the definition of Bayesian proxies for moe¢ the very beginning is not problematic, but computation
general distributions than belief functions, such as imisee saving.
probabilities [20], or even fuzzy measures [21].

C. Hidden Dempster's combinations

B. Non-Bayesian proxies
In [6], Haenni proposes to uncover Dempster’s combina-

Up to now, we have only considered Bayesian proxies, A8ns in the process of applying an operitd to a mass
(Z)

(1) their natural understanding, (2) their compactness(&nd . o .
. . ; e . function m3'. The application of the operator is seen as
their obvious relation to decision making make them rather .o S ) X
combination of two mass functions: the first one is the

popular. On the other hand, non-Bayesian proxies are aESOIief function to procesmg]. The second one is a mass

: ; . . e
interesting and have been _mvestlgated. .. function that encodes a meta-informatiph] corresponding
The sets of the strong inner (resp. outer) approximatio

S . :
have extensively been studied. In [22], Dubois and Prap the semantics of the operat®x. Let us callY the variable

. which [M] is informative. Here is the description of the
proposed to consider these two sets and to seek for two mS?gcess from [6]:
functions which: '

- [(M] : .
« are consonant (the focal elements are such fhatc 1) Define My e_md extend it tO(X’Y.)' Depen_dmg on
F; Y0 <i<j<ecwith ¢ < |Qx]) the relationship betweeX andY this extension may

J = = )

[M]T(X,Y) ; .
» minimize some distance criterion with the original belief be[ﬂ/%ﬂzl)e(lgu)ous oneny or a ballo_onm% one:
function. My " 7. Let us use the generic notation’y .

2) ExpresdZ] as a piece of information on the outcome of
(X,Y) rather than onX, so that it is possible to define
mg; vy Once again, this extension may be a vacuous

This leads to the definition of theinimal consonant outer

approximationand themaximal consonant strong inner ap-

proximation These proxies are particularly interesting as they ”

can be seen as fuzzy sets or as necessity measures. Unfortu- OF @ ballooning oné

nately, these approximations do not commute with Dempsster’ 3) Compute the Dempster's combination of these two

combination. masses and marginalize the result on the approfriate
In [25], Denceux described the construction of an inner ~ SPaceZ.

(resp. outer) strong approximaticm[;] (resp.mg]) as the  The result of this procedure corresponds to the result of

result of an inner (resp. outer) reduction (a reduction is the application of the operat@?*!. Thus, if we call[R] the

particular mapping fronf)x onto a coarser fram®(2x), resulting piece of information, one has:

where® is a partition of(2x). To lose as little information as

possible©(Qx) is defined as the result of a hierarchical clus- M) (m[1]> — R {m[ﬂ miMl

tering of Qx. Then, in [26], it is shown tham[;] (resp.m[;]) X X () @ My

commutes with disjunctive (resp. conjunctive) combinasio | et ys note that a similar method is used in [28] to provide

and that they form an efficient basis with the Fasblis 5 meaning tor-junctions [29].

Transform [27] to approximate the result of a combination.
Then, there is the sdt-additive belief functions [5]. Ak-
additive belief function has no focal element of cardinalit
> k, and at least one focal element of cardinafityThe set

of k-additive belief functions dominating a dedicated fuzzy |n this work,® is supposed to be an approximating operator.
measure is described in [21]. In [23], [24], we proposed O can be expressed in terms of a Dempster's combination,
to generalize the pignistic transform so that, its result ifen, it obviously commutes with it. Therefore, the approx-
a k-additive belief function instead of a Bayesian (or limating operators which do not commute with Dempster's
additive) belief functionyk < NV chosen by the user. As thecombination are obviously not in the scope of this paperi{suc
pignistic transform, this generalization does not commuite  as the consonant proxies, as the consonant structure isrbrok
Dempster’'s combination. Thus, its main interest is to mevi by Dempster’s combination [22]).
a decision making framework where it is possible to compare|n this section, we apply Haenni's procedure to provide a
imprecise and precise decisions. definition of several proxies. First, some Dempster's corabi
Finally, in [4], Tessem described the following algorithmions are uncovered in several well-known proxies. Then, we

to approximate a mass functioiil) Sort the focal elements consider several generalization of the relative platgjbih
by decreasing mass. (2) Remove iteratively the focal eléemgre framework of Haenni.
with the smallest mass until a criterion on the number of ffoca
elements or on the mass discarded in the process is reach€@everal operators are considered: Discounting, disjmctmbination, re-
(3) Normalize the remaining masses toThe mass function finement, coarsening (among which inner and outer reductamd)enlarging
obtained is the proxy. It is justified by the following congey ¢ frame to the open world assumption. . .

. . . [/In [6], it is a ballooning extension for the discounting ogter and
As the focal elements with small mass become immateri@mbinations, and a vacuous extension for coarsening/meéineoperators.

during a succession of Dempster’s combinations, deletiagit  8Most of the time,Z = X.

1z

IIl. DEFINING PROXIES BY MEANS OFDEMPSTER S
COMBINATION



A. Hidden combination in approximating operators see that, in cased2(z;) = L = +.Vz; € Qx, we have,

[ 7]
In [3], it is established that the relative plausibility com || 1
mutes with Dempster's combination. In [11], the relative m = Z Pl (z;)
plausibility in the case of frames of two elements is introell zj€Qx

as the result of a given homomorphism on a Dempster sefyhich leads to the particular case of the relative platisjbil
group. On frames of more than 2 elements, the Dempster semigy now, let us note that the role m[)/(‘/l] is also really close
group structure no longer holds, but it is demonstrated that ine one ofm[;(/v] in the [W]-weighted pignistic transform:

its main properties still holds: The relative plausibiliythe ¢ piece of meta-information is used both as a manner to
result (_)f a Dempster’; combination with the following umifo  on-ode the approximating operator (the plausibility tiams)
Bayesian mass function: and as a prior knowledge to weight the various masses of the

i 1 _ proxy.
m[;? ](%‘) = N Vi< N Let us now consider the outer/inner proxies which commute
[Uni] . with Dempster’'s combination. In [6], it is also shown thatén

my (. 0 otherwise.

and outer reductions are operato[r? which [c]orrespond teehidd

, L T __[T :
It is almost trivial to rewrite the proof of [16] in the DEMPSters combinations. Them " andimy can obviously
framework of Haenni: Obviously, one hagy, = Qx and be desc;lbﬁd in terms (r)]f hidden ]E)empstersdcombmz;\]nons.
mM Uil Thius the combination, as well as thdn any of these cases, the meta-in ormat{@n] depicts the

Y - X H
following marginalization described in Haenni’'s proce@lurStrUCture of a coarsening (see [6]). ThusY corresponds to

are completely straightforward. In this setting, here is a@
interpretation for the meta-informatiopM]: It is a list of
the focal elements which are expected for the prm{gdpl], m%\?]y) U 0; x{fo(6;)} | =1
weighted according to their respective importance (théumi ’ 0,€0(Qx)

distribution means they are all as much important). where fo is a function that maps each elemef of

It is possible to generalize this proxy by using a differe e .
meta-information[M] which is not necessarilfi/ni]: The the pirt;tlon eégﬁ)oﬁlihe corresponding set of elements
(VAR RSN .

same focal elements are considered, but some of them %@17'
promoted with respect to the others. Then, the corresporBl- Interesting structures

: . M) .
ing Bayesian mass functiom " does not read uniform A maior goal of this paper is to generalize the relative
distribution. It is straightforward to establish the feling plausibility. In the previous section, the plausibilitgmisform

(Qx). One has:

proposition: is interpreted in Haenni’s framework, and it leads to a first
Proposition 1: Letmy") be a Bayesian mass function andyeneralization,0*], which remains Bayesian. We aim at
mZ! be a mass function. We define the mass function being even more general, so that non-Bayesian generaliza-
tions of the relative plausibility are defined. So far, we dnav
m[;?pz] — oM (m[§1> _ m[}?/l] @ m[}?] intuitively und_erstood thafM] describes which elements of
P(Qx) potentially belong to the core of the proxy. In fact,

the support of the proxy depends on the corengf/”:

S (m[jfpl]) =F (m[)?/l])

m[;zpz](A) =0, VA / |A| # 1, andVz; € Qx, we have:

mi @) = KRpil ok (@) df (@)
— K[Rpi] -m[)?/l] (1) Plg] (z:) In this subsection, We_discuss the alternative s_tructurehf@
1 core of the proxy{M] is replaced by another piece of meta-
(M] 7 information [M’] and we discuss the structure of the core of
whereK[Rpi] = | Y my"(w;) - Pl (z;) the mass function which encodgs1’].
IJ‘GQX [M/]

From the previous sectiompy.~ * is conveniently encoded
in a Bayesian structure. On the other hand, we need to specify
[M] . . . . RPZ] . Ina . f ’
O“"% s an Bayesian approwaIz];\tmg operator. Henod 1S some focal elements which are not singletons, as the proxy
a Bayesian aﬁa]ro.xma.non of . Moreover, in the particular js not bound to be Bayesian anymore. Then, it is natural to
case wheren™ is [l;lznlf]o_rm,(’)[/‘/‘] c_orrespon(_js_ to the [%Iau- consider thatm!™ is defined onfy, whereQy is a set
sibility transform (n """ is the relative plausibility ofny"). of atomsy;, each of them representing a particular subset of

P(Qx). As a consequenc®y is made oR!?x| elements. Let
A proof of a more general theorem is given in sect@, USnot€aLa, = <O, .., 1 anatomic elemeny; of y
but the idea is to compute the Dempster’s combination by thich corresponds to the focal elemehit= {xil,xiz, ...xij}
use of the communalities, and by using the fact thandm with j < N. As they;’s are seen as atoms, there is no inclusion
are equal for Bayesian mass functions. Moreover, it is easyrelation amongst them, as with classical focal elementasTh



m%ﬁm remains Bayesian, but any type of support for thé 4, € Qy, one has:

proxy can be described. Moreover, it is possible to specify M)

in [M’] the presence of a potential focal eleméhtof great my (<>,Ai) = a; suchthat 3 ;a; =1

cardinality, without implying the presence of the potentia mg‘/‘](.) =0 otherwise

focal elements which are included B} (on the contrary to

what would occur by using Dempster's combination with ) M) M i

non Bayesian mass function). The extension ofny Jtomiyy has not been discussed
The most straightforward generalization of the relatiaupl Y&t AS previously explained; is a set of elements represent-

sibility of singletons is to consider focal elements whidke a "9 the sets ofP({1x). Then, 2y is richer thanfly, in the
k-uples (with2 < k < N) rather than singletons. In such d"€aning that, it is always p055|blle to express a function on
case[M'] reads “All and only thek-uples in(2y are potential 7 ({2x) as a function orP(€y), which is a kind of powerset
focal elements for the proxies”. To remain pedagogicalutet Of the powerset ofly. Thus, working on the vectorX, Y)
only consider uniformly distributed mass functi8ngn such May appear as a bit cumbersome, and workingYormay

glhereAi are subsets o2 x and<>4, are elements of2y .

a case, the support of the proxy is made(f) = k!(]vaik)! bets;J_fficient. We adopt this latter strategy, as it simpliftes

_ o ™ notation. | _ _
potential focal elements of cardinality (even if my™" IS Then, it is necessary to exprefs as a piece of information
Bayesian). We have: on Y rather than onX (Later, this operation is notefl)). To

M) EI(N — k)! do so, we propose to using the following mass function:

my” (Qa)) = g 7] (7]
’ my (Vi) =myx (4) VA C Qx
Voa, € Qy, | Ai CQx, |4l =k .
mw/](.) ~ 0 otherwise where V4 is the set of all theyy = Ok, k,.....k,3 SUCh

that {zy,,xy,, .7, } € A. This cumbersome notation is
A more interesting generalization is to consideadditive Necessary to make sure that C Qx:

belief functions, such as those recalled in Section 2. Ofsmu {m[z] [J]} . [ (7] [j]}
n. . ) . . é&m Va)=msx &m A
mg‘/‘ Vis still Bayesian, and even if we only consider the case Y v| (Va) X x|
of uniform distribution, we have: Let us compute the Dempster's combination
/ 1 Gr] _ [T] [M']
mM (64, = H VA; € Qx, | A < k my" =my’ & my
/ with the communalitiesy!97 = k7 . ¢17 . [M/], with,
mM(0a4) = 0 otherwise Iy v Iy

—1
An_other generalizat_ion_proposed by Cuzzolin [10], is_ to g — Z (—1)lAIL. q[YM’](A) -q@(A)
consider that the cardinality of focal elements must beeeith A2
1 or k. For the corresponding class of belief functions the ,
pignistic probability and the intersection probabiliteaqual. Moreover,mgjw] is Bayesian. Thusmg”] is Bayesian, and
Finally, the dual case of-additive belief function is calle#- we havem[;w] — qg‘”"] andm!97" = 971 ThusvA € Qy:
intolerant belief functions [30]. In this case, there is wnadl Gl ;M ]
element with a cardinality lower thain— 1. All these families my " (Qa) = K'my” (Oa) gy (Oa)
have interesting supports, and in the sequel, we aim at dgfini and qg/gm](.) = 0 otherwise
a generalization of the plausibility transform, which cam b

parametrized to provide a proxy belonging to any of them. The last step is to “marginalize back” the result &nh(noted
11). As each focal element is of the for{j,, there is a one-

C. The generalized relative plausibility to-one correspondence between the focal elementa[,%‘fl]
and the elements dRx. Thus, we define the following new

We do not consider each family-{ntolerant, k-additive, masses:

etc.) of belief functions separately. We directly consitles
case of a general Bayesian mass funcm&jw], the core of mlgPl ) = w0 )

Wh'ICh re:?\ds any typg of structure, and its mass not nechssari m[)’(”'] (4) = mg;\/l’](o 4)

being uniformly distributed among the focal elements.

So far,m!{) (the mass function to approximate) akidare Moreover, we have, by constructiofy (¢ 4) = ¢i(V 1), as
known. Moreover, the meaning ¢M'] was preciously fully the V, are the only focal elements meYI , and as
detailed. Hence, the definition @ﬁ[f‘/} is rather simple. The

U Vs

only point is to remind that iffy, mwl is Bayesian. Then, Va=30aU
BCA

90f course, this is not mandatory, but (1) it helps to undetstiae global N 7] (7]
procedure, (2) it corresponds to a “fair” situation wherepnior information Moreover, as by def'mtlon’]Y (VA) = dx (A)* one has the

is available, nor prior weighpV)] is used. following result:



[)“(W] and mg] be two mass functions.

is derived fromm[)?/‘/} according to the process de-[1)
(2]

(3]
(4]
(5]
(6]

Theorem 1: Let m
m[M/]
Y

scribed above. We define the following mass function:
/ 1y HX
g ’ T M T
i =001 (o) = [ ]
1) VA C Qx, we have:

miP(A) = K mi(4) - 5

where K’ is a normalizing factor.
OM'l is an approximating operator thant maps the séf’
of belief functions onto the set of belief functions the

support of which isF m[)j(w]). In other Words,m[)gpz} (8l

2)

iS a proxy form[)f].
M1 is Bayesian, the®™] is a Bayesian approxi-

[ (9]
If m5
mating operator. Moreover, its resubt[)?”] corresponds [10]

3)

to m[;f”] defined in Proposition 1.

4) If m[)?/l/] is Bayesian and uniform, the@'l corre- [11]
sponds to the plausibility transform, (or equivalentlym]
mlZr = Pl is the relative plausibility ofn'Z).

5) OM1 s a generalization of the plausibility transform,!13]

parametred bWL[)j(\AI] .

6) OM'l commutes with Dempster's combination.

proofs: 1) and 2) see above. 3) and 4) consequences of [
and see the explanations after Proposition 1. 5) Consegaenc
of 1)-4). 6) Obvious. O [16]

IV. CONCLUSION& OUTLOOK [17]

A parameterized family of proxies is defined, by the use
of Dempster's combination and a meta-information encodiftf!
a particular structure of support. This family of proxy genp g
eralizes the relative plausibility in many ways, such as, fo
instance, thek-additive relative plausibility, or the weighted

(14]

(20]
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