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NONPARAMETRIC ESTIMATION OF THE MIXING DENSITY USING POLYNOMIALS

TABEA REBAFKA, FRANÇOIS ROUEFF

ABSTRACT

We consider the problem of estimating the mixing density f from n i.i.d. observations distributed

according to a mixture density with unknown mixing distribution. In contrast with finite mixtures mod-

els, here the distribution of the hidden variable is not bounded to a finite set but is spread out over a

given interval. We propose an approach to construct an orthogonal series estimator of the mixing den-

sity f involving Legendre polynomials. The construction of the orthonormal sequence varies from one

mixture model to another. Minimax upper and lower bounds of the mean integrated squared error are

provided which apply in various contexts. In the specific case of exponential mixtures, it is shown that

the estimator is adaptive over a collection of specific smoothness classes, more precisely, there exists

a constant A > 0 such that, when the order m of the projection estimator verifies m ∼ A log(n), the

estimator achieves the minimax rate over this collection. Other cases are investigated such as Gamma

shape mixtures and scale mixtures of compactly supported densities including Beta mixtures. Finally, a

consistent estimator of the support of the mixing density f is provided.

1. MIXTURE DISTRIBUTIONS

We consider mixture distributions of densities belonging to some parametric collection {πt, t ∈ Θ}
of densities with respect to the dominating measure ζ on the observation space (X,X ). A general repre-

sentation of a mixture density uses the so-called mixing distribution and is of the following form

(1) πf (x) =

∫

Θ
f(t)πt(x)µ(dt) ,

where the mixing density f is a density with respect to some measure µ defined on Θ. If µ is a counting

measure with a finite number of support points θk, then obviously, πf is a finite mixture distribution of the

form
∑K

k=1 pkπθk . However, if µ denotes the Lebesgue measure on Θ, and if Θ is a given interval, say

Θ = [a, b], then the distribution of the latent variable t is spread out over this interval and πf represents

a continuous mixture. In this paper we consider continuous mixtures and the problem of identifying the

mixing density f when a sample of the continuous mixture πf is observed. Note that when t is a location

parameter, the problem of estimating f is referred to as a deconvolution problem, which has received

considerable attention in the nonparametric statistics literature since [9].

Continuous mixtures have been used in very numerous and various fields of application. We just give

some recent examples to show that continuous mixtures are still of much interest from an application

point of view. The video-on-demand traffic can be modeled by a continuous Poisson mixture for the

purpose of efficient cache managing [20]. In time-resolved fluorescence, where photon lifetimes have

exponential distribution and parameters depend on the emitting molecules, typically continuous mix-

tures of exponential distributions are observed [18, 23]. When t is a scale parameter, the distribution πf
is called a scale mixture. Scale mixtures of uniforms are also related to multiplicative censoring intro-

duced in Vardi [24] and length-biased data. A recent application in nanoscience of the latter are length

measurements of carbon nanotubes, where observations are partly censored [16]. Exponential mixtures
1
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play a significant role in natural sciences phenomena of discharge or disexcitation as e.g. radioactive

decays, the electric discharge of a capacitor or the temperature difference between two objects. Several

examples of applications of the exponential mixture model can be found in the references of the seminal

paper [15].

Not only for applications, as well from a mathematical point of view, scale mixtures are particularly

interesting as they define classes of densities that verify some monotonicity constraints. It is well known

that any monotone non-increasing density function with support in (0,+∞) can be written as a mixture

of uniform densities U[0, t] [12, p. 158]. Moreover, a k-monotone density is defined as a non-increasing,

convex density function h whose derivatives satisfy for all j = 1, . . . , k − 2 that (−1)jh(j) is non-

negative, non-increasing and convex. One can show that any k-monotone density can be represented

by a scale mixture of Beta distributions B(1, k). Furthermore, densities that are k-monotone for any

k ≥ 1, also called completely monotone functions, can be written as a continuous mixture of exponential

distributions [3].

The literature provides various approaches for the estimation of the mixing density, as for example the

nonparametric maximum likelihood estimate (NPMLE). A characteristic feature of this estimator is that

it yields a discrete mixing distribution [17, 19]. This appears to be unsatisfactory if we have reasons to

believe that the mixing density is indeed a smooth function. In this case a functional approach is more

appropriate, which relies on smoothness assumptions on the mixing density f . In Zhang [26] kernel

estimators are constructed for mixing densities of a location parameter. Goutis [13] proposes an iterative

estimation procedure also based on kernel methods. Asgharian et al. [2] show strong uniform consistency

of kernel estimators in the specific case of multiplicative censoring. In the same setting, Andersen and

Hansen [1] consider the linear operator K verifying πf = Kf and estimate f by an SVD reconstruction

in the orthonormal basis of eigenfunctions of K . For mixtures of discrete distributions, that is when πt
are densities with respect to a counting measure on a discrete space, orthogonal series estimators have

been developed and studied in Hengartner [14] and Roueff and Ryden [22]. For such mixtures, these

estimators turn out to enjoy similar or better rates of convergence than the kernel estimator presented in

Zhang [27]. Comte and Genon-Catalot [6] present a projection estimator based on Laguerre functions

that has the specific feature that the support of the mixing density f is not a compact as usual, but the

entire positive real line. Belomestny and Schoenmakers [4] extend the class of scale mixtures and derive

estimation methods based on the Mellin transform.

In this paper we show that orthogonal series estimators can be provided in a very general fashion to

estimate mixing densities with compact supports. In contrast to Andersen and Hansen [1], who consider

only the case of scale mixtures of uniforms, our approach applies to a large variety of continuous mixtures

as our numerous examples demonstrate. In the exponential mixture case, in particular, we exhibit an

orthogonal series estimator achieving the minimax rate of convergence in a collection of smoothness

classes without requiring a prior knowledge of the smoothness index. In other words, we provide an

adaptive estimator of the mixing density of an exponential mixture.

The paper is organized as follows. In Section 2 the general construction of an orthogonal series

estimator is presented and the estimator is applied in several different mixture settings. In Section 3 we

derive upper bounds on the rate of convergence of the mean integrated squared error of the estimator on

some specific smoothness classes. In Section 4 the approximation classes used for the convergence rate

are related to more meaningful smoothness classes defined by weighted moduli of smoothness. Section

5 is concerned with the investigation of the minimax rate. On the one hand, a general lower bound of

the MISE is provided and on the other hand, some specific cases are studied in detail. Section 6 provides

a consistent estimator of the support of the mixing density. Finally, the performance of the projection

estimator is evaluated by a simulation study in different mixture settings in Section 7. The Appendix

provides some technical results.
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2. ESTIMATION METHOD

In this section we develop an orthogonal series estimator and we provide several examples, namely

for mixtures of exponential, Gamma, Beta and uniform densities.

2.1. Orthogonal Series Estimator. Throughout this paper the following assumption will be used.

Assumption 1. Let ζ be a dominating measure on the observation space (X,X ). Let {πt, t ∈ Θ} be a

parametric collection of densities with respect to ζ . Furthermore, let the parameter space Θ = [a, b] be a

compact interval with known endpoints a < b in R. We denote by X,X1, . . . ,Xn an i.i.d. sample from

the mixture distribution density πf defined by (1) with µ equal to the Lebesgue measure on [a, b].

For convenience, we also denote by πt and πf the probability measures associated to these densities.

Moreover we will use the functional analysis notation πt(h) and πf (h), for the integral of h with respect

to these probability measures.

The basic assumption of our estimation approach is that the mixing density f in (1) is square inte-

grable, that is f ∈ L2[a, b]. Then, for any complete orthonormal basis (ψk)k≥1 of the Hilbert space

H = L2[a, b], the mixing density f can be represented by the orthogonal series f(t) =
∑

k≥1 ckψk(t),
where the coefficients ck correspond to the inner products of f and ψk. If we have estimators ĉn,k of

those coefficients, then an estimator of the mixing density f is obtained by
∑m

k=1 ĉn,kψk.

To construct estimators ĉn,k, we remark that the following relation holds: Let g be a nonnegative

integrable function on R. Define the function ϕ on [a, b] by the conditional expectations

(2) ϕ(t) = πt(g) =

∫

x∈X
g(x)πt(x) ζ(dx) , t ∈ [a, b] .

Suppose that ϕ belongs to H. The mean πf (g) can be written as the inner product of f and ϕ. Namely,

by the definition of πf in (1) and Fubini’s theorem,

πf (g) =

∫

x∈X
g(x)πf (x) ζ(dx) =

∫ b

a
f(t)

∫

x∈X
g(x)πt(x) ζ(dx) dt = 〈f, ϕ〉H .

Consequently, by the strong law of large numbers, 1
n

∑

i g(Xi) is a consistent estimator of the inner

product 〈f, ϕ〉H based on an i.i.d. sample (X1, . . . ,Xn) from the mixture density πf defined in (1).

We make the following assumption under which the orthogonal series estimator makes sense.

Assumption 2. Assumption 1 holds and there exists a sequence (gk)k≥1 of X → R functions such that

(ϕk)k≥1 is a dense sequence of linearly independent functions in H, where ϕk(t) = πt(gk) as in (2).

We then proceed as follows. Using linear combinations of the ϕk’s, a sequence of orthonormal func-

tions ψ1, ψ2, . . . in H can be constructed, for instance by the Gram-Schmidt procedure. Say that ψk

writes as
∑k

j=1Qk,jϕj with an array (Qk,j)1≤j≤k of real values that are computed beforehand. Then we

define estimators of ck = 〈f, ψk〉H =
∑k

j=1Qk,j〈f, ϕj〉H by the empirical means

ĉn,k =
1

n

n
∑

i=1

k
∑

j=1

Qk,jgj(Xi) .

Finally, for any integer m, an estimator of f is given by

(3) f̂m,n =
1

n

m
∑

k=1

ĉn,kψk =
1

n

n
∑

i=1

m
∑

j,k,l=1

Qk,jQk,lgj(Xi)ϕl ,
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with the convention Qk,j = 0 for all j > k. We refer to f̂m,n as the orthogonal series estimator or the

projection estimator of approximation order m.

Define the subspaces

(4) Vm = span(ϕ1, . . . , ϕm) , for all m ≥ 1 .

By Assumption 2, the sequence (Vm)m is strictly increasing, Vm has dimension m for all m, and ∪mVm
has closure equal to H. By construction the orthogonal series estimator f̂m,n belongs to Vm. Conse-

quently, the best squared error achievable by f̂m,n is ‖f − PVm(f)‖2
H

, where ‖ · · · ‖H denotes the norm

associated to H and PVm the orthogonal projection on the space Vm. Hence once the functions gk are

chosen, the definition of the subspaces Vm follows and the performance of the estimator will naturally

depend on how well f can be approximated by functions in Vm. It is thus of interest to choose a sequence

(gk)k≥1 yielding a meaningful sequence of approximation spaces (Vm)m. In the context of scale family

mixtures (but not only, see Roueff and Ryden [22]), polynomial spaces appear naturally. Indeed, for any

function g, we have πt(g) = π1(g(t·)), so that, provided that π1 has finite moments, if g is polynomial

of degree k, so is ϕ(t) = πt(g). The following assumption slightly extends this choice for the two fol-

lowing reasons. First, a scale family is not always parameterized by its scale parameter but by its inverse

(as for the exponential family). Second, it will appear that the choice of (gk)k≥1 not only influences the

approximation class (and thus the bias) but also the variance. It may thus be convenient to allow the gk’s

not to be polynomials, while still remaining in the context of polynomial approximation. This goal is

achieved by the following assumption.

Assumption 3. Assumption 2 holds and there exist two real numbers a′ < b′ and a linear isometry T
from H to H

′ = L2[a′, b′] such that, for all k ≥ 1, Tϕk is a polynomial of degree k − 1. We denote by

T−1 the inverse isometry.

To compute the coefficients Qk,j under Assumption 3, one may rely on the well known Legendre

polynomials which form an orthogonal sequence of polynomials in H
′ = L2[a′, b′]. Indeed, by choosing

gk so that Tϕk is the polynomial tk−1, as will be illustrated in all the examples below, the constants Qk,j

are the coefficients of the normalized Legendre polynomials
∑k

j=1Qk,jt
j−1. Let us recall the definition

of the Legendre polynomials.

Definition 1 (Legendre polynomials). Let a′ < b′ be two real numbers and denote µ = (a′ + b′)/2
and δ = (b′ − a′)/2. The Legendre polynomials associated to the interval [a′, b′] are defined as the

polynomials rk(t) =
∑k

l=1Rk,lt
l−1, where the coefficients Rk,l are given by the following recurrence

relation

Rk+1,l = Rk,l−1 + µRk,l − βkRk−1,l , for all k, l ≥ 1 ,

with R1,1 = 1 and Rk,l = 0 for all l > k, β1 = 2δ and βk = δ2(k− 1)2/(4(k − 1)2 − 1) for k ≥ 2. The

obtained sequence (rk)k≥1 is orthogonal in H
′ = L2([a′, b′]) with norms given by ‖rk‖H′ =

√
β1 . . . βk.

Hence, the coefficients of the normalized Legendre polynomials are defined by the relation

(5) Qk,l =
Rk,l√
β1 . . . βk

, for all k, l ≥ 1 .

2.2. Examples. For illustration we exhibit in this section the orthogonal series estimator in some special

cases. Some scale mixtures are presented. As an example for a non scale mixture we also consider

Gamma shape mixtures.

Example 1 (a). Exponential Mixture. We first consider continuous exponential mixtures as they play a

meaningful role in physics. That is, we consider πt(x) = te−tx. For the orthogonal series estimator we
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choose the functions gk(x) = 1{x > k − 1
2

}

for k ≥ 1. By (2), we obtain

(6) ϕk(t) = e−(k− 1

2
)t .

We claim that the ϕk’s can be transformed into polynomials in the space H
′ = L2[e−b, e−a]. Indeed,

define, for all f ∈ H = L2[a, b],

(7) Tf(t) = f(− log t)/
√
t , t ∈ [e−b, e−a] .

Then one has 〈Tf, Tg〉H′ = 〈f, g〉H, hence T is an isometry from H to H
′. Moreover Tϕk(t) = tk−1 are

polynomials. Denote by pk(t) =
∑k

j=1Qk,jt
j−1 the Legendre polynomials in H

′ with coefficients Qk,j

defined by (5) with a′ = e−b and b′ = e−a. Denote by T−1 the inverse operator of T given by T−1h(t) =

e−t/2h(e−t). Since T−1 is a linear isometry, we get that the functions ψk ≡ T−1pk =
∑k

j=1Qk,jϕj are

orthonormal in H. Consequently, an orthonormal series estimator is given by

(8) f̂m,n(t) =
1

n

m
∑

k,j,l=1

n
∑

i=1

1{Xi > j − 1

2

}

Qk,jQk,le
−(l− 1

2
)t .

Example 1 (b). Exponential Mixture. The choice of the functions gk is not unique and needs to be done

with care. For illustration, consider once again exponential mixtures with πt(x) = te−tx. This time we

take

gk(x) = akx
k with ak =

(
∫

xkπ1(dx)

)−1

= 1/k!

and hence ϕk(t) = t−k, for k ≥ 1. To relate ϕk to polynomials, define the isometry T̃ from H to H̃ =

L2[1/b, 1/a] by T̃ f(t) = 1
t f(

1
t ). We have T̃ ϕk(t) = tk−1 for all k ≥ 1. Furthermore, denote by T̃−1

the inverse of T̃ satisfying T̃−1h = 1
th(

1
t ). Let p̃k(t) =

∑k
j=1Qk,jt

j−1 be the Legendre polynomials

in H̃ defined with a′ = 1/b and b′ = 1/a. Since T̃−1 is an isometry, ψk ≡ T̃−1pk =
∑k

j=1Qk,jϕj are

orthonormal functions in H and the orthonormal series estimator is given by

f̂m,n(t) =
1

n

m
∑

k,j,l=1

n
∑

i=1

Qk,jQk,lX
j
i

j!
t−l .

Example 2. Gamma Shape Mixture. Polynomial estimators can be used in the context where the mixed

parameter is not necessarily a scale parameter. As pointed out earlier, they have first been used for

mixtures on a discrete state space X, such as Poisson mixtures, see [14] and [22]. Let us consider the

Gamma shape mixture model. Parametric Gamma shape mixtures have been considered in [25]. For this

model πt is the Gamma density with shape parameter t and a fixed scale parameter (here set to 1 for

simplicity),

πt(x) =
xt−1

Γ(t)
e−x, t ∈ [a, b] ,

where Γ denotes the Gamma function. This model has a continuous state space (ζ is the Lebesgue mea-

sure on R+) and is not a scale mixture. We shall construct gk and ϕk = π·(gk) such that Assumption 3

holds with T being the identity and ϕk(t) = tk−1. Consider the following sequence of polynomials,

p1(t) = 1, p2(t) = t, ..., pk(t) = t(t + 1) . . . (t + k − 2) for all k ≥ 2. Since (pk)k≥1 is a sequence

of polynomials with degrees k − 1, there are coefficients (c̃k,l)1≤l≤k such that tk−1 =
∑

l c̃k,lpl(t) for

k = 1, 2, . . . . A simple recursive formula for computing (c̃k,l)1≤l≤k is provided in Lemma 6 in the

Appendix, see Eq. (48). Observe that, for any l ≥ 1,
∫

xl−1 πt(x)dx =
Γ(t+ l − 1)

Γ(t)
= pl(t) .
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Hence, setting gk(x) =
∑

l c̃k,lx
l−1, we obtain

ϕk(t) = πt(gk) =
∑

l

c̃k,lpl(t) = tk−1 ,

and thus Assumption 3 holds with T being the identity operator and ϕk(t) = tk−1. Define (Qk,l)k,l as

the coefficients of Legendre polynomials on H = L2([a, b]), that is as in (5) with a′ = a and b′ = b. The

polynomial estimator defined by (8) reads

f̂m,n(t) =
1

n

n
∑

i=1

m
∑

k,j,l=1

Qk,jQk,l

j
∑

h=1

c̃j,hX
h−1
i tl−1 .

Example 3. Scale Mixture of Beta Distributions or Uniform Distributions. It is well known that any

k-monotone density, for k ≥ 1, can be represented by a scale mixture of Beta distributions B(1, k) [3]

with

πt(x) =
k

t

(

1− x

t

)k−1
, for x ∈ [0, t] .

Note that if k = 1, then πt is the uniform density U(0, t). We take

gp(x) = apx
p−1 with ap =

(
∫

xp−1π1(dx)

)−1

=
1

k β(p, k)
, p ≥ 1 ,

where β(a, b) =
∫ 1
0 t

a−1(1 − t)b−1dt denotes the Beta function. It follows that ϕp(t) = tp−1. As in

the preceding example, if f ∈ H then an orthogonal series estimator f̂m,n of f can be constructed by

using Legendre polynomials pk(t) =
∑k

j=1Qk,jt
j−1 where the coefficients Qk,j are defined as in (5)

with a′ = a and b′ = b. Then according to (3), the corresponding orthogonal series estimator is given by

f̂m,n(t) =
1

n

m
∑

j,p,l=1

n
∑

i=1

Qp,jQp,l
Xj−1

i

kβ(j, k)
tl−1 .

In Example 1 (b) we considered the same functions gp but here Assumption 3 holds with T equal to the

identity operator on H. This difference relies on the parametrization of the exponential family by the

inverse of the scale parameter.

Example 4. Mixture of exponential distributions with location parameter. The estimator also applies to

the deconvolution setting. As an example, consider X = Y + θ where Y and θ are independent random

variables, Y has exponential distribution with mean 1 and θ has unknown density f supported on [a, b].

The density of X is given by πf (x) =
∫ b
a πt(x)f(t)dt with πt(x) = e−(x−t)1{x > t}. Let g1(x) = 1

and

(9) gk(x) = xk−1 − (k − 1)xk−2 ,

for k ≥ 2. Then ϕk(t) = tk−1 for k ≥ 1. The estimator f̂m,n of f is then given by

f̂m,n(t) =
1

n

n
∑

i=1

m
∑

j,k,l=1

Qk,lQk,jgj(Xi)t
l−1 ,

where Qk,l are the Legendre coefficients defined by (5) with a′ = a and b′ = b.

3. ANALYSIS OF THE ORTHOGONAL SERIES ESTIMATOR

In this section the properties of the orthogonal series estimator are analyzed.
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3.1. Bias, Variance and MISE. It is useful to write the orthogonal series estimator f̂m,n defined in (3)

in matrix notation. Therefore, we introduce the m ×m–matrix Q = (Qk,j)k,j , where Qk,j = 0 for all

j > k, and the m–vectors

Φ = [ϕ1, . . . , ϕm]T , Ψ = [ψ1, . . . , ψm]T = QΦ ,

g(x) = [g1(x), . . . , gm(x)]T , ĝ =
1

n

n
∑

i=1

g(Xi) ,

c = [c1, . . . , cm]T = 〈Ψ, f〉H , ĉ = [ĉn,1, . . . , ĉn,m]T = Qĝ .

It follows that the orthogonal series estimator can be written as

f̂m,n = ĉ
TΨ = ĝ

TQTQΦ .

Further, let Σ = πf (gg
T ) − πf (g)πf (g)

T be the covariance matrix of g(X1). The MISE is defined by

E

∥

∥

∥
f̂m,n − f

∥

∥

∥

2

H

. The orthogonal projection of f on Vm is denoted by

PVmf = c
TΨ =

m
∑

k=1

cn,kψk .

It is clear that the orthogonal series estimator f̂m,n is an unbiased estimator of PVmf . Furthermore,

by the usual argument, the MISE is decomposed into two terms representing the integrated variance and

integrated squared bias, as summarized in the following result, whose proof is standard and thus omitted.

Proposition 1. Suppose that Assumption 2 holds. The orthogonal series estimator f̂m,n defined in (3)

satisfies

(i) For every t ∈ [a, b], E[f̂m,n(t)] = PVmf(t).

(ii) For every t ∈ [a, b], Var(f̂m,n(t)) =
1
nΨ

T (t)QΣQTΨ(t).

(iii) E

∥

∥

∥
f̂m,n − f

∥

∥

∥

2

H

= ‖PVmf − f‖2
H
+ 1

ntr
(

QΣQT
)

.

An important issue for orthogonal series estimators f̂m,n is the choice of the approximation order m.

The integrated squared bias ‖PVmf − f‖2
H

only depends on how well PVmf approximates f , whose rate

of convergence depends on the smoothness class to which belongs the density f . To be more precise,

define for any approximation rate index α and radius C , the approximation class

(10) C(α,C) = {f ∈ H : ‖f‖H ≤ C and ‖PVmf − f‖H ≤ C m−α for all m ≥ 1} .

So when the mixing density f belongs to C(α,C), then the bias of the orthogonal series estimator f̂m,n

is well controlled, namely it decreases at the rate m−α as m increases. Furthermore, denote the set of

densities in H by H1 = {f ∈ H : f ≥ 0,
∫ b
a f(t)dt = 1}. We will investigate the rate of convergence

of f̂m,n in H when f ∈ C(α,C) ∩H1. We will obtain the best achievable rate in the case of exponential

mixtures and almost the best one in the case of Gamma shape mixtures.

3.2. Upper Bound of the MISE. We now provide an upper bound of the MISE for the orthogonal series

estimator based on Legendre polynomials, that is, when Assumption 3 holds.

To show an upper bound of the MISE we use the following property [see 22, Lemma A.1]. If λ >
2+a′+b′

b′−a′ +
√

1 + 2+a′+b′

b′−a′ , then the coefficients of the normalized Legendre polynomials in L2[a′, b′]
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defined by (5) verify

(11)

k
∑

l=1

Q2
k,l = O(λ2k) , as k → ∞ .

By combining Proposition 1 (iii) and the bound given in (11) along with a normalization condition on

the gk’s (Condition (12) or Condition (15) below), we obtain the following asymptotic upper bounds of

the MISE.

Theorem 1. Let α be a positive rate index and C be a positive radius. Suppose that Assumption 3 holds

with f ∈ C(α,C) ∩ H1. Let f̂m,n be defined by (3) with Legendre polynomials coefficients Qk,j given

by (5). Then the two following assertions hold.

(a) If, for some constants C0 > 0 and B ≥ 1, we have

(12) Var(gk(X)) < C0B
2k for all k ≥ 1 .

Set mn = A log n with

(13) A <
1

2

{

logB + log

(

2 + a′ + b′

b′ − a′
+

√

1 +
2 + a′ + b′

b′ − a′

)}−1

.

Then, as n→ ∞,

(14) E

∥

∥

∥
f̂mn,n − f

∥

∥

∥

2

H

≤ C2m−2α
n (1 + o(1)) ,

where the o-term only depends on the constants α, C , a′, b′, A and C0.

(b) If, for some constants C0 > 0 and η > 0, we have

(15) Var(gk(X)) < C0 k
ηk for all k ≥ 1 .

Set mn = A log n/ log log n with A < η−1. Then, as n→ ∞,

(16) E

∥

∥

∥f̂mn,n − f
∥

∥

∥

2

H

≤ C2m−2α
n (1 + o(1)) ,

where the o-term only depends on the constants α, C , a′, b′, A and C0.

Remark 1. The larger A, the lower the upper bound in (14). Hence, since a′, b′ and B directly depend on

the gk’s, the constraint (13) on A indicates how appropriate the choice of the gk’s is.

Remark 2. In the examples treated in this paper, C0 and B or η can be chosen independently of f ∈
C(α,C)∩H1. Consequently, the bounds given in (14) and (15) show that f̂mn,n achieves the MISE rates

(log n)−2α and (log(n)/ log log n)−2α, respectively, uniformly on f ∈ C(α,C)∩H1. In the exponential

mixture case, we show below that f̂mn,n of Example 1(a) is minimax rate adaptive in these classes

(since mn does not depend on α). In the Gamma shape mixture case, we could only show that f̂mn,n of

Example 2 is minimax rate adaptive in these classes up to the multiplicative log log n term.
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Proof. We first consider Case (a). By (13), we may choose a number λ strictly lying between 2+a′+b′

b′−a′ +
√

1 + 2+a′+b′

b′−a′ and e1/(2A)/B. Note that from Condition (12), it follows by the Cauchy-Schwarz inequal-

ity that |Σk,l| = |Cov(gk(X), gl(X))| ≤ C0B
kBl for all k, l. Thus, we obtain

tr
(

QΣQT
)

≤ C0

m
∑

k=1

k
∑

j=1

k
∑

l=1

|Qk,jQk,l| BjBl

≤ C0

m
∑

k=1





k
∑

j=1

Q2
k,j

k
∑

j=1

B2j





≤ Km{Bλ}2m ,

where the last inequality comes from (11) and K is a positive constant (the multiplicative term m is

necessary only for B = 1). It follows by the decomposition of the MISE in Proposition 1 (iii) that

E

∥

∥

∥f̂mn,n − f
∥

∥

∥

2

H

≤ C2m−2α
n +Kn−1mn(Bλ)

2mn

≤ C2m−2α
n

(

1 +
K

C2
n−1m2α+1

n (Bλ)2mn

)

.

Now we have for mn = A log n that

n−1m2α+1
n (Bλ)2mn = A2α+1(log n)2α+1n2A logBλ−1 = o(1) ,

since A < 1/(2 logBλ).

Let us now consider Case (b). Proceeding as above, for any λ > 2+a′+b′

b′−a′ +
√

1 + 2+a′+b′

b′−a′ , we get

tr
(

QΣQT
)

≤ K C0λ
2mm1+ηm, which yields

E

∥

∥

∥f̂mn,n − f
∥

∥

∥

2

H

≤ C2m−2α
n

(

1 +
K

C2
n−1m2α+1+ηmn

n λ2mn

)

.

To conclude, it suffices to check that the log of the second term between parentheses tends to −∞ as

n→ ∞ for mn = A log n/ log log n with A < η−1, which is easily done. �

Let us check the validity of Condition (12) or Condition (15) for the above examples.

Example 1 (a). Exponential Mixture (continued). Condition (12) immediately holds with B = C0 = 1
for the exponential mixture of Example 1(a) since gk(x) = 1{x > k − 1

2

}

.

Example 1 (b). Exponential Mixture (continued). Interestingly, Condition (12) does not hold for Exam-

ple 1(b), where a different choice of gk’s is proposed. In fact, one finds that log Var(gk(X)) is of order

k log(k). Hence, only Condition (15) holds and we fall in case (b) of Theorem 1. Since a slower rate is

achieved in this case, this clearly advocates to choose the estimator obtained in Example 1(a) rather than

the one in Example 1(b) for the exponential mixture model.

Example 2. Gamma Shape Mixture (continued). We recall that here we set gk(t) =
∑k

l=1 c̃k,lt
l−1 where

the coefficients (c̃k,l) are those defined and computed in Lemma 6 of the Appendix. Using the bound

given by (49) in the same lemma, we obtain that gk(x) ≤ k!(1 ∨ |x|k−1). It follows that πt(g
2
k) ≤

(k!)2(1 + Γ(t+ 2k − 2)/Γ(t)), and, for any f ∈ H1, πf (g
2
k) ≤ (k!)2(1 + Γ(b+ 2k − 2)/Γ(b)). Hence,

by Stirling’s formula, we find that Condition (15) holds for η = 4 and some C0 independent of f ∈ H1.

Example 3. Scale Mixture of Beta Distributions or Uniform Distributions (continued). We now verify

Condition (12) for Beta mixtures and the gp of Example 3. Note that we can write X = θX0 with
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independent random variables θ ∼ f and X0 ∼ B(1, k). We have for all p ≥ 1

Var(gp(X)) ≤ E[X2p−2]

k2β2(p, k)
=

E[θ2p−2]E[X2p−2
0 ]

k2β2(p, k)
≤ b2p−2

k2β2(p, k)
≤ b2p−2k2p−2 .

Hence Condition (12) holds with B = k if b < 1, with B = bk if b ≥ 1.

A close inspection of Example 3 indicates that it is a particular case of the following more general

result concerning mixtures of compactly supported scale families.

Lemma 1. Suppose that Assumption 1 holds in the context of a scale mixture on R+, that is, ζ is the

Lebesgue measure on R+ and πt = t−1π1(t
−1·) for all t ∈ Θ = [a, b] ⊂ (0,∞). Assume in addition

that π1 is compactly supported in R+. Define, for all k ≥ 1,

gk(x) =

(
∫

xk−1π1(x) dx

)−1

xk−1 .

Then Assumption 2 holds with ϕk(t) = tk−1, and thus also does Assumption 3 with T being the identity

operator on L2([a, b]). Moreover there exists C0 and B only depending on π1 and b such that Condi-

tion (12) holds.

Proof. Using the assumptions on π1 and Jensen’s inequality, we have

Bm
1 ≤

∫

xm π1(x) dx ≤ Bm
2 for all m ≥ 1 ,

with B1 =
∫

x π1(x) dx and B2 > 0 such that the support of π1 is included in [0, B2]. The result then

follows from the same computations as in Examples 3. �

An immediate consequence of Theorem 1 and Lemma 1 is the following.

Corollary 1. Under the assumptions of Lemma 1, the estimator f̂m,n defined by (3) with Legendre

polynomials coefficients Qk,j given by (5) achieves the MISE rate (log n)−2α uniformly on f ∈ C(α,C)∩
H1 for any α > 0 and C > 0.

Example 4. Exponential mixture with location parameter (continued). One can show that Condition

(15) of Theorem 1 is satisfied, so that the rate of the MISE of the estimator is (log(n)/ log log n)−2α.

Indeed,

E[Xr] = r!

∫ b

a
f(t)

r
∑

j=0

tj

j!
dt ≤ r!

r
∑

j=0

bj

j!
≤ r!eb ,

and thus, using the definition of gk in (9), Var(gk(X)) ≤ 2(2k − 2)!eb ≈ 2
√
2πeb−2k+2(2k − 2)2k−3/2.

4. APPROXIMATION CLASSES

Although the approximation classes C(α,C) appear naturally when studying the bias of the orthogonal

series estimator defined in (3), it is legitimate to ask whether such classes can be interpreted in a more

intuitive way, say using a smoothness criterion. This section provides a positive answer to this question.
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4.1. Weighted Moduli of Smoothness. Let us recall the concept of weighted moduli of smoothness as

introduced by Ditzian and Totik [8] for studying the rate of polynomial approximations. For a < b in R,

f : [a, b] → R, r ∈ N
∗ and h ∈ R denote by ∆r

h(f, ·) the symmetric difference of f of order r with step

h, that is

(17) ∆r
h(f, x) =

r
∑

i=0

(r

i

)

(−1)if(x+ (i− r/2)h) .

with the convention that ∆r
h(f, x) = 0 if x ±mh/2 /∈ [a, b]. Define the step-weight function ϕ on the

bounded interval [a, b] as ϕ(x) =
√

(x− a)(b− x). Then for f : [a, b] → R the weighted modulus of

smoothness of f of order r and with the step-weight function ϕ in the Lp([a, b]) norm is defined as

ωr
ϕ(f, t)p = sup

0<h≤t
‖∆r

hϕ(·)(f, ·)‖p .

We recall an equivalence relation of the modulus of smoothness with the so-called K-functional,

which is defined as

(18) Kr,ϕ(f, t
r)p = inf

h
{‖f − h‖p + tr‖ϕrh(r)‖p : h(r−1) ∈ A.C.loc} ,

where h(r−1) ∈ A.C.loc means that h is r− 1 times differentiable and h(r−1) is absolutely continuous on

every closed finite interval. If f ∈ Lp([a, b]), then

(19) M−1ωr
ϕ(f, t)p ≤ Kr,ϕ(f, t

r)p ≤Mωr
ϕ(f, t)p , for t ≤ t0 ,

for some constants M and t0, see Theorem 6.1.1. in Ditzian and Totik [8].

4.2. Equivalence Result. We show that the classes C(α,C) are equivalent to classes defined using

weighted moduli of smoothness. This, in turn, will relate them to Sobolev and Hölder classes. To make

this precise, we define for constants α > 0 and C > 0 the following class of functions in H = L2([a, b])

(20) C̃(α,C) = {f ∈ H : ‖f‖H ≤ C and ωr
ϕ(f, t)2 ≤ Ctα for all t > 0} ,

where ϕ(x) =
√

(x− a)(b− x) and r = [α] + 1.

The following theorem states the equivalence of the classes C(α,C) and C̃(α,C). This result is an

extension of Proposition 7 in Roueff and Ryden [22] to the case where the subspaces Vm correspond

to transformed polynomial classes through an isometry T which includes both a multiplication and a

composition with smooth functions.

Theorem 2. Let α > 0. Suppose that Assumption 3 holds with a linear isometry T : H = L2([a, b]) →
H

′ = L2([a′, b′]) given by Tg = σ × g ◦ τ , where σ is non-negative and [α] + 1 times continuously

differentiable, and τ is [α] + 1 times continuously differentiable with a non-vanishing first derivative.

Then for any positive number α, there exist positive constants C1 and C2 such that for all C > 0

(21) C(α,C1C) ⊂ C̃(α,C) ⊂ C(α,C2C) .

where C̃(α,C) is defined in (20) and C(α,C ′) is defined in (10) with approximation classes (Vm) given

by (4).

For short, we write C(α, ·) →֒ C̃(α, ·) when there exists C1 > 0 such that the first inclusion in (21)

holds for all C > 0. The validity of both inclusions is denoted by the equivalence C(α, ·) ≍ C̃(α, ·) .
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Proof of Theorem 2. Weighted moduli of smoothness are used to characterize the rate of polynomial ap-

proximations. We start by relating C(α,C) to classes defined by the rate of polynomial approximations,

namely

C̄(α,C) = {g ∈ H
′ : ‖g‖H′ ≤ C and inf

p∈Pm−1

‖g − p‖H′ ≤ Cm−α, for all m ≥ 1} ,

where Pm is the set of polynomials of degree at mostm. Indeed, we see that, since T is a linear isometry,

C(α,C) = {f ∈ H : ‖f‖H ≤ C and ‖PVmf − f‖H ≤ Cm−α for all m ≥ 1}
= {T−1g : g ∈ H

′, ‖g‖H′ ≤ C and ‖PTVmg − g‖H′ ≤ Cm−α for all m ≥ 1}
= T−1C̄(α,C) .

As stated in Corollary 7.25 in Ditzian and Totik [8], we have the equivalence C̄(α, ·) ≍ C̃′(α, ·), where

C̃′(α,C) is defined as C̃(α,C) but with a′ and b′ replacing a and b. Hence, it only remains to show that

(22) T−1C̃′(α, ·) ≍ C̃(α, ·) .

To show this, we use the assumed particular form of T , that is T (g) = σ× g ◦ τ . Since T is an isometry

from H = L2([a, b]) to H
′ = L2([a′, b′]) and σ is non-negative, we necessarily have that τ is a bijection

from [a′, b′] to [a, b] (whose inverse bijection is denoted by τ−1) and σ = 1/
√
τ ′ ◦ τ−1. Moreover the

inverse isometry writes T−1(g) = (σ ◦ τ−1)−1 × g ◦ τ−1. From the assumptions on τ we have that σ,

(σ◦τ−1)−1, τ and τ−1 all are [α]+1 times continuously differentiable and the two latter’s first derivative

do not vanish. The equivalence (22) then follows by Lemma 5 in the appendix. �

Example 1 (a). Exponential Mixture (continued). In Example 1(a) of continuous exponential mixtures,

the operator T is given by (7), that is σ(t) = 1/
√
t and τ(t) = − log t and further H′ = L2(e−b, e−a).

Both σ and τ are infinitely continuously differentiable on [a, b] if a > 0, and thus the equivalence given

in (21) holds.

Example 1 (b). Exponential Mixture (continued). For the estimator exhibited in Example 1(b) for expo-

nential mixtures, the isometry T is such that σ(t) = τ(t) = 1/t with a′ = 1/b and b′ = 1/a. Hence, the

conclusion of Theorem 2 holds if a > 0.

Example 2, 3 and 4. Gamma Shape Mixture, Scale Mixture of Beta Distributions and Exponential mixture

with location parameter (continued). In the cases of Example 2, 3 and 4, the transform T is the identity

and hence Theorem 2 applies. However, this result is also obtained by Corollary 7.25 in Ditzian and

Totik [8].

5. LOWER BOUND OF THE MINIMAX RISK

Our goal in this section is to find a lower bound of the minimax risk

inf
f̂∈Sn

sup
f∈C

π⊗n
f ‖f̂ − f‖2H ,

where Sn is the set of all Borel functions from R
n to H, C denotes a subset of densities in H1 and π⊗n

f

denotes the joint distribution of the sample (X1, . . . ,Xn) under Assumption 1. We first provide a general

lower bound, which is then used to investigate the minimax rate in the specific cases of exponential

mixtures, Gamma shape mixtures and mixtures of compactly supported scale families.
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5.1. A General Lower Bound for Mixture Densities. We now present a new lower bound for the

minimax risk of mixture density estimation. As in Proposition 2 in [22], it relies on the mixture structure.

However, in contrast with this previous result which only applies for mixtures of discrete distributions,

we will use the following lower bound in the case of mixtures of exponential distributions, Gamma shape

mixtures and scale mixtures of compactly supported densities.

Theorem 3 (Lower bound). Let f0 ∈ H1 and f∗ ∈ H with ‖f∗‖H ≤ 1 and f0 ± f∗ ∈ H1 the following

lower bound holds, for any c ∈ (0, 1),

inf
f̂∈Sn

sup
f∈{f0,f0±f∗}

π⊗n
f ‖f − f̂‖2H ≥ c‖f∗‖2H − c

(1− c)2

((

1 +

∫

|πf∗(x)| ζ(dx)
)n

− 1

)

,(23)

where π⊗n
f denotes the joint distribution of the sample (X1, . . . ,Xn) under Assumption 1.

Proof. Let f∗ be as in the Theorem. We define for a fixed f̂ ∈ Sn and any c ∈ (0, 1) the set A =

{‖f0 − f̂‖H ≤ c
1−c}. Then, for all f̂ ∈ Sn, supf∈{f0,f0±f∗} π

⊗n
f ‖f − f̂‖2

H
is bounded from below by

c

2
π⊗n
f0+f∗

‖f0 + f∗ − f̂‖2H +
c

2
π⊗n
f0−f∗

‖f0 − f∗ − f̂‖2H + (1− c)π⊗n
f0

‖f0 − f̂‖2H

≥ c

2
π⊗n
f0+f∗

[1A‖f0 + f∗ − f̂‖2H
]

+
c

2
π⊗n
f0−f∗

[1A‖f0 − f∗ − f̂‖2H
]

+ (1− c)π⊗n
f0

‖f0 − f̂‖2H .
Note that for a function k defined on R

n we have

π⊗n
f0±f∗

k =

∫

k(x1, . . . , xn)

n
∏

i=1

[πf0(xi)± πf∗(xi)]

n
∏

i=1

ζ(dxi)

=

∫

k(x1, . . . , xn)
∑

I,J



(±1)#J
∏

j∈J

πf∗(xj)
∏

i∈I

πf0(xi)





n
∏

i=1

ζ(dxi) ,

where the sum is take over all sets I and J such that I ∪ J = {1, . . . , n} and I ∩ J = ∅. Therefore,

π⊗n
f0+f∗

[1A‖f0 + f∗ − f̂‖2H
]

+ π⊗n
f0−f∗

[1A‖f0 − f∗ − f̂‖2H
]

=
∑

I,J

∫

∏

i∈I

πf0(xi)
∏

j∈J

πf∗(xj)1A [‖f0 + f∗ − f̂‖2H + (−1)#J‖f0 − f∗ − f̂‖2H
]

n
∏

i=1

ζ(dxi) .

Since ‖f∗‖H ≤ 1 and, on A, ‖f0 − f̂‖H ≤ c
1−c , we obtain that, on A, ‖f0 ± f∗ − f̂‖H ≤ ‖f0 − f̂‖H +

‖f∗‖H ≤ 1
1−c . This implies that the absolute value of the sum in the last display taken over all sets I and

J such that the cardinality of set J is positive, #J ≥ 1, is lower than

2

(1− c)2

∑

I,J :#J≥1

∫

∏

i∈I

πf0(xi)
∏

j∈J

|πf∗(xj)|
n
∏

i=1

ζ(dxi)

=
2

(1 − c)2

∑

I,J :#J≥1

∏

i∈I

∫

πf0(xi)ζ(dxi)
∏

j∈J

∫

|πf∗(xj)|ζ(dxj)

=
2

(1− c)2

{(

1 +

∫

|πf∗(x)|ζ(dx)
)n

− 1

}

Moreover, the term with #J = 0 writes

π⊗n
f0

(1A(‖f0 + f∗ − f̂‖2H + ‖f0 − f∗ − f̂‖2H)
)

= 2π⊗n
f0

(1A(‖f0 − f̂‖2H + ‖f∗‖2H)
)

,



14 TABEA REBAFKA, FRANÇOIS ROUEFF

by the Parallelogram law. By combining these results, the minimax risk is bounded from below by

(1− c)π⊗n
f0

‖f0 − f̂‖2H+

cπ⊗n
f0

[1A(‖f0 − f̂‖2H + ‖f∗‖2H)
]

− c

(1− c)2

[(

1 +

∫

|πf∗(x)|ζ(dx)
)n

− 1

]

.

Finally we see that

(1− c)‖f0 − f̂‖2H + c1A (‖f0 − f̂‖2H + ‖f∗‖2H
)

= c1A‖f∗‖2H + ((1 − c) + c1A)‖f0 − f̂‖2H
≥ c1A‖f∗‖2H + c1Ac

≥ c‖f∗‖2H ,
where we used 1 ≥ ‖f∗‖2H. This yields the lower bound asserted in the theorem. �

5.2. Application to Polynomial Approximation Classes. The lower bound given in (23) relies on the

choice of a function f∗ such that f0 and f0±f∗ are in the smoothness class of interest. In this subsection,

we give conditions which provide a tractable choice of ‖f∗‖H ≤ 1 for the class C(α,C) defined in (10).

Following the same lines as Theorem 1 in [22], the key idea consists in restricting our choice using the

space V ⊥
m (the orthogonal set of Vm in H) and to control separately the two terms that appear in the right

hand-side of (23) within this space.

An important constraint on f∗ is that f0 ± f∗ ∈ H1. In particular, for controlling the sign of f0 ± f∗,

we use the following semi-norm on H,

‖f‖∞,f0 = ess sup
t∈Θ

|f(t)|
f0(t)

,

with the convention 0/0 = 0 and s/0 = ∞ for s > 0. Further, for any subspace V of H, we denote

K∞,f0(V ) = sup{‖f‖∞,f0 : f ∈ V, ‖f‖H = 1} .
The following lemma will serve to optimize the term ‖f∗‖H on the right-hand side of (23). It is similar

to Lemma 2 in [22], so we omit its proof.

Lemma 2. Suppose that Assumption 2 holds. Let f0 be in H1, α,C0 > 0, K ≤ 1 and let C(α,C0) be

defined by (10) with Vm given by (4). Let moreover w ∈ H. Then there exists g ∈ C(α,C0) ∩ V ⊥
m ∩ w⊥

such that ‖g‖∞,f0 ≤ K and

‖g‖H = min

(

C0 (m+ 1)−α,
K

K∞,f0(Vm+2 ∩ V ⊥
m ∩ w⊥)

)

.

Under Assumption 3, where the orthonormal functions ψk are related to polynomials in some space

H
′ = L2[a′, b′], the constant K∞,f0(Vm+2∩V ⊥

m ∩w⊥) can be bounded by K∞,f0(Vm+2) and then using

the following lemma.

Lemma 3. Suppose that Assumption 3 holds. Let f0 be in H1 and suppose that

(24) sup

{

‖f‖∞,f0 : f ∈ H such that sup
t∈[a′,b′]

|Tf(t)| ≤ 1

}

<∞ .

Then there exists a constant C0 > 0 satisfying

K∞,f0(Vm+2) ≤ C0m , for all m ≥ 1 .
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Proof. Note that {Tf : f ∈ Vm} is the set of polynomials in H
′ of degree at most m − 1, denoted by

Pm−1. Using ‖f‖H = ‖Tf‖H′ and denoting by B the left-hand side of (24), we have

K∞,f0(Vm) = sup{‖f‖∞,f0 : f ∈ Vm, ‖f‖H = 1}

≤ B sup

{

sup
t∈[a′,b′]

|Tf(t)| : f ∈ Vm, ‖f‖H = 1

}

= B sup

{

sup
t∈[a′,b′]

|p(t)| : p ∈ Pm−1,

∫ b′

a′
p2(t)dt = 1

}

By the Nikolskii inequality (see e.g. DeVore and Lorentz [7], Theorem 4.2.6), there exists a constant

C > 0 such that the latter sup is at most Cm. Hence, there exists C0 > 0 such that K∞,f0(Vm) ≤ C0m
for all m ≥ 1. �

Theorem 3 and Lemmas 2 and 3 yield the following result.

Corollary 2. Let α ≥ 1 and C > (b − a)−1/2. Suppose that Assumption 3 holds with an isometry T
satisfying the assumptions of Theorem 2. Let w be an [α] + 1 times continuously differentiable function

defined on [a, b] and set

(25) vm = sup
g∈V ⊥

m ,‖g‖H≤1

∫

|πw g(x)| ζ(dx) .

Then there exists a small enough C∗ > 0 and C∗ > 0 such that, for any sequence (mn) of integers

increasing to ∞ satisfying vmn ≤ C∗ n
−1m−α

n , we have

(26) inf
f̂∈Sn

sup
f∈C̃(α,C)∩H1

π⊗n
f ‖f̂ − f‖2H ≥ C∗ m−2α

n (1 + o(1)) ,

where C̃(α,C) is the smoothness class defined by (20).

Remark 3. The assumption C > (b − a)−1/2 is necessary, otherwise C̃(α,C) ∩ H1 is reduced to one

density for C = (b−a)−1/2 and is empty for C < (b−a)−1/2. To see why, observe that for any f ∈ H1,

by Jensen’s inequality, ‖f‖2
H
=
∫ b
a f

2(t)dt ≥ (b − a)−1, with equality implying that f is the uniform

density on [a, b].

Proof. We apply Theorem 3 with f0 set as the uniform density on [a, b] and f∗ chosen as follows. For

some C0 > 0 and an integer m to be determined later, we choose f∗ = wg where g is given by Lemma 2

with K = min(1, supt∈[a,b] |w(t)|). Since g ∈ w⊥ and ‖g‖∞,f0 ≤ K , we get that f0 ± f∗ ∈ H1.

Now we show that {f0, f0 ± f∗} ⊂ C̃(α,C) for a well chosen C0. We have ‖f0‖H = (b − a)−1/2

and, since the symmetric differences of all order vanishes on f0, we get that f0 ∈ C̃(α, (b− a)−1/2). By

definition of g in Lemma 2 and Lemma 5 successively, we get that f∗ ∈ C̃(α,C ′
1C0) for some C ′

1 > 0

not depending on C0. Choosing C0 = (C − (b− a)−1/2)/C ′
1, we finally get that

{f0, f0 ± f∗} ⊂ C̃(α,C) ∩H1 .

By Lemma 2, ‖g‖H → 0 as m → ∞ and, since w is bounded, it implies that ‖f∗‖H ≤ 1 for m large

enough. Hence we may apply Theorem 3 and, to conclude the proof, it remains to provide a lower

bound of the right-hand side of (23) for the above choice of f∗. Under the assumptions of Theorem 2,

Condition (24) clearly holds. So Lemma 3 and the definition of g in Lemma 2 give that

‖g‖H ≤ C ′
0m

−α ,
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for some constant C ′
0 > 0. By definition of vm and since g ∈ V ⊥

m , we have
∫

|πf∗(x)| ζ(dx) ≤ ‖g‖H vm ≤ C ′
0m

−αvm .

We now apply the lower bound given by (23) with m = mn for (mn) satisfying vmn ≤ C∗n
−1m−α

n . We

thus obtain

inf
f̂∈Sn

sup
f∈C̃(α,C)∩H1

π⊗n
f ‖f̂ − f‖2H

≥ c(C ′
0m

−α
n )2 − c

(1− c)2
C∗C

′
0m

−2α
n (1 + o(1))

≥ C∗m−2α
n (1 + o(1)) ,

where the last inequality holds for some C∗ > 0 provided that C∗ is small enough. �

To apply Corollary 2, one needs to investigate the asymptotic behavior of the sequence (vm) defined

in (25). The following lemma can be used to achieve this goal.

Lemma 4. Under Assumption 3, if π·(x) ∈ H for all x ∈ X, then vm defined in (25) satisfies

(27) vm ≤
∫

‖T [wπ·(x)]− PPm−1
(T [wπ·(x)])‖H′ ζ(dx) ,

where Pm−1 is the set of polynomials of degree at most m− 1 in H
′ and PPm−1

denotes the orthogonal

projection in H
′ onto Pm−1.

Proof. Let g ∈ V ⊥
m such that ‖g‖H ≤ 1. Then we have, for all x ∈ R,

πwg(x) = 〈wg, π·(x)〉H = 〈g,wπ·(x)〉H = 〈Tg, T [wπ·(x)]〉H′ .

Recall that TVm = Pm−1 is the set of polynomials of degree at most m − 1 in H
′. Hence, Tg is

orthogonal to Pm−1, and for any p ∈ Pm−1, we get, for all x ∈ R,

(28) |πwg(x)| = |〈Tw, T [wπ·(x)]− p〉H′ | ≤ ‖T [wπ·(x)]− p‖H′ ,

where we used the Cauchy-Schwarz inequality and ‖Tg‖H′ = ‖g‖H ≤ 1. Now the bound given by (27)

is obtained by taking p equal to the projection of [wπ·(x)] onto Pm−1 (observe that the right-hand side

of (28) is then minimal). �

5.3. Minimax Rate for Exponential Mixtures. In this section, we show that in the case of exponential

mixtures the orthogonal series estimator of Example 1(a) achieves the minimax rate.

Theorem 4. Consider the exponential case, that is, let Assumption 1 hold with ζ defined as the Lebesgue

measure on R+, Θ = [a, b] ⊂ (0,∞) and πt(x) = te−tx. Let C > (b − a)−1/2 and α > 1 and define

C̃(α,C) as in (20). Then there exists C∗ > 0 such that

inf
f̂∈Sn

sup
f∈C̃(α,C)∩H1

π⊗n
f ‖f̂ − f‖2H ≥ C∗(log n)−2α(1 + o(1)) .(29)

Proof. Let gk(x) = 1{x > k − 1
2

}

, for k ≥ 1. Then Assumption 3 holds with ϕk and T defined by (6)

and (7), respectively. Since a > 0, T satisfies the assumptions of Theorem 2. We may thus apply

Corollary 2 with w = 1[a,b] . Hence the minimax lower bound given in (29) thus follows from (26),

provided that we have for some constant C ′ > 0, setting mn = C ′ log n,

(30) vmn = o(n−1m−α
n ) as n→ ∞ ,

where vm is defined by (25). Note that πt(x) = te−xt1R+
(x). We apply Lemma 4 to bound vm. Using

the definition of T in (7), we have for all x ≥ 0, [Tπ·(x)](t) = − log t tx−1/2. We write x ∈ R+ as the
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sum of its entire and decimal parts, x = [x] + 〈x〉, and observe that, since < x > −1/2 ∈ [−1/2, 1/2)

and [a′, b′] = [e−b, e−a] ⊂ (0, 1), the expansion of t<x>−1/2 =
∑

k≥0 αk(x)(1 − t)k as a power series

about t = 1 satisfies |αk(x)| =
∏k

j=1 |〈x〉 − 1/2) − j|/k! ≤ 1. Extending − log t about t = 1, we thus

get − log(t)t<x>−1/2 =
∑

k≥0 βk(x)(1 − t)k with |βk(x)| = |∑k
l=1 αk−l/l| ≤ 1 + log(k). For any

x < m, we use this expansion to approximate [Tπ·(x)](t) = − log(t)t<x>−1/2 × t[x] by a polynomial

of degree m. Namely, we obtain

sup
t∈[a′,b′]

|[Tπ·(x)](t) −
m−[x]
∑

k=0

βk(x) t
k+[x]| ≤

∑

k>m−[x]

(1 + log(k))(b′)k+[x] ≤ C1c
m ,

where we used the bound 1 + log(k) ≤ C1(c/b
′)k, valid for some constants C1 > 0 and c ∈ (b′, 1) not

depending on x. This bound also applies to ‖Tπ·(x)−PPm−1
(Tπ·(x))‖H′ by definition of the projection

PPm−1
. For x ≥ m, we simply observe that |[Tπ·(x)](t)| ≤ − log(a′)b′x−1/2

. This also provides an

upper bound for ‖Tπ·(x)− PPm−1
(Tπ·(x))‖H′ . Finally, integrating on x ≥ 0 we get

∫

R+

‖Tπ·(x)− PPm−1
(Tπ·(x))‖H′ dx ≤ C2mcm ,

with constants C2 > 0 and c < 1 not depending on m, and this upper bound applies to vm by Lemma 4.

This shows that (30) holds provided that C ′ > 0 is taken small enough. This completes the proof. �

5.4. Minimax Rate for Gamma Shape Mixtures. In this section, we show that in the case of Gamma

shape mixtures the orthogonal series estimator of Example 4 achieves the minimax rate up to the log log n
multiplicative term.

Theorem 5. Consider the Gamma shape mixture case, that is, let Assumption 1 hold with ζ defined as

the Lebesgue measure on R+, Θ = [a, b] ⊂ (0,∞) and πt(x) = xt−1e−x/Γ(t). Let C > (b − a)−1/2

and α > 1 and define C̃(α,C) as in (20). Then there exists C∗ > 0 such that

inf
f̂∈Sn

sup
f∈C̃(α,C)∩H1

π⊗n
f ‖f̂ − f‖2H ≥ C∗(log n)−2α(1 + o(1)) .(31)

Proof. We proceed as in the proof of Theorem 4. This time we set gk(x) =
∑k

l=1 c̃k,lt
l−1 with coeffi-

cients (c̃k,l) defined in Lemma 6. Assumption 3 then holds with H
′ = H and T defined as the identity

operator. Applying Corollary 2 with w(t) = Γ(t), we obtain the lower bound given in (31) provided

that Condition (30) holds with mn = C ′ log n/ log log n for some C ′ > 0. Again we use Lemma 4 to

check this condition in the present case. To this end we must, for each x > 0, provide a polynomial

approximation of w(t)πt(x) = xt−1e−x as a function of t. Expanding the exponential function as a

power series, we get

sup
t∈[a,b]

∣

∣

∣

∣

∣

w(t)πt(x)− e−x
m−1
∑

k=0

logk(x)

k!
(t− 1)k

∣

∣

∣

∣

∣

≤ e−x
∑

k≥m

| log(x)|k
k!

ck ,

where c = max(|a − 1|, |b − 1|). Let (xm) be a sequence of real numbers tending to infinity. The right

hand side of the previous display is less than ec| log(x)|−x(c| log(x)|)m/m!. We use this for bounding

‖wπ·(x) − PPm−1
(wπ·(x))‖H (recall that T is the identity and H

′ = H) when x ∈ [e−xm , xm]. When

x ∈ (0, e−xm) we use that the latter is bounded by O(1) and when x > xm by O(e−x/2). Hence

Lemma 4 gives that

vm = O(e−xm) +
cm

m!

∫ xm

e−xm

ec| log(x)|−x | log(x)|m dx+O
(

e−xm/2
)

.
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Now observe that, as xm → ∞, separating the integral
∫ xm

e−xm as
∫ 1
e−xm +

∫ xm

1 , we get
∫ xm

e−xm

ec| log(x)|−x | log(x)|m dx = O(ecxmxmm) +O(logm(xm)) .

Set xm = c0m. By Stirling’s formula, for c0 > 0 small enough, we get vm = O(cm1 ) with c1 ∈ (0, 1).
We conclude as in the proof of Theorem 4. �

5.5. Lower Bound for Compactly Supported Scale Families. We derived in Corollary 1 an upper

bound of the minimax rate for estimating f in C(α,C). It is thus legitimate to investigate whether, as

in the exponential mixture case, this upper bound is sharp for mixtures of compactly supported scale

families. A direct application of Corollary 2 provides the following lower bound, which, unfortunately,

is far from providing a complete and definite answer.

Theorem 6. Consider the case of scale mixtures of a compactly supported density on R+, that is, suppose

that the assumptions of Lemma 1 hold. Suppose moreover that π1 has a k-th derivative bounded on R+.

Let C > (b− a)−1/2 and α ≥ 1, and define C̃(α,C) as in (20). Then if k > α,

inf
f̂∈Sn

sup
f∈C̃(α,C)∩H1

π⊗n
f ‖f̂ − f‖2H ≥ n−2α/(k−α)(1 + o(1)) .(32)

Proof. We proceed as in the proof of Theorem 4, that is, we observe that Assumption 3 holds with the

same choice of (gk) as in Lemma 1 and apply Corollary 2 with w = 1[a,b] . Here, the lower bound given

in (32) is obtained by showing that

(33) vmn = O(n−1m−α
n ) as n→ ∞ ,

holds with mn = n1/(k−α) and with (vm) defined by (25). Again we use Lemma 4 to bound vm. Here

T is the identity operator on H = H
′ and πt(x) = t−1π1(x/t). Let M > 0 such that the support of π1 is

included in [0,M ]. Then for t ∈ [a, b] and x > Mb, πt(x) = 0. Hence

(34) ‖π·(x)− PPm−1
(π·(x))‖H = 0 for all x > Mb .

We now consider the case x ≤ Mb. By the assumption on π1 and a, we have that t 7→ πt(x) =
t−1π1(x/t) is k-times differentiable on [a, b]. Moreover its k-th derivative is bounded by Ckx

k on [a, b],
where Ck > 0 does not depend on x. It follows that, for any h > 0 and t ∈ [a, b],

∣

∣

∣∆k
h(π·(x), t)

∣

∣

∣ ≤ Ck k! (xh)
k ,

where ∆k
h is the k-th order symmetric difference operator defined by (17). Observing moreover that

‖π·(x)‖2H =

∫ b

a
t−2π21(x/t) dt ≤ C ′ ,

for some C ′ > 0 not depending on x, we get that π·(x) ∈ C̃(k,C ′ ∨ Ck k!x
k). Using Corollary 7.25 in

Ditzian and Totik [8], we thus have for a constant C ′′ > 0 not depending on x,

(35) ‖π·(x)− PPm−1
(π·(x))‖H ≤ C ′′(1 + xk)m−k for all x ≤Mb .

Applying Lemma 4 with (34) and (35), we obtain vm = O(m−k). We conclude that (33) holds with

mn = n1/(k−α), which completes the proof. �

Theorem 6 provides polynomial lower bounds of the minimax MISE rate whereas Corollary 1 gives

logarithmic upper bounds in the same smoothness spaces. Hence the question of the minimax rate is left

completely open in this case. Moreover the lower bound relies on smoothness conditions on π1 which

rule out Example 3 (for which π1 is discontinuous). On the other hand, the case of scale families can be
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related with the deconvolution problem that has received a considerable attention in a series of papers of

the 1990’s (see e.g. [26, 9, 10, 11, 21]). The following section sheds a light on this relationship.

5.6. Scale Families and Deconvolution. The following lower bound is obtained from classical lower

bounds in the deconvolution problem, derived in [11].

Theorem 7. Consider the case of scale mixtures on R+, that is, suppose that Assumption 1 with ζ equal

to the Lebesgue measure on R+, Θ = [a, b] ⊂ (0,∞) and πt(x) = t−1π1(x/t). Denote by φ the

characteristic function of the density etπ1(e
t) on R,

φ(ξ) =

∫

et+iξtπ1(e
t) dt .

Define T̃ as the operator T̃ (g) = g̃, where g : R → R and g̃(t) = t−1g(log(t)) for all t ∈ (0,∞). Let

C > 0 and α > 0, and define L(α,C) as the set containing all densities g on R such that
∣

∣

∣g(r)(t)− g(r)(u)
∣

∣

∣ ≤ C|t− u|α−r for all t, u ∈ R ,

where r = [α].

(a) Assume that φ(j)(t) = O(|t|−β−j) as |t| → ∞ for j = 0, 1, 2, where φ(j) is the j-th derivative of φ.

Then there exists C∗ > 0 such that

inf
f̂∈Sn

sup
f∈T̃ (L(α,C))

π⊗n
f ‖f̂ − f‖2H ≥ C∗ n−2α/(2(α+β)+1)(1 + o(1)) .(36)

(b) Assume that φ(t) = O(|t|β1e−|t|β/γ) as |t| → ∞ for some β, γ > 0 and β1, and that π1(u) =
o(u−1| log(u)|−a) as u→ 0,∞ for some a > 1. Then there exists C∗ > 0 such that

inf
f̂∈Sn

sup
f∈T̃ (L(α,C))

π⊗n
f ‖f̂ − f‖2H ≥ C∗ log(n)−2α/β(1 + o(1)) .(37)

Proof. In the scale mixture case the observation X can be represented as X = θY , where Y and θ are

independent variables having density π1 and (unknown) density f , respectively. By taking the log of

the observations, the problem of estimating the density of log(θ), that is f∗(t) = etf(et), is a deconvo-

lution problem. Hence we may apply Theorem 2 in [11] to obtain lower bounds on the nonparametric

estimation of f∗ from log(X1), . . . , log(Xn) under appropriate assumptions on φ, which is the charac-

teristic function of log(Y ). Let a′ = log(a) and b′ = log(b). The lower bounds in (a) and (b) above are

those appearing in (a) and (b) in Theorem 2 of [11] of the minimax quadratic risk in H
′ = L2([a′, b′])

for estimating f∗ in the Lipschitz smoothness class L(α,C). Observe that T̃ is defined for all function

g : [a′, b′] → R by T̃ (g) = g̃ with g̃ defined on [a, b] by g̃(t) = t−1g(log(t)), so that T̃ (f∗) = f .

Observing that T̃ is a linear operator and that for any g ∈ H
′, ‖T̃ (g)‖H ≍ ‖g‖H′ , we obtain the lower

bounds given in (36) and (37). �

As in Theorem 6, the smoother π1 is assumed, the slower the lower bound of the minimax rate.

However the lower bounds obtained in Theorem 7 hold for a much larger class of scale families. Indeed,

if π1 is compactly supported, the condition induced on π1 in case (a) are much weaker than in Theorem 6.

For instance, it holds with β = k for Example 3. For an infinitely differentiable π1 both theorems say

that the minimax rate is slower than any polynomial rate. However, in this case, case (b) in Theorem 7

may provide a more precise logarithmic lower bound. It is interesting to note that, as a consequence

of [5], the MISE rate (log n)−2α, which is the rate obtained in Corollary 1 by the polynomial estimator

for any compactly supported π1, is the slowest possible minimax rate obtained in Theorem 7(b) for a

compactly supported π1. Such a comparison should be regarded with care since the smoothness class
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in the latter theorem is different and cannot be compared to the smoothness classes considered in the

previous results, as we explain hereafter.

The arguments for adapting the lower bounds of Theorem 7 also apply for minimax upper bounds.

More precisely, using the kernel estimators for the deconvolution problem from the observations log(X1),

..., log(Xn) and mapping the estimator through T̃ , one obtains an estimator of f achieving the same in-

tegrated quadratic risk. The obtained rates depend on similar assumptions on φ as those in (a) and (b),

see [9, 10, 11]. Although the scale mixture and the convolution model are related to one another by

taking the exponential (or the logarithm in the reverse sense) of the observations, it is important to note

that, except for Theorem 7, our results are of different nature. Indeed, the upper and lower bounds in the

deconvolution problem cannot be compared with those obtained previously in the paper because there

are no possible inclusions between the smoothness classes considered in the deconvolution problem and

those defined by polynomial approximations.

Let us examine more closely the smoothness class T̃ (L(α,C)) that appears in the lower bounds of

Theorem 7, inherited from the results on the deconvolution problem. This class contains densities with

non-compact supports whereas C̃(α,C) ∩ H1 only contains densities with supports in [a, b]. Hence

neither (36) nor (37) can be used for deriving minimax rates in C̃(α,C) ∩ H1. In fact the densities

exhibited in [11] to prove the lower bound have infinite support by construction and the argument does

not at all seem to be adaptable for a class of compactly supported densities. As for upper bounds in the

deconvolution problem, they are based on Lipschitz or Sobolev type of smoothness conditions which are

not compatible with compactly supported densities on [a, b] except for those that are smoothly decreasing

close to the end points. This follows from the fact that, in the deconvolution problem, standard estimators

(kernel or wavelet) highly rely on the Fourier behavior both of the mixing density and of the additive

noise density. In contrast, such boundary constraints are not necessary for densities in C̃(α,C). For

instance the uniform density on [a, b] belongs to C̃(α,C) for all α > 0 and C > (b − a)−1/2, but has

a Fourier transform decreasing very slowly. A natural conclusion of this observation is that polynomial

estimators should be used preferably to standard deconvolution estimators when the mixing density has

a known compact support [a, b] ⊂ (0,∞). Of course this conclusion holds for both deconvolution and

scale mixture problems.

6. SUPPORT ESTIMATION

A basic assumption of our estimation approach is that the mixing density f belongs to H = L2[a, b].
However, in practice the exact interval [a, b] is generally unknown. To compass this problem, we propose

an estimator of the support of the mixing density f , or more precisely of the support of Tf . It can be

shown that the support estimator is consistent when it is based on an estimator T f̂n,mn, which is a

polynomial, and Tf behaves as follows on the bounds of the support interval.

Denote by [a0, b0] the smallest interval such that Tf(u) = 0 for all u ∈ [a′, b′]\[a0, b0]. In other

words, a0 = inf{u ∈ [a′, b′], T f(u) > 0} and b0 = sup{u ∈ [a′, b′], T f(u) > 0}. Furthermore, we

suppose that there exist constants D > a0, E < b0,D
′, E′, α′ > 0 such that

Tf(u) ≥ ((u− a0)/D
′)α

′

, for all u ∈ [a0,D] ,(38)

Tf(u) ≥ ((b0 − u)/E′)α
′

, for all u ∈ [E, b0] .(39)
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For fixed εn, ηn > 0, we define the estimators ân and b̂n of the interval bounds a0 and b0 by

ân = inf
{

u ∈ [a′, b′] : T f̂n,mn(v) >
εn
2

for all v ∈ [u, u+ ηn]
}

(40)

b̂n = sup
{

u ∈ [a′, b′] : T f̂n,mn(v) >
εn
2

for all v ∈ [u− ηn, u]
}

.(41)

Roughly, these estimators take the smallest and largest value where the estimator T f̂n,mn exceeds εn/2,

by disregarding side-effects of size ηn. For a convenient choice of the sequences (εn)n and (ηn)n these

estimators are consistent.

Proposition 2. Let f̂n,mn be the density estimator defined in (3) under Assumption 3 with α > 1/2.

Suppose that f verifies (38-39) for appropriate constants D > a0, E < b0,D
′, E′, α′ > 0. Assume that

there are sequences mn → ∞, εn → 0 and ηn → 0 such that

E

∥

∥

∥f̂n,mn − f
∥

∥

∥

2

H

= O
(

m−2α
n

)

, ε−1
n = o

(

m(2α−1)/(2+1/α′)
n

)

, ηn = O
(

ε1/α
′

n m−1
n

)

.

Then the estimators ân and b̂n defined by (40) and (41) are consistent for the support bounds a0 and b0.

More precisely, as n→ ∞,

(ân − a0)+ = OP

(

ε1/α
′

n

)

and (ân − a0)− = OP

(

ε1/α
′

n m−1
n

)

,

(b̂n − b0)+ = OP

(

ε1/α
′

n m−1
n

)

and (b̂n − b0)− = OP

(

ε1/α
′

n

)

.

Proof. First we consider (ân − a0)+. We set δn =MD′ε
1/α′

n for some M > 1 and denote

An = {(ân − a0)+ > δn} = {ân > a0 + δn}

=
{

∀u ∈ [a′, a0 + δn] ∃v ∈ [u, u+ ηn] such that T f̂n,mn(v) ≤
εn
2

}

.

As T f̂n,mn is a polynomial of degree mn, T f̂n,mn has at most mn intersections with any constant func-

tion. Hence, the number of subintervals of [a′, b′] where T f̂n,mn exceeds ε/2 for any fixed ε > 0 is

bounded by mn. On An, all such intervals included in [a′, a0 + δn] are at most of size ηn. Thus, on An,

∫ a0+δn

a′
1{T f̂n,mn(u) >

εn
2

}

du ≤ mnηn .

It follows, that on An,

∫ a0+δn

a′
1{T f̂n,mn(u) ≤

εn
2

}

du ≥ a0 + δn − a′ −mnηn ,

and thus
∫ a0+δn

a0+D′ε
1/α′

n

1{T f̂n,mn(u) ≤
εn
2

}

du ≥ δn −mnηn −D′ε1/α
′

n .

For large n such that δ
1/α′

n < D and since Tf > εn on [a0 +D′ε
1/α′

n ,D] by (38), we obtain on An,

∫ a0+δn

a0+D′ε
1/α′

n

1{T f̂n,mn(u) ≤
εn
2

}

du ≤
∫ a0+δn

a0+D′ε
1/α′

n

1{|T f̂n,mn(u)− Tf(u)| > εn
2

}

du

≤ 4

ε2n

∫ a0+δn

a0+D′ε
1/α′

n

|T f̂n,mn(u)− Tf(u)|2du ≤ 4

ε2n
‖T f̂n,mn − Tf‖2H′ =

4

ε2n
‖f̂n,mn − f‖2H .
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For sufficiently large M we have mnηn < δn −D′ε
1/α′

n . Then, it follows by Markov’s inequality that

P((ân − a0)+ > δn) ≤ P

(

4

ε2n
‖f̂n,mn − f‖2H ≥ δn −mnηn −D′ε1/α

′

n

)

≤ 4E[‖f̂n,mn − f‖2
H
]

ε2n(δn −mnηn −D′ε
1/α′

n )
−→ 0 , n→ ∞ ,

by the assumptions on (εn)n and E

∥

∥

∥
f̂n,mn − f

∥

∥

∥

2

H

and as δn = MD′ε
1/α′

n . Thus (ân − a0)+ =

OP (δn) = OP

(

ε
1/α′

n

)

.

To investigate (ân − a0)− put δn = M ′ηn for some M ′ > 1. By using that Tf = 0 on [a, a0], we

have

P((ân − a0)− > δn) = P(ân < a0 − δn)

= P

(

∃x ∈ [a′, a0 − δn[:

∫ x+ηn

x
1{T f̂n,mn(u) >

εn
2

}

du = ηn

)

≤ P

(∫ a0

a′
1{T f̂n,mn(u) >

εn
2

}

du ≥ ηn

)

= P

(∫ a0

a′
1{|T f̂n,mn(u)− Tf(u)|2 > ε2n

4

}

du > ηn

)

≤ P

(

4

ε2n

∫ a0

a
|T f̂n,mn(u)− Tf(u)|2du > ηn

)

≤ 4E[‖f̂n,mn − f‖2
H
]

ηnε2n
−→ 0 ,

where again we applied Markov’s inequality. Consequently, (ân−a0)− = OP (ηn) = OP

(

ε
1/α′

n m−1
n

)

.

By symmetry, the properties on b̂n stated in the proposition hold as well. �

By Theorem 1 the proposition applies to Example 1 (a) and 3 with mn = A log n and to Example

1 (b) and 2 with mn = A log n/ log log n.

7. NUMERICAL RESULTS

A simulation study is conducted to evaluate the performance of the estimator on finite datasets. Six

different mixture settings are considered, namely the exponential mixture from Example 1 (a) and 1 (b),

the Gamma shape mixture from Example 2, the uniform mixture and the Beta mixture with k = 4 from

Example 3 and the exponential mixture with a location parameter from Example 4.

We consider the case where the mixing density f is the Beta distribution on the interval [1, 4] with

parameters α = 3/2 and β = 3. Remark that for the exponential mixture setting of Example 1 (b) we

cannot take a mixing distribution with support [a, b] with a = 0, since b′ = 1/a must be finite.

For every mixture setting, the estimator f̂m,n with m = 5 is computed on a large number of datasets

(for sample sizes n varying from 100 to 109) and the corresponding MISE is evaluated. Table 1 gives the

mean values of the different MISE and the associated standard deviations. Obviously, in all six settings

the MISE decreases when n increases. Note that in the last four settings, where the mixing density f
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TABLE 1. Estimated MISE (and standard deviation) of estimator f̂m,n with m = 5 in

six different mixture settings when the mixing density f is a Beta distribution.

n
102 103 104 105 106 107 108 109

Exp. (a) MISE 0.72 0.69 0.62 0.48 0.26 0.058 8.4e-03 1.1e-03

sd (0.16) (0.17) (0.16) (0.19) (0.18) (0.085) (0.10) (1.4e-03)

Exp. (b) MISE 0.61 0.52 0.35 0.21 0.084 0.015 2.0e-03 4.4e-04

sd (0.21) (0.25) (0.25) (0.21) (0.12) (0.027) (2.9e-03) (2.7e-04)

Gamma MISE 0.58 0.47 0.31 0.12 0.020 3.4e-03 1.5e-03 1.3e-03

sd (0.20) (0.22) (0.21) (0.13) (0.024) (3.0e-03) (4.5e-04) (4.9e-05)

Uniform MISE 0.32 0.10 0.015 2.9e-03 1.5e-03 1.3e-03 1.3e-03 1.3e-03

sd (0.25) (0.12) (0.018) (2.1e-03) (2.6e-04) (4.4e-05) (1.2e-05) (3.6e-06)

Beta MISE 0.46 0.19 0.035 5.4e-03 1.7e-03 1.4e-03 1.3e-03 1.3e-03

sd (0.27) (0.17) (0.040) (5.3e-03) (6.5e-04) (8.6e-05) (2.2e-05) (5.8e-06)

Exp. loc. MISE 0.55 0.47 0.29 0.11 0.015 2.9e-03 1.5e-03 1.3e-03

sd (0.20) (0.23) (0.21) (0.11) (0.018) (1.9e-03) (2.6e-04) (5.3e-05)
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FIGURE 1. 10 estimators f̂mbest,n (black) in six different settings with n = 105 when

the mixing density f is a Beta distribution (red).

is approximated in the same polynomial basis, the MISE tends to the same value, which is obviously

the squared bias of the estimator when m = 5. In the exponential mixture settings, different values are

obtained because different bases are used to approach f . The exponential mixture setting from Example

1 (a) always has the largest mean MISE value, while the uniform and the Beta mixtures are doing best.
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Figure 1 illustrates the estimator f̂m,n when n = 105 and where the order m is the value minimizing

the MISE when n = 105, say mbest. The values of mbest have been obtained by extra simulations. We

see that in the first two settings, we only have mbest = 3 and the estimator seems slightly biased. On the

contrary, the uniform mixture setting allows for the best approximation with mbest = 5.

APPENDIX A. TECHNICAL RESULTS

Lemma 5. Let α > 0, a < b and a′ < b′. Define C̃(α,C)H as in (20) and C̃′(α,C)H similarly with a′

and b′ replacing a and b. Let σ be [α] + 1 differentiable on [a, b] and τ : [a′, b′] → [a, b] be [α] + 1
differentiable on [a′, b′] with a non-vanishing first derivative. Then

{

σf : f ∈ C̃(α, ·)H
}

→֒ C̃(α, ·)H and
{

f ◦ τ : f ∈ C̃(α, ·)H
}

→֒ C̃′(α, ·)H .

Proof. As the first embedding is the inclusion (40) in Roueff and Ryden [22], we only show the second

embedding. Let f ∈ C̃(α,C) and denote r = [α] + 1. Let t ∈ (0, 1]. By the equivalence (19) with the

K-functional given in (18) there exists a function h such that h(r−1) ∈ A.C.loc and

(42) ‖f − h‖H + tr‖ϕrh(r)‖H ≤ 2Mωr
ϕ(f, t)H ≤ 2MCtα ,

where ϕ(x) =
√

(x− a)(b− x). Let us set h̃ = h ◦ τ and show that, for some constant K > 0 neither

depending on t nor C ,

(43) ‖f ◦ τ − h̃‖H′ + tr‖ϕ̃r h̃(r)‖H′ ≤ K C tα ,

where we defined ϕ̃(x) =
√

(x− a′)(b′ − x), that is the same definition as ϕ with a′ and b′ replacing a
and b. Using again equivalence (19), the bound given in (43) will achieve the proof of the lemma.

Note that since τ ′ does not vanish, denoting C1 = (inf |τ ′|)−1, for all g ∈ H, we have

(44) ‖g ◦ τ‖H′ ≤ C1‖g‖H .

In particular we have that

(45) ‖f ◦ τ − h̃‖H′ = ‖(f − h) ◦ τ‖H′ ≤ C1‖f‖H .

Since τ is r times continuously differentiable and h(r−1) ∈ A.C.loc, we note that h̃(r−1) ∈ A.C.loc with

h̃(r) =
∑r

j=1 τj × h(j) ◦ τ , where the τj’s are continuous functions only depending on τ . Hence there is

a constant C2 > 0 only depending on τ and r such that

‖ϕ̃r h̃(r)‖H′ ≤ C2 max
j=1,...,r

‖ϕ̃r h(j) ◦ τ‖H′ .

Another simple consequence of τ ′ not vanishing on [a′, b′] is that there exists a constant C3 > 0 such

that ϕ̃(x) ≤ C3ϕ ◦ τ(x) for all x ∈ [a′, b′]. Using this with (44) in the previous display, we get

(46) ‖ϕ̃r h̃(r)‖H′ ≤ C1 C2C3 max
j=1,...,r

‖ϕr h(j)‖H .

We shall prove that ‖ϕr h(j)‖H appearing in the right-hand side of the previous inequality is in fact

maximized, up to multiplicative and additive constants, at j = r. For j = 1, . . . , r − 1, we proceed

recursively as follows. For any u ∈ (a, b), we have

|h(j)(x)| ≤
∣

∣

∣

∣

∫ x

u
h(j+1)(s)ds

∣

∣

∣

∣

+ |h(j)(u)| .
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Then, by Jensen’s inequality,

‖ϕr h(j)‖H

≤
{

∫ b

x=a
ϕ2r(x)

(

|x− u|
∫

s∈[u,x]
{h(j+1)(s)}2ds

)

dx

}1/2

+ ‖ϕr‖H |h(j)(u)| ,

where we used the convention that [c, d] denotes the same segment whether c ≤ d or not. By Fubini’s

theorem, the term between braces reads
∫ b

s=a
{h(j+1)(s)}2ψ(s;u)ds with ψ(s;u) =

∫ 1[u,x](s) (x− a)r(b− x)r|x− u|dx .

Let ã < b̃ be two fixed numbers in (a, b). It is straightforward to show that, for some constant C4 > 0

only depending on a, b, ã, b̃, we have

ψ(s;u) ≤ C2
4 ϕ

2r(s) for all u ∈ (ã, b̃) .

The last 3 displays thus give that

‖ϕr h(j)‖H ≤ C4‖ϕr h(j+1)‖H + ‖ϕr‖H inf
u∈[ã,b̃]

|h(j)(u)| .

By induction on j, we thus get with (46) that there is a constant C5 such that

(47) ‖ϕ̃r h̃(r)‖H′ ≤ C5



‖ϕr h(r)‖H +
∑

j=1,...,r−1

inf
u∈[ã,b̃]

|h(j)(u)|



 .

The final step of the proof consists in bounding infu∈[ã,b̃] |h(j)(u)| for j = 1, . . . , r − 1. Let δj =

infu∈[ã,b̃] |h(j)(u)|. Then for any v, v′ ∈ [ã, b̃], we have |h(j−1)(v′) − h(j−1)(v)| ≥ δj |v′ − v|. Suppose

that v is in the first third part of the segment [ã, b̃] and v′ in the last third so that |v − v′| ≥ (b̃ − ã)/3.

On the other hand |h(j−1)(v′)− h(j−1)(v)| ≤ |h(j−1)(v′)|+ |h(j−1)(v)|. It follows that |h(j−1)(v′)| and

|h(j−1)(v)| cannot be both less than δj (b̃− ã)/3, which provides a lower bound of |h(j−1)| on at least one

sub-interval of [ã, b̃] of length (b̃ − ã)/3. Proceeding recursively we get that there exists a sub-interval

of [ã, b̃] on which h is lower bounded by δj multiplied by some constant. This in turns gives that
∑

j=1,...,r−1

inf
u∈[ã,b̃]

|h(j)(u)| ≤ C6‖h‖H .

where C6 is a constant only depending on ã, b̃ and r. Observe that, since f ∈ C̃(α,C), we have

‖f‖H ≤ C . Using (42), t ∈ (0, 1] and ‖h‖H ≤ ‖f − h‖H + ‖f‖H in the last display we thus get
∑

j=1,...,r−1

inf
u∈[ã,b̃]

|h(j)(u)| ≤ C6(2M + 1)C .

Finally, this bound, (47), (45) and (42) yields (43) and the proof is achieved. �

Lemma 6. Let (pk) be the sequence of polynomials defined by p1(t) = 1, p2(t) = t, ..., pk(t) =
t(t + 1) . . . (t + k − 2) for all k ≥ 2. Define the coefficients (c̃k,l)1≤l≤k by the expansion formula

tk−1 =
∑k

l=1 c̃k,lpl(t), valid for k = 1, 2, . . . . Then c̃1,1 = 1, and for all k ≥ 2,

(48) c̃k,1 = 0 , c̃k,k = 1 and c̃k,l = c̃k−1,l−1 − (l − 1)c̃k−1,l for all l = 2, . . . , k − 1 .

Moreover, we have, for all k ≥ 1,

(49)

k
∑

l=1

|c̃k,l| ≤ k! .
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Proof. By definition of pl, we have tpl(t) = pl+1(t)− (l− 1)pl(t) for any l ≥ 1. Hence, for any k ≥ 2,

writing tk−1 = ttk−2 =
∑

l c̃k−1,ltpl(t), we obtain (48).

We now prove (49). It is obviously true for k = 1. From (48), it follows that, for all k ≥ 2,

k
∑

l=1

|c̃k,l| ≤
k−1
∑

l=1

l |c̃k−1,l|+ 1 .

Bounding l inside the last sum by (k − 1) yields (49). �
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