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In this article, we first present the construction of Gibbs measures associated to nonlinear Schrödinger equations with harmonic potential. Then we show that the corresponding Cauchy problem is globally well-posed for rough initial conditions in a statistical set (the support of the measures). Finally, we prove that the Gibbs measures are indeed invariant by the flow of the equation. As a byproduct of our analysis, we give a global well-posedness and scattering result for the L 2 critical and super-critical NLS (without harmonic potential).

Introduction

The purpose of this work is twofold. First we construct Gibbs measures and prove their invariance by the flow of the nonlinear (focusing and defocusing) Schrödinger equations (defined in a strong sense) in the presence of a harmonic potential. In the construction of these measures, most of the difficulties appear for the focusing case (for which case our results are only true for the cubic non linearity while in the defocusing case we have no restriction on the size of the non linearity). The non linear harmonic oscillator appears as a model in the context of Bose-Einstein condensates and our result gives some insights concerning the long time dynamics of these models. The second purpose of this work is to prove global well-posedness for the L 2 critical and super-critical nonlinear Schrödinger equation (NLS) on R, with or without harmonic potential, for data of low regularity. Furthermore, we also obtain scattering when there is no harmonic potential. Such kind of result seems to be out of reach of the present critical regularity deterministic methods.

1.1. The NLS with harmonic potential. -Our analysis here on the NLS with harmonic potential enters into the line of research initiated by Lebowitz-Rose-Speer in [START_REF] Lebowitz | Statistical dynamics of the nonlinear Schrödinger equation[END_REF] and aiming to construct Gibbs measures for Hamiltonian PDE's. This program offers analytic challenges both in the measure construction and in the construction of a well-defined flow on the support of the measure. Usually the support of the measure contains low regularity functions and this fact may be seen as one of the motivations of studying low regularity well-posedness of Hamiltonian PDE's. The approach of [START_REF] Lebowitz | Statistical dynamics of the nonlinear Schrödinger equation[END_REF] has been implemented successfully in several contexts, see e.g. Bourgain [START_REF] Bourgain | Periodic nonlinear Schrödinger equation and invariant measures[END_REF][START_REF] Bourgain | Invariant measures for the 2D-defocusing nonlinear Schrödinger equation[END_REF], Zhidkov [START_REF] Zhidkov | KdV and nonlinear Schrödinger equations : Qualitative theory[END_REF], Tzvetkov [START_REF] Tzvetkov | Invariant measures for the Nonlinear Schrödinger equation on the disc[END_REF][START_REF] Tzvetkov | Invariant measures for the defocusing NLS[END_REF][START_REF] Tzvetkov | Construction of a Gibbs associated to the periodic Benjamin-Ono equation[END_REF], Burq-Tzvetkov [START_REF] Burq | Invariant measure for the three dimensional nonlinear wave equation[END_REF], Oh [START_REF] Oh | Invariance of the Gibbs measure for the Schrödinger-Benjamin-Ono system[END_REF][START_REF] Oh | Invariant Gibbs measures and a.s. global well-posedness for coupled KdV systems[END_REF], and the references therein.

A very natural context where one may try to construct Gibbs measures is the Nonlinear Schrödinger equation (NLS) with harmonic potential. Indeed, in this case the spectrum of the linear problem is discrete and the construction of [START_REF] Lebowitz | Statistical dynamics of the nonlinear Schrödinger equation[END_REF] applies at least at formal level. As we already mentioned this context is natural since the NLS with harmonic potential appears as a model in the Bose-Einstein condensates. As we shall see, it turns out that the construction of [START_REF] Lebowitz | Statistical dynamics of the nonlinear Schrödinger equation[END_REF] provides a Gibbs measure supported by functions for which the corresponding Cauchy problem was not known to be well-posed. In addition the density of the measure can not be evaluated by applying only deterministic arguments such as the Sobolev inequality. All these facts present serious obstructions to make rigourous the Gibbs measure construction.

On the other hand, recent works as [START_REF] Burq | Invariant measure for the three dimensional nonlinear wave equation[END_REF][START_REF] Burq | Random data Cauchy theory for supercritical wave equations I: local existence theory[END_REF][START_REF] Tzvetkov | Construction of a Gibbs associated to the periodic Benjamin-Ono equation[END_REF] showed that by applying more involved probabilistic techniques in combination with the existing deterministic technology for studying these problems one may approach the above difficulties successfully. In particular, in [START_REF] Burq | Invariant measure for the three dimensional nonlinear wave equation[END_REF] an approach to handle regularities for which the corresponding Cauchy problem is ill-posed is developed. Our goal here is to show that the NLS with harmonic oscillator fits well in this approach. In fact, the eigenfunctions of the linear operator enjoy good estimates which is compensated by the bad separation properties of the spectrum. Such a situation is particularly well adapted for the approach of [START_REF] Burq | Invariant measure for the three dimensional nonlinear wave equation[END_REF][START_REF] Burq | Random data Cauchy theory for supercritical wave equations I: local existence theory[END_REF].

We are able to construct Gibbs measures and the corresponding flow for the cubic focusing and arbitrary defocusing NLS in the presence of harmonic potential. The analysis turns out to contain several significant new points with respect to previous works on the subject. Indeed, it seems that it is the first case where the construction and analysis of Gibbs measure with a strong flow can be performed on a non compact phase space. Furthermore, taking into account the low regularity of the initial data, to develop a nice local Cauchy theory at this level of regularity, one has to obtain somehow a gain in terms of derivatives. In the context of wave equations, this gain can be obtained (see [START_REF] Burq | Random data Cauchy theory for supercritical wave equations II: A global existence result[END_REF]) rather easily by first proving a gain at the probabilistic level in terms of L p regularity, and then balancing this gain on the non linearity and using that the non homogeneous wave propagator itself gains one derivative with respect to the source term regularity. For Schrödinger equations, the situation is much less well behaved. Indeed, no such gain of regularity occurs for the non homogeneous Schrödinger propagator, and the starting point of our analysis was precisely that a gain of derivatives occurs at the probabilistic level in terms of L p regularity. However, this gain which would allow to perform the analysis for low power nonlinearities (k ≤ 7) falls well short of what is needed to obtain the full range result (k < +∞) in Theorem 2.4. As a consequence, our analysis requires a full bi-linear analysis at the probabilistic level (see (1.2)). Finally, let us mention some previous works on the non linear harmonic Schrödinger equation (1.1). The (deterministic) Cauchy problem for (1.1) was studied by Carles in [START_REF] Carles | Global existence results for nonlinear Schrödinger equations with quadratic potentials[END_REF], whereas in [START_REF] Fukuizumi | Stability and instability of standing waves for the nonlinear Schrödinger equation with harmonic potential[END_REF], Fukuizumi studies the stability of standing waves associated to (1.1).

Let us now describe in more details our results and consider thus the one dimensional cubic Schrödinger equation with harmonic potential (1.1)

i∂ t u + ∂ 2 x u -x 2 u = κ 0 |u| k-1 u, (t, x) ∈ R × R, u(0, x) = f (x),
where k ≥ 3 is an odd integer and where either κ 0 = 1 (defocusing case) or κ 0 = -1 (focusing case). The case of cubic nonlinearity, i.e. k = 3 is the one which is most relevant in the context of Bose-Einstein condensates.

We now state our result concerning (1.1). For more detailed results, see Theorem 2.3 and Theorem 2.4 below.

Theorem 1.1. -Consider the L 2 Wiener measure on D ′ (R), µ, constructed on the harmonic oscillator eigenbasis, i.e. µ is the distribution of the random variable

∞ n=0 2 2n + 1 g n (ω)h n (x),
where (h n ) ∞ n=0 are the Hermite functions (see (2.1)) and (g n ) ∞ n=0 is a system of standard independent complex Gaussian random variables. Then in the defocusing case, for any order of nonlinearity k < +∞, and in the focusing case for the cubic non linearity, the Cauchy problem (1.1) is globally well posed for µ-almost every initial data. Furthermore, in both cases, there exists a Gibbs measure, absolutely continuous with respect to µ, which is invariant by this flow.

The equation (1.1) is a Hamiltonian PDE with a Hamiltonian J(u) (see (2.2) below). As usual the Gibbs measure is a suitable renormalisation of the formal object exp(-J(u))du. Let us recall that the distribution function of a standard (0 mean and 1 variance) Gaussian complex random variable is 1 π e -|z| 2 dL, where dL is the Lebesgue measure on C. Notice that the results above are not in the "small data" class of results. Indeed, it follows from our analysis that the measure µ is such that for every p > 2 and every R > 0 µ(u : u L p > R) > 0, i.e. our statistical set contains "many" initial data which are arbitrary large in L p (R), p > 2. Moreover, we use no smallness argument in any place of the proof.

We conjecture that our results hold when x 2 is replaced with a potential V ∈ C ∞ (R, R + ), so that V (x) ∼ x 2 for |x| ≫ 1 and |∂ j x V (x)| ≤ C j x 2-|j| (in particular in such a situation there exists C > 0 so that λ 2 n ∼ Cn). Let us define the Sobolev spaces H s , associated to the harmonic oscillator -∂ 2

x +x 2 via the norm u H s = (-∂ 2

x + x 2 ) s/2 u L 2 . As can easily be seen, for any s ≥ 0, the Sobolev space of regularity s, H s (R) has zero µ measure but for every s < 0 the space H s is of full µ measure. As a consequence, the initial data in our result is not covered by the present well-posedness theory for (1.1). What is even worse: according to Christ, Colliander, Tao [START_REF] Christ | Ill-posedness for nonlinear Schrödinger and wave equations[END_REF] and [START_REF] Burq | Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations[END_REF]Appendix] (notice that these results do not apply stricto sensu to the harmonic oscillator, but the proof can easily be modified), we know that as soon as k ≥ 7 the system (1.1) is supercritical and there exists no continuous flow on the Sobolev spaces H s , for s ∈ (0, 1 2 -2 k-1 ). As a consequence, even in the local in time analysis we need to appeal to a bi-linear probabilistic argument. The bi-linear nature of our probabilistic analysis can be seen though the following statement

(1.2) ∀ θ < 1/2, ∀ t ∈ R, (e -itH u) 2 H θ < +∞, µ almost surely.
In our actual proof we do not make use of (1.2) but it was the starting point of our analysis for large k's. We give the proof of (1.2) in the appendix of this article.

1.2. Global well-posedness and scattering for the "usual" L 2 critical ad super-critical NLS on R. -It turns out that the result described in the previous section has an interesting byproduct. Thanks to an explicit transform, we are able to prove a scattering result for the L 2 critical and super-critical equation

(1.3) i∂ t u + ∂ 2 x u = |u| k-1 u, k ≥ 5, (t, x) ∈ R × R, u(0, x) = f (x)
for f (x) of "super-critical" regularity.

Theorem 1.2. -For any 0 < s < 1/2, the equation (1.3) has for µ-almost every initial data a unique global solution satisfying

u(t, •) -e -it∆ f ∈ C R; H s (R)
(the uniqueness holds in a space continuously embedded in C R; H s (R) ). Moreover, the solution scatters in the following sense. There exists µ a.s. states

g ± ∈ H s (R) so that u(t, •) -e it∆ (f + g ± ) H s (R) -→ 0, when t -→ ±∞.
The result of Theorem 1.2 is a large data result and as far as we know there is no large data scattering results for the problem (1.3) for data which are localized (tending to zero at infinity) but missing H 1 , i.e. it seems that the result of Theorem 1.2 is out of reach of the present deterministic results to get scattering. We refer to [START_REF] Nakanishi | Energy scattering for nonlinear Klein-Gordon and Schrödinger equations in spatial dimensions 1 and 2[END_REF] for deterministic scattering results for (1.3) in Sobolev spaces, H s , s ≥ 1. We also refer to [START_REF] Killip | The cubic nonlinear Schrödinger equation in two dimensions with radial data[END_REF] for an approach for obtaining scattering results for L 2 critical problems.

The result of Theorem 1.2 is based on a transformation which reduces (1.3) to a problem which fits in the scope of applicability of our previous analysis. However (except in the scale invariant case p = 5), the reduced problem is not autonomous which makes the arguments more delicate. In particular there is no conserved energy for the reduced problem. However, we will be able to substitute this lack of conservation law by a monotonicity property which in turn will lead to the fact that, roughly speaking, the measure of a set can not decrease along the flow which is the key of the globalization argument. As a consequence, we are able to carry out the global existence strategy whilst no invariant measure is available (see also [START_REF] Colliander | Almost sure global solutions of the periodic cubic nonlinear Schrödinger equation below L2[END_REF] for results in this direction).

1.3. Plan of the paper. -In the following section, we present in details the construction of the Gibbs measure and we give a detailed measure invariance statement. In Section 3, we give the proof of the approximation property of the Gibbs measure by "finite dimensional" measures. In the next section, we establish a functional calculus of -∂ 2

x + x 2 , fundamental for the future analysis. The following two sections are devoted to establishing two families of linear dispersive estimates, namely the Strichartz and the local smoothing estimates. Here we develop the very classical deterministic estimates but also the more recent stochastic variants of them. The interplay between these two families of estimates is at the heart of our approach. In Section 7, we use the estimates of the two previous sections together with the functional calculus to develop a local Cauchy theory. In Section 8, we present the global arguments, leading to almost sure global well-posedness on the support of the measure. Notice that the path followed here has been much clarified with respect to our previous papers, and consequently is much more versatile. In Section 9, we prove the measure invariance. Section 10 is devoted to the proof of Theorem 1.2. Finally, in an appendix, we review some typical properties on the support of µ.

1.4. Acknowledgements. -We would like to thank P. Gérard for pointing out to us the bilinear estimates enjoyed by the Hermite functions, which was the starting point of this work (see Lemma A.8). We are also indebted to Thomas Duyckaerts for suggesting us to use the pseudo-conformal transformation in our analysis.

Hamiltonian formulation and construction of the Gibbs measure

Set H = -∂ 2 x + x 2 .
The operator H has a self-adjoint extension on L 2 (R) (still denoted by H) and has eigenfunctions h n n≥0 which form a Hilbertian basis of L 2 (R) and satisfy Hh n = λ 2 n h n with λ n = √ 2n + 1. Indeed, h n are given by the formula (2.1)

h n (x) = (-1) n c n e x 2 /2 d n dx n e -x 2 , with 1 c n = n ! 1 2 2 n 2 π 1 4 .
The equation (1.1) has the following Hamiltonian (2.2)

J(u) = 1 2 ∞ -∞ |H 1/2 u(x)| 2 dx + κ 0 k + 1 ∞ -∞ |u(x)| k+1 dx. Write u = ∞ n=0 c n h n .
Then in the coordinates c = (c n ) the Hamiltonian reads

J(c) = 1 2 ∞ n=0 λ 2 n |c n | 2 + κ 0 k + 1 ∞ -∞ ∞ n=0 c n h n (x) k+1 dx.
Let us define the complex vector space

E N by E N = span(h 0 , h 1 , • • • , h N ). Then we introduce the spectral projector Π N on E N by Π N ∞ n=0 c n h n = N n=0 c n h n . Let χ ∈ C ∞ 0 (-1, 1), so that χ = 1 on [-1 2 , 1 2 ]
. Let S N be the operators Let us now turn to the definition of the Gibbs measure. Write c n = a n + ib n . For N ≥ 1, consider the probability measures on R 2(N +1) defined by

(2.3) S N ∞ n=0 c n h n = ∞ n=0 χ 2n + 1 2N + 1 c n h n = χ H 2N + 1 ∞ n=0 c n h n . It is clear that S N L 2 →L 2 = Π N L 2 →L 2 =
dμ N = N n=0 2π λ 2 n e -λ 2 n 2 (a 2 n +b 2 n ) da n db n ,
The measure μN defines a measure on E N via the map

(2.5) (a n , b n ) N n=0 -→ N n=0 (a n + ib n )h n ,
which will still be denoted by μN . Notice that μN may be seen as the distribution of the E N valued random variable

(2.6) ω -→ N n=0 √ 2 λ n g n (ω)h n (x) ≡ ϕ N (ω, x),
where (g n ) N n=0 is a system of independent, centered, L 2 normalized complex Gaussians on a probability space (Ω, F, p).

In order to study convergence properties of ϕ N as N → ∞, we define Sobolev spaces associated to H.

Definition 2.1. -For 1 ≤ p ≤ +∞ and s ∈ R, we define the space W s,p (R) via the norm u W s,p (R) = H s/2 u L p (R) . In the case p = 2 we write W s,2 (R) = H s (R) and if u = ∞ n=0 c n h n we have u 2 H s = ∞ n=0 λ 2s n |c n | 2 .
For future references, we state the following key property of the spaces W s,p , which is actually a consequence of the fact that H -s is a pseudo differential operator in a suitable class (which ensures its L p boundedness) Proposition 2.2 ( [START_REF] Dziubański | Sobolev spaces related to Schrödinger operators with polynomial potentials[END_REF]). -For any 1 < p < ∞, s ≥ 0, there exists C > 0 such that

(2.7) 1 C u W s,p (R) ≤ D x s u L p (R) + x s u L p (R) ≤ C u W s,p (R) .
Let σ > 0. Then (ϕ N ) is a Cauchy sequence in L 2 (Ω; H -σ (R)) which defines

(2.8) ϕ(ω, x) = ∞ n=0 √ 2 λ n g n (ω)h n (x),
as the limit of (ϕ N ). Indeed, the map ω → ϕ(ω, x) defines a (Gaussian) measure on H -σ (R) which defines measure µ. Notice also that the measure µ can be decomposed into µ = µ N ⊗ μN where µ N is the the distribution of the random variable on

E ⊥ N ∞ n=N +1 √ 2 λ n g n (ω)h n (x).
• The defocusing case (κ 0 = 1) and k ≥ 3. In this case we can define the Gibbs measure ρ by (2.9) dρ(u) = exp -

1 k + 1 u k+1 L k+1 (R) dµ(u).
We also define its finite dimensional approximations

(2.10) dρ N (u) = exp - 1 k + 1 S N u k+1 L k+1 (R) dμ N (u), dρ N (u) = exp - 1 k + 1 S N u k+1 L k+1 (R) dµ(u) = dµ N ⊗ dρ N .
• The focusing case (κ 0 = -1) and k = 3. Let ζ : R → R, ζ ≥ 0 be a continuous function with compact support (a cut-off). Define the measures ρN , ρ N as (2.11) dρ

N (u) = ζ Π N u 2 L 2 (R) -α N e 1 4 R |S N u(x)| 4 dx dμ N (u), dρ N (u) = dµ N ⊗ dρ N .
We have the following statement defining the Gibbs measure associated to the equations (1.1).

Theorem 2.3. -(i) Defocusing case (κ 0 = 1) and k < +∞. Let the measure ρ be defined by (2.9).

(ii) Focusing case (κ 0 = -1) and k = 3 : The sequence

(2.12) G N (u) = ζ Π N u 2 L 2 (R) -α N e 1 4 R |S N u(x)| 4 dx ,
converges in measure, as N → ∞, with respect to the measure µ. Denote by G(u) the limit of (2.12) as N → ∞. Then for every p ∈ [1, ∞[, G(u) ∈ L p (dµ(u)) and we define dρ(u) ≡ G(u)dµ(u).

In both cases, the sequence dρ N converges weakly to dρ and for any Borelian set A ⊂ H -σ , we have

(2.13) lim n→+∞ ρ N (A) = ρ(A).
The result in the defocusing case is quite a direct application of the argument of [START_REF] Ayache | L p properties of Gaussian random series[END_REF].

The construction of the measure in the focusing case is much more involved and is inspired by the work [START_REF] Tzvetkov | Construction of a Gibbs associated to the periodic Benjamin-Ono equation[END_REF] of the third author on the Benjamin-Ono equation. The main difficulty in this construction lies in proving that the weight G(u) belongs to L 1 (dµ). A first candidate for the weight G(u) would have been exp( u 4 L 4 (R) /4), but then the large deviation estimates are too weak to ensure the integrability of this weight with respect to the measure dµ. A second guess would have been

ζ( u L 2 ) exp( u 4
L 4 (R) /4), as then the same large deviation estimates and Gagliardo-Nirenberg inequalities would ensure this integrability. Unfortunately, on the support of the measure µ, the L 2 norm is almost surely infinite and this choice of weight would lead to a trivial (vanishing) invariant measure. The renormalized (square of the) L 2 norm provides us with an acceptable substitute to this latter choice. Let us also observe that if we vary ζ then we get the support of µ (see Proposition 3.10 below). Notice also that this choice of weight is reminiscent of Bourgain's work [START_REF] Bourgain | Invariant measures for the 2D-defocusing nonlinear Schrödinger equation[END_REF] where a similar renormalization is performed at the level of the equation itself rather than the level of the Gibbs measure.

It is now a natural question whether the measure ρ constructed in Theorem 2.3 is indeed invariant by a well-defined flow of (1.1). It turns out to be the case as shows the following statement. 

is invariant under this flow, Φ(t). More precisely,

-There exists a set Σ of full ρ measure and s < 1 2 (for k = 3, s < 1 3 can be taken arbitrarily close to 1 3 while for k ≥ 5, s can be taken arbitrarily close to 

u(t, •) -e -itH f ∈ X T . Moreover, for all σ > 0 and t ∈ R u(t, •) H -σ (R) ≤ C Λ(f, σ) + ln 1 2 1 + |t| , and the constant Λ(f, σ) satisfies the bound µ f : Λ(f, σ) > λ ≤ Ce -cλ 2 . -For any ρ measurable set A ⊂ Σ, for any t ∈ R, ρ(A) = ρ(Φ(t)(A)).
Let us remark that the uniqueness statement can also be formulated as the fact that the flow of (1.1) on smooth data (for instance H 1 ) can be extended in a unique fashion a.s. on the support of the measure ρ. Notice also that in this paper, we had to modify the definition of the finite dimensional approximations measures ρ N with respect to previous results on the subject (see e.g. [START_REF] Bourgain | Periodic nonlinear Schrödinger equation and invariant measures[END_REF]). Indeed, the lack of continuity of the rough projectors Π N on our resolution spaces forbid the usual approximation results (see e.g. [START_REF] Tzvetkov | Invariant measures for the defocusing NLS[END_REF]Theorem 1.2]). As a consequence, our new measures enjoy better approximation properties (see (2.13)), but the invariance properties we have to prove are stronger (see Corollary 8.4). We believe nevertheless this new approach is more natural.

Proof of Theorem 2.3

In this section we prove Theorem 2.3. As we already mentioned, the main issue is the construction of the measure for (1.1) with k = 3 in the focusing case.

3.1. Preliminaries and construction of the density. -First we recall the following Gaussian bound (Khinchin inequality), which is one of the key points in the study of our random series. See e.g. [START_REF] Burq | Random data Cauchy theory for supercritical wave equations I: local existence theory[END_REF]Lemma 4.2.] for a proof in a more general setting. Let us notice that in our particular setting, the random variable being a Gaussian variable of variance n≥0 |c n | 2 , this estimate is also an easy consequence of the growth of the r'th moments of centered Gaussians (uniform with respect to the variance).

Lemma 3.1. -Let g n (ω) n≥0 ∈ N C (0, 1) be independent, complex, L 2 -normalized Gaussian random variables. Then there exists C > 0 such that for all r ≥ 2 and

(c n ) ∈ l 2 (N) n≥0 g n (ω) c n L r (Ω) ≤ C √ r n≥0 |c n | 2 1 2 .
We will need the following particular case of the bounds on the eigenfunctions (h n ), proved for example by K. Yajima and G. Zhang [START_REF] Yajima | Smoothing property for Schrödinger equations with potential superquadratic at infinity[END_REF] (see also H. Koch and D. Tataru [START_REF] Koch | L p eigenfunction bounds for the Hermite operator Duke Math[END_REF]) .

Lemma 3.2 (Dispersive bound for h n ). -For every p ≥ 4 there exists C(p) such that for every n ≥ 0,

h n L p (R) ≤ C(p)λ -1 6 n .
As a consequence, we may show the following statement.

Lemma 3.3. -Fix p ∈ [4, ∞) and s ∈ [0, 1/6). Then (3.1) ∃C > 0, ∃c > 0, ∀λ ≥ 1, ∀N ≥ 1, µ u ∈ H -σ : S N u W s,p (R) > λ ≤ Ce -cλ 2 .
Moreover there exists β(s) > 0 such that

(3.2) ∃ C > 0, ∃ c > 0, ∀λ ≥ 1, ∀N ≥ N 0 ≥ 1, µ u ∈ H -σ : S N u -S N 0 u W s,p (R) > λ ≤ Ce -cN β(s) 0 λ 2 .
Proof. -We have that

µ u ∈ H -σ : S N u W s,p (R) > λ = p ω : ∞ n=0 χ 2n + 1 2N + 1 √ 2 λ n g n (ω)h n (x) W s,p (R) > λ = p ω : ∞ n=0 χ 2n + 1 2N + 1 √ 2 λ 1-s n g n (ω)h n (x) L p (R) > λ . Set f (ω, x) ≡ ∞ n=0 χ 2n + 1 2N + 1 √ 2 λ 1-s n g n (ω)h n (x) .
Then for q ≥ p, using the Minkowski inequality, we get

f (ω, x) L q ω L p x ≤ f (ω, x) L p x L q ω . By Lemma 3.1 we get f (ω, x) L q ω ≤ C √ q ∞ n=0 χ 2 0 2n + 1 2N + 1 2 λ 2(1-s) n |h n (x)| 2 1/2 ≤ C √ q ∞ n=0 2 λ 2(1-s) n |h n (x)| 2 1/2 .
Since s < 1/6, using Lemma 3.2 and the triangle inequality, we get

f (ω, x) L q ω L p x ≤ C √ q .
Using Bienaymé-Tchebichev inequality, we obtain

p ω : f (ω, x) L p x > λ ≤ (λ -1 f (ω, x) L q ω L p x ) q ≤ (Cλ -1 √ q) q .
Thus by choosing q = δλ 2 , for δ small enough, we get the bound

p ω : f (ω, x) L p x > λ ≤ Ce -cλ 2 .
This in turn yields (3.1). The proof of (3.2) is very similar. Indeed, in this case, we analyze the function

f N 0 (ω, x) ≡ ∞ n=0 χ( 2n + 1 2N + 1 ) -χ( 2n + 1 2N 0 + 1 ) 2 λ 2(1-s) n g n (ω)h n (x),
and we use that there is a negative power of N 0 saving in the estimate. Namely, there is γ(s) > 0 such that

f N 0 (ω, x) L q ω L p x ≤ C √ qN -γ(s) 0 , which implies (3.
2). This completes the proof of Lemma 3.3.

With the same arguments one can prove the following statement.

Lemma 3.4. -Let σ > 0, then (3.3) ∃C > 0, ∃c > 0, ∀λ ≥ 1, µ u ∈ H -σ : u H -σ (R) > λ ≤ Ce -cλ 2 .
Lemma 3.5 (Gagliardo-Nirenberg inequality associated to H) For any s ∈ (0, 1/6), there exists p < ∞ and θ < 2 such that

u 4 L 4 (R) ≤ C u 4-θ L 2 (R) u θ W s,p (R) .
Proof. -First we prove that for any s ∈ (0, 1/6), there exists p < ∞ and θ < 2 such that

(3.4) u 4 L 4 (R) ≤ C u 4-θ L 2 (R) u θ W s,p (R)
, where W s,p is the usual Sobolev space.

Fix s ∈ (0, 1/6) and write

(3.5) u 4 L 4 (R) ≤ C u 2 L 2 (R) u 2 L ∞ (R)
. Using [25, Proposition A.3], we get that there exists p ≫ 1 and κ > 0 such that

(3.6) u L ∞ (R) ≤ C u κ L p (R) u 1-κ W s,p (R)
, (indeed for large p the derivative loss tends to zero, i.e. we may assume that it is smaller than s). Finally the Hölder inequality and (3.6) implies that for any q > p there exists α > 0 such that

(3.7) u L p (R) ≤ C u α L 2 (R) u 1-α L q (R) ≤ C u α L 2 (R) u 1-α W s,p (R)
. A combination of (3.5), (3.6) and (3.7) yields (3.4).

Finally, to complete the proof of the lemma use that thanks to (2.7)

u W s,p (R) ≤ C u W s,p (R) .
This completes the proof of Lemma 3.5.

Denote by

F N (u) = Π N u 2 L 2 (R) -α N .
As in [START_REF] Tzvetkov | Construction of a Gibbs associated to the periodic Benjamin-Ono equation[END_REF], we need the following convergence properties of the sequence

F N (u) N ≥0 . Lemma 3.6. -The sequence (F N (u)) is a Cauchy sequence in L 2 (H -σ (R), dµ).
As a consequence, if we denote by F (u) its limit, the sequence F N (u) N ≥0 converges to F (u) in measure :

∀ ε > 0, lim N →∞ µ u ∈ H -σ : F N (u) -F (u) > ε = 0. Proof. -Let N > M ≥ 0, then F N (u) -F M (u) 2 L 2 (H -σ (R),dµ) = = Ω ϕ N 2 L 2 (R) -α N -ϕ M 2 L 2 (R) -α M 2 dp(ω),
where ϕ N is defined in (2.6). By definition of α N , we have

(3.8) ϕ N 2 L 2 (R) -α N = N n=0 2 λ 2 n (|g n (ω)| 2 -1),
and therefore

(3.9) F N (u) -F M (u) 2 L 2 (H -σ (R),dµ) = Ω N n=M +1 2 λ 2 n (|g n (ω)| 2 -1) 2 dp(ω).
Now, as the random variables g n (ω) n≥0 are normalized and independent, for all

n 1 = n 2 we have Ω |g n 1 (ω)| 2 -1 |g n 2 (ω)| 2 -1 dp(ω) = 0,
therefore from (3.9) we deduce

F N (u) -F M (u) 2 L 2 (H -σ (R),dµ) = c N n=M +1 1 λ 4 n ≤ C M + 1 , as λ 2 n = 2n + 1.
This proves the first assertion of the lemma. By the Tchebychev inequality, L 2 convergence implies convergence in measure, hence the result. This completes the proof of Lemma 3.6.

The following result is a large deviation bound for the sequence F N (u) .

Lemma 3.7. -There exist C, c > 0 so that for all N > M ≥ 0 and λ > 0

(3.10) µ u ∈ H -σ : F N (u) -F M (u) > λ ≤ Ce -c(M +1) 1 2 λ .
Proof. -The result can be viewed as a consequence of a smoothing property of a suitable heat flow, but we give here a direct proof. Define the set

B M,N = u ∈ H -σ : F N (u) -F M (u) > λ .
Then by (3.8) for

N > M , µ(B M,N ) = p ω : ϕ N 2 L 2 (R) -α N -ϕ M 2 L 2 (R) -α M > λ = p ω : N n=M +1 2 λ 2 n (|g n (ω)| 2 -1) > λ . (3.11)
By the Tchebychev inequality, for all 0 ≤ t ≤

λ 2 M +1 4 , (3.12) p ω : N n=M +1 2 λ 2 n (|g n (ω)| 2 -1) > λ ≤ ≤ e -λt E exp t N n=M +1 2 λ 2 n (|g n (ω)| 2 -1) = e -λt N n=M +1 Ω e 2t λ 2 n (|gn(ω)| 2 -1) dp(ω) = e -λt N n=M +1 e -2t λ 2 n 1 - 2t λ 2 n -1 . Now observe that for all 0 ≤ x ≤ 1 2 , (1 -x) -1 ≤ e x+x 2 , hence (3.12) gives p ω : N n=M +1 2 λ 2 n (|g n (ω)| 2 -1) > λ ≤ ≤ e -λt exp 4t 2 ∞ n=M +1 1 λ 4 n ≤ exp -λt + Ct 2 M + 1 , as λ 2 n = 2n + 1. Choose t = c(M + 1) 1 2 
, with c > 0 small enough and deduce

p ω : N n=M +1 2 λ 2 n (|g n (ω)| 2 -1) > λ ≤ Ce -c(M +1) 1 2 λ .
Using a slight modification of the previous argument, we can show that

p ω : N n=M +1 2 λ 2 n (|g n (ω)| 2 -1) < -λ ≤ Ce -c(M +1) 1 2 λ ,
and the result follows, by (3.11). This completes the proof of Lemma 3.7.

We are now able to define the density G : H -σ (R) -→ R (with respect to the measure µ) of the measure ρ. By Lemmas 3.6 and 3.3, we have the following convergences in the µ measure :

F N (u) converges in to F (u) and S N u L 4 (R) to u L 4 (R)
. Then, by composition and multiplication of continuous functions, we obtain

(3.13) G N (u) -→ ζ F (u) e 1 4 R |u(x)| 4 dx ≡ G(u), in measure, with respect to the measure µ. As a consequence, G is measurable from H -σ (R), B to R. 3.2. Integrability of G N (u).
-We now have all the ingredients to prove the following proposition, which is the key point in the proof of Theorem 2.3.

Proposition 3.8. -Let 1 ≤ p < ∞.
Then there exists C > 0 such that for every

N ≥ 1, ζ Π N u 2 L 2 (R) -α N e 1 4 R |S N u(x)| 4 dx L p (dµ(u)) ≤ C .
Proof. -Our aim is to show that the integral

∞ 0 λ p-1 µ(A λ,N
)dλ is convergent uniformly with respect to N , where

A λ,N = u ∈ H -σ : ζ Π N u 2 L 2 (R) -α N e 1 4 R |S N u(x)| 4 dx > λ .
Proposition 3.8 is a straightforward consequence of the following lemma.

Lemma 3.9. -For any L > 0, there exists C > 0 such that for every N and every λ ≥ 1,

µ(A λ,N ) ≤ Cλ -L .
We set

N 0 ≡ (log λ) l ,
where l is fixed such that l > max(2, 1 β(0) + 1) with β(0) defined by Lemma 3.3. Let us first suppose that N 0 ≥ N . Using Lemma 3.5 and that

S N u L 2 ≤ Π N u L 2 , we get for u ∈ A λ,N , R |S N u(x)| 4 dx ≤ C S N u 4-θ L 2 (R) S N u θ W s,p (R) ≤ C(log log λ) 2-θ/2 S N u θ W s,p (R) .
Therefore there exists δ > 0 such that

µ(A λ,N ) ≤ Cµ u ∈ H -σ : S N u W s,p (R) > (log λ) 1/2+δ ,
and using Lemma 3.3, we obtain that for every L > 0 there exists C L such that for every N and λ such that (log λ) l ≥ N one has

(3.14) µ(A λ,N ) ≤ C L λ -L .
We next consider the case N > N 0 . Consider the set

B λ,N = u ∈ H -σ : ( Π N u 2 L 2 (R) -α N ) -( Π N 0 u 2 L 2 (R) -α N 0 ) > 1 . By Lemma 3.7, we get µ(B λ,N ) ≤ 2 exp(-c(log λ) l/2 ) ≤ C L λ -L .
Hence it remains to evaluate µ(A λ,N \B λ,N ). Let us observe that for u ∈ A λ,N \B λ,N one has

Π N 0 u 2 L 2 = ( Π N u 2 L 2 -α N ) -( Π N u 2 L 2 -α N ) -( Π N 0 u 2 L 2 -α N 0 ) + α N 0 ≤ C + C log(N 0 ) ≤ C log log λ . Therefore A λ,N \B λ,N ⊂ C λ,N where C λ,N ≡ u ∈ H -σ : S N u L 4 ≥ c[log λ] 1/4 , Π N 0 u 2 L 2 ≤ C log log λ . We next observe that thanks to the triangle inequality C λ,N ⊂ D λ,N ∪ E λ,N , where D λ,N ≡ u ∈ H -σ : S N 0 u L 4 ≥ c 4 [log λ] 1/4 , Π N 0 u 2 L 2 ≤ C log log λ , and E λ,N ≡ u ∈ H -σ : S N u -S N 0 u L 4 ≥ c 4 [log λ] 1/4 .
The measure of D λ,N can be estimated exactly as we did in the analysis of the case N 0 ≥ N . Finally, using Lemma 3.3, thanks to the choice of N 0 , we get

µ(E λ,N ) ≤ Ce -cN β(0) 0 (log λ) 1/2 ≤ C L λ -L .
This ends the proof of the lemma, and Proposition 3.8 follows.

We are now able to complete the proof of Theorem 2.3

Proof of Theorem 2.3 (ii). -According to (3.13), we can extract a sub-sequence

G N k (u) so that G N k (u) -→ G(u)
, µ a.s. Then by Proposition 3.8 and the Fatou lemma, for all p ∈ [1, +∞),

H -σ (R) |G(u)| p dµ(u) ≤ lim inf k→∞ H -σ (R) |G N k (u)| p dµ(u) ≤ C, thus G(u) ∈ L p (dµ(u)
). Now it remains to check that for any Borelian set, A ⊂ H -σ , we have

(3.15) lim N →+∞ H -σ (R) 1 u∈A G N (u)dµ(u) = H -σ (R) 1 u∈A G(u)dµ(u),
which will be implied by (3.16) lim

N →+∞ H -σ (R) |1 u∈A (G N (u) -G(u))|dµ(u) = 0.
For N ≥ 0 and ε > 0, we introduce the set

B N,ε = u ∈ H -σ (R) : |G N (u) -G(u)| ≤ ε ,
and denote by B N,ε its complementary. Firstly, as 1 u∈A is bounded, there exists C > 0 so that for all N ≥ 0, ε > 0

B N,ε 1 u∈A G N (u) -G(u) dµ(u) ≤ Cε.
Secondly, by Cauchy-Schwarz, Proposition 3.8 and as G(u) ∈ L p (dµ(u)), we obtain

B N,ε 1 u∈A G N (u) -G(u) dµ(u) ≤ G N -G(u) L 2 (dµ) µ( B N,ε ) 1 2 ≤ Cµ( B N,ε ) 1 2 
. By (3.13), we deduce that for all ε > 0,

µ( B N,ε ) -→ 0, N -→ +∞,
which yields (3.16). This ends the proof of Theorem 2.3 (ii).

Notice that (3.16) with

A = H -σ gives (3.17) ρ H -σ (R) = lim N →+∞ ρ N H -σ (R) = lim N →∞ ρN (E N ).

Proof of Theorem 2.3 (i).

-By the argument giving (3.1), u L p+1 (R) is µ almost surely finite. As a consequence, the measure ρ in the defocusing case is nontrivial. The proof of the weak convergence of dρ N to dρ can be deduced from the proof in the focusing case. This completes the proof of Theorem 2.3.

In the focusing case, the measure ρ = ρ ζ we have constructed depends on ζ ∈ C ∞ 0 (R). We now check that it is in general not trivial. Indeed we have the following result Proposition 3.10. -The supports of the measures satisfy

ζ∈C ∞ 0 (R) supp ρ ζ = supp µ. Proof. -By construction, it is clear that for all ζ ∈ C ∞ 0 (R), the support of ρ ζ is included in the support of µ. Let R ≫ 1 and ζ ∈ C ∞ 0 (R) so that 0 ≤ ζ ≤ 1 with ζ = 1 on |x| ≤ R, and consider the associated measure ρ ζ . Let ε > 0. We will show that if R is large enough (3.18) µ u ∈ H -σ : |F (u)| ≤ R ≥ 1 -ε.
This will yield the result, as the density of ρ ζ does not vanish on the set

{u ∈ H σ : |F (u)| ≤ R}. Write (3.19) u ∈ H -σ : |F (u)| > R } ⊂ u ∈ H -σ : |F N (u)| > R -1 } ∪ u ∈ H -σ : |F (u) -F N (u)| > 1 },
and

|F N (u)| > R -1 } ⊂ |F N (u) -F 0 (u)| > R -1 2 } ∪ |F 0 (u)| > R -1 2 }.
By Lemma 3.7 and by the direct estimate

µ(u ∈ H -σ : |F 0 (u)| > R -1 2 ) ≤ Ce -cR ,
we obtain that (uniformly in N )

(3.20) µ(u ∈ H -σ : |F N (u)| > R -1) ≤ Ce -cR ≤ ε/2,
if R is large enough. By Lemma 3.6, if N is large enough, we also have

(3.21) µ(u ∈ H -σ : |F (u) -F N (u)| > 1) ≤ ε/2.
Hence from (3.19)-(3.21) we deduce (3.18). This in turn completes the proof of Proposition 3.10.

Let us remark that in the construction of the measure ρ in the focusing case one may replace the assumption of compact support on ζ by a sufficiently rapid decay as for example ζ(x) ∼ exp(-|x| K ), |x| ≫ 1 with K large enough.

Functional calculus of H

By the classical Mehler formula for 2t

= kπ (k ∈ Z), f ∈ L 1 (R), (4.1) e -itH (f ) = 1 | sin(2t)| 1/2 ∞ -∞ e i (x 2 /2+y 2 /2) cos(2t)-xy sin(2t)
f (y)dy.

One may check (4.1) by a direct computation. The explicit representation of the kernel of exp(-itH) given by (4.1) will allow us to develop the functional calculus of H which will be of importance in several places of our proof of Theorem 2.4. The representation of e -itH given by (4.1) is also the key point of the proof of the local in time (deterministic) Strichartz estimates of the next section. The goal of this section is to prove the following statement.

Proposition 4.1. -Consider for ϕ ∈ S(R) the operator ϕ(h 2 H). Then, for any 1 ≤ p ≤ +∞ and any |α| < 1, there exists C > 0 such that for any

0 < h ≤ 1, x -α ϕ(h 2 H) x α L(L p (R)) ≤ C.
One may prove Proposition 4.1 by using a suitable pseudo-differential calculus. We present here a direct proof based on the Mehler formula. The result of Proposition 4.1 is a consequence of the following lemma. Lemma 4.2. -Let K(x, y, h) be the kernel of the operator ϕ(h 2 H). Then there exists C > 0 such that for any 0 < h ≤ 1, we have

(4.2) |K(x, y, h)| ≤ C h(1 + (|x|-|y|) 2 h 2
) .

Let us now show how Lemma 4.2 implies Proposition 4.1. By duality, it suffices to consider the case α ≥ 0.

For α ≥ 0, we have

∞ -∞ |K(x, y, h)| y α dy ≤ C ∞ -∞ y α h(1 + (|x|-|y|) 2 h 2 ) dy ≤ 2C ∞ 0 y α h(1 + (|x|-y) 2 h 2 ) dy ≤ 2C ∞ 0 1 + |x| α + ||x| -y| α h(1 + (|x|-y) 2 h 2
) dy

≤ 2C x α + 2C ∞ 0 ||x| -y| α h(1 + (|x|-y) 2 h 2 ) dy = 2C x α + 2C ∞ -∞ |hz| α (1 + z 2 ) dz ≤ C ′ x α .
On the other hand,

(4.3) ∞ -∞ |K(x, y, h)| x -α dx ≤ ||x|-|y||<|y|/2 • • • + ||x|-|y||>|y|/2 • • • .
The contribution of the first term is bounded by C y -α , whereas, noticing that in the second integral we have (|x| -|y|) 2 ≥ c(x 2 + y 2 ), the contribution of the second term is also easily bounded by C y -α . Finally, Proposition 4.1 follows by the Schur Lemma. Thus in order to complete the proof of Proposition 4.1, it remains to prove Lemma 4.2.

Proof of Lemma 4.2. -We start from the representation

ϕ(h 2 H) = (2π) -1 τ ∈R e iτ h 2 H ϕ(τ )dτ
and thus according to Mehler's formula, we have

|K(x, y, h)| ≤ C τ ∈R 1 | sin(2h 2 τ )| 1/2 e iψ(τ,h,x,y) ϕ(τ )dτ , where ψ(τ, h, x, y) = - 1 sin(2h 2 τ ) x 2 + y 2 2 cos(2h 2 τ ) -xy .
As a consequence, decomposing

|K(x, y, h)| ≤ k∈Z -π 2 +kπ<h 2 τ < π 2 +kπ 1 | sin(2h 2 τ )| 1/2 e iψ(τ,h,x,y) ϕ(τ )dτ
and taking benefit that the function ϕ is in S, we obtain

|K(x, y, h)| ≤ C h + k∈Z\{0} -π 2 +kπ<h 2 τ < π 2 +kπ 1 | sin(2h 2 τ )| 1/2 e iψ(τ,h,x,y) ϕ(τ ) dτ ≤ C h .
As a consequence, it is enough to prove

(4.4) |K(x, y, h)| ≤ Ch (|x| -|y|) 2 .
The key point of the analysis will be the following estimates on the phase function.

Lemma 4.3. -There exists C > 0 such that for any x, y ∈ R and any 0 < h ≤ 1 we have

∂ τ ψ(x, y, τ, h) ≥ h 2 x 2 + y 2 2 .
Proof. -Indeed, (

∂ τ ψ(x, y, τ, h) = 2h 2 sin 2 (2h 2 τ ) ( x 2 + y 2 2 -xy cos(2h 2 τ )) 4.5) 
and minimizing with respect to x the expression above gives

∂ τ ψ(x, y, τ, h) ≥ 2h 2 sin 2 (2h 2 τ ) ( y 2 2 sin 2 (2h 2 τ )) = h 2 y 2 .
Similarly

∂ τ ψ(x, y, τ, h) ≥ 2h 2 sin 2 (2h 2 τ ) ( x 2 2 sin 2 (2h 2 τ )) = h 2 x 2
and the result of Lemma 4.3 follows.

Lemma 4.4. -There exists C > 0 such that for any x, y ∈ R, any τ , and 0 < h ≤ 1, we have

∂ τ ψ(x, y, τ, h) ≥ h 2 (|x| -|y|) 2 sin 2 (2h 2 τ ) .
Proof. -Indeed, this estimate is a straightforward consequence of (4.5) and

x 2 + y 2 2 -xy cos(2h 2 τ ) ≥ x 2 + y 2 2 -|xy| = (|x| -|y|) 2 2 .
This completes the proof of Lemma 4.4.

Let us now complete the proof of Lemma 4.2. To estimate K we integrate by parts using the operator T = 1 ∂τ ψ(x,y,τ,h) ∂ τ . Notice that according to Lemma 4.4, the singularity of

1 | sin(2h 2 τ )| 1/2 is harmless and we obtain |K(x, y, h)| ≤ C τ ∈R e iψ(x,y,τ,h) ∂ τ 1 | sin(2h 2 τ )| 1/2 1 ∂ τ ψ ϕ(τ ) dτ .
In the expression above, we have three contributions according whether the derivative falls on either terms. If the derivative falls on the last term, we obtain a contribution which is, according to Lemma 4.4, bounded by

C N τ ∈R sin 2 (2h 2 τ ) | sin | 1/2 (2h 2 τ )h 2 (|x| -|y|) 2 (1 + |τ |) -N dτ ≤ C N τ ∈R h 3 |τ | 3/2 h 2 (|x| -|y|) 2 (1 + |τ |) -N dτ ≤ Ch (|x| -|y|) 2 .
If the derivative falls on the first term, we obtain a contribution which is bounded by

(4.6) C τ ∈R h 2 | ϕ(τ )|dτ | sin | 3/2 (2h 2 τ )|∂ τ ψ| ≤ Ch τ ∈R | sin | 1/2 (2h 2 τ ) (|x| -|y|) 2 | ϕ(τ )|dτ ≤ C τ ∈R h|τ | 1/2 (|x| -|y|) 2 | ϕ(τ )|dτ ≤ Ch (|x| -|y|) 2 .
Finally, the last case is when the derivative falls on the second term. In this case, using the relation

∂ 2 τ ψ (∂ τ ψ) 2 = - 4h 2 cos(2h 2 τ ) sin(2h 2 τ )∂ τ ψ + 4h 4 xy sin(2h 2 τ )(∂ τ ψ) 2
and Lemma 4.4, we obtain a contribution which is bounded by

(4.7) C τ ∈R ( h 2 | sin | 3/2 (2h 2 τ )|∂ τ ψ| + h 4 |xy| | sin | 3/2 (2h 2 τ )(∂ τ ψ) 2 )| ϕ(τ )|dτ ≤ C τ ∈R | sin | 1/2 (2h 2 τ ) (|x| -|y|) 2 ϕ(τ ) dτ ≤ Ch (|x| -|y|) 2
where to estimate 

Strichartz estimates

We state the Strichartz inequality (local in time) satisfied by the free evolution e -itH . Lemma 5.1. -Let us fix s ∈ R. For every p ≥ 4, q ≥ 2 satisfying 2 p + 1 q = 1 2 , every T > 0, there exists C > 0 and such that

(5.1) e -itH H s (R)→L p ((0,2π);W s,q (R)) ≤ C.
There is also a set of inhomogeneous Strichartz estimates which will not be used here.

Proof. -Coming back to the definition of the spaces W s,p (R), we first observe that it suffices to consider the case s = 0. We have that e -itH L 2 →L 2 = 1. Next, as a consequence of (4.1), e -itH L 1 →L ∞ ≤ C/|t| 1/2 for t close to zero, i.e. the singularity of e -itH L 1 →L ∞ for t ∼ 0 is the same as for exp(it∂ 2 x ) and thus (see e.g. [START_REF] Ginibre | The global Cauchy problem for the nonlinear Schrödinger equation[END_REF]) e -itH enjoys the same local in time Strichartz estimates as the free Schrödinger equation which is precisely the statement of (5.1). This completes the proof of Lemma 5.1.

We need some stochastic improvements of the Strichartz estimates. The following lemma shows that there is a gain of regularity in L p spaces for the free Schrödinger solution.

Lemma 5.2. -Let ε < 1 6 . For any p, q ≥ 4, there exist C, c > 0 such that

∀ λ ≥ 1, ∀ N ≥ 1, µ(u ∈ H -σ : e -itH u L p (0,2π) W ε,q (R) > λ) ≤ Ce -cλ 2 ∀ λ ≥ 1, ∀ N ≥ 1, μN (u ∈ E N : e -itH u L p (0,2π) W ε,q (R) > λ) ≤ Ce -cλ 2 . Proof.
-Let us prove the first estimate, the proof of the second being similar. By the definition of µ, we have to show that (5.2)

p ω ∈ Ω : e -itH ϕ L p (0,2π) W ε,q (R) > λ ≤ Ce -cλ 2 . Now by Lemmas 3.1, 3.2 and Minkowski's inequality, for r ≥ p, q, we obtain

e -itH ϕ(ω, •) L r (Ω)L p (0,2π) W ε,q (R) ≤ C H ε 2 e -itH ϕ L p (0,2π) L q (R)L r (Ω) ≤ C √ r ∞ n=0 λ 2(ε-1) n h n 2 L q 1 2 ≤ C √ r ∞ n=0 λ 2(ε-1-1 6 ) n 1 2 . (5.3)
Coming back to the definition of λ n , we get that the sum (5.3) is finite. The estimate (5.2) then follows from the Bienaymé-Tchebychev inequality :

p ω ∈ Ω : e -itH ϕ L p (0,2π) W ε,q (R) > λ ≤ e -itH ϕ L r (Ω)L p (0,2π) W ε,q (R) λ r ≤ C √ r λ r ,
and the choice r = ǫλ 2 with ǫ > 0 small enough. This completes the proof of Lemma 5.2.

We shall in practice need the following consequence of Lemma 5.2 and (3.3).

Lemma 5.3. -Let σ > 0, 0 < ε < 1 6 and p, q ≥ 4. Then there exist C, c > 0 so that for every λ ≥ 1, every N ≥ 1,

(5.4) ρ u ∈ H -σ : u H -σ > λ ≤ Ce -cλ 2 , ρN u ∈ E N : u H -σ > λ ≤ Ce -cλ 2 and
(5.5)

ρ u ∈ H -σ : e -itH u L p (0,2π) W ε,q (R) > λ ≤ Ce -cλ 2 , ρN u ∈ E N : e -itH u L p (0,2π) W ε,q (R) > λ ≤ Ce -cλ 2 .
Proof. -In the defocusing case the proof is a straightforward consequence of the bounds for µ, μN we have already established. Namely, in this case it is a straightforward consequence of the inequalities

ρ(A) ≤ µ(A), ρN (A) ≤ μN (A).
We thus only consider the focusing case which is slightly more delicate. We prove (5.4). By the definition and the Cauchy-Schwarz inequality, we have

ρ N u ∈ H -σ : u H -σ > λ = H -σ 1 u H -σ >λ G N (u)dµ(u) ≤ G N (u) L 2 (dµ(u)) µ u : u H -σ > λ 1 2 ,
and we obtain

ρ N u ∈ H -σ : u H -σ > λ ≤ Ce -cλ 2 ,
and the first claim follows by using (2.13). The proof of the three other claims are similar. This completes the proof of Lemma 5.3.

Local smoothing effects

The next result is based on the well-known smoothing effect. Lemma 6.1 (Deterministic smoothing effect). -Let us fix two positive numbers s and σ such that s < σ < 1/2. Then there exists C > 0 so that (6.1)

x -σ √ H s e -itH f L 2 ([0,2π]×R) ≤ C f L 2 (R) .
Proof. -Inequality (6.1) is a slight variation of the "usual" local smoothing effect for the harmonic oscillator, namely for α > 1/2, (6.2)

x -α √ H 1 2 e -itH f L 2 ([0,2π]×R) ≤ C f L 2 (R) .
We refer to [START_REF] Yajima | Smoothing property for Schrödinger equations with potential superquadratic at infinity[END_REF][START_REF] Yajima | Local smoothing property and Strichartz inequality for Schrödinger equations with potentials superquadratic at infinity[END_REF] for a proof of (6.2). Let us fix α > 1/2 such that 1 < 2α < σ/s. Take θ ∈ (0, 1) such that σ = θα. Then thanks to our choice of α, we have that s < θ 2 . Applying (6.2) to h n gives that

x -α h n (x) L 2 (R) ≤ Cλ -1 2 n .
Interpolation between the last inequality and the equality h n L 2 (R) = 1 yields that

x -σ h n (x) L 2 (R) ≤ Cλ -θ 2 n .
Since s < θ 2 , we obtain that there exists δ(s, σ) > 0 such that

(6.3) x -σ h n L 2 (R) ≤ Cλ -δ(s,σ)-s n .
The last estimate in conjugation with [28, Corollary 1.2] implies (6.1) (notice that here we do not need the δ(s, σ) saving in (6.3)). This completes the proof of Lemma 6.1.

We also have the following stochastic improvement of the smoothing effect. Lemma 6.2 (Stochastic smoothing effect). -Let s, σ be two positive numbers such that s < σ < 1/2 and q ≥ 2. Then there exist C, c > 0 so that for every λ > 0, every N ≥ 1, (6.4)

ρ u ∈ H -σ : x -σ √ H s e -itH u L q (0,2π) L 2 (R) > λ ) ≤ Ce -cλ 2 , ρN u ∈ E N : x -σ √ H s e -itH u L q (0,2π) L 2 (R) > λ ) ≤ Ce -cλ 2 .
Proof. -Again we only prove the first claim. We compute

x -σ √ H s e -itH ϕ(ω, x) = n≥0 √ 2 λ 1-s n e -itλ 2 n g n (ω) 1 x σ h n (x).
Then by Lemma 3.1

x -σ √ H s e -itH ϕ(ω, x) L r (Ω) ≤ C √ r n≥0 1 λ n 2(1-s) h n (x) x σ 2 1
2 .

An application of the Minkowski inequality and (6.3) give

x -σ √ H s e -itH ϕ(ω, x) L r (Ω;L q T L 2 (R)) ≤ C √ r n≥0 1 λ n 2(1-s) h n x σ 2 L 2 (R) 1 2 ≤ C √ r n≥0 1 λ n 2+2δ(s,σ) 1 2 ≤ C √ r.
Using the Tchebychev inequality, as we did in the proof of Lemma 5.2 yields

(6.5) µ u ∈ H -σ : x -σ √ H s e -itH u L q (0,2π) L 2 (R) > λ ) ≤ Ce -cλ 2 .
Finally we deduce (6.4) from (6.5) as we did in the proof of Lemma 5.3. This completes the proof of Lemma 6.2.

Local in time results for the nonlinear problem

In this section, we use the linear dispersive estimates established in the previous sections to develop a local Cauchy theory. As the solution we are looking for, will be the sum of the linear solution associated to our initial data and of a smoother term, our functional spaces are naturally the sum of two spaces: one which corresponds to the properties of the linear probabilistic solutions, and the other one corresponding to the properties of the deterministic smoother solutions. Fortunately, it turns out that these two spaces have a non trivial intersection which is sufficient to perform the analysis and hence avoid the technicalities involving sum spaces.

7.1. Initial data spaces. -For α ∈ R, we define the spaces H s x α (R) equipped with the norm

u H s x α = x α √ H s u L 2 .
Recall that e -itH defines the free evolution. We define the spaces for the initial data

Y s Y s = u ∈ H -ε/10 : e -itH (u) ∈ L 2(k-1)+ε 2π W s+ε k-1 ,r ∩ L 2 2π H s x -s-ε/4
, where s is a positive number satisfying

(7.1) k -3 2(k -2) < s < min 1 2 , k -1 6 ,
ε > 0, is a small number and r is a large number all depending on s to be fixed. The values of ε, r in the definition of the space Y s (and also the space X s T defined in the next section) will be fixed by the analysis of the next two sections. Note that since e -itH is 2π periodic the interval [0, 2π] in the definition of Y s may be replaced by any interval of size 2π. We equip the spaces Y s with the natural norm

u Y s = u H -ε/10 + e -itH u L 2(k-1)+ε 2π W s+ε k-1 ,r + e -itH u L 2 2π H s x -s-ε/4
. Thanks to Proposition 4.1, we obtain that S N Y s →Y s is bounded, uniformly in N , provided ε is small enough. The main property of the space Y s we use, is the following Gaussian property.

Lemma 7.1. -For every s satisfying (7.1) there exists ε 0 > 0 and two positive constants C and c such that for every N ≥ 1, every λ ≥ 1, every ε ∈ (0, ε 0 ), every r ≥ 4, every N

(7.2) ρ(u ∈ H -ε/10 : u Y s > λ) ≤ Ce -cλ 2 ρN (u ∈ E N : u Y s > λ) ≤ Ce -cλ 2 .
(recall that the dependence on ε and r of Y s is implicit).

Proof. -As before, we only prove the first claim. As a consequence of Lemma 6.2, we get that for every s ∈ (0, 1/2) and every ε > 0,

ρ u ∈ H -ε/10 : e -itH u L 2 2π H s x -s-ε/4 > λ ) ≤ Ce -cλ 2 .
Next, using Lemmas 3.4 and 5.3, we obtain that for every s ∈ (0, (k -1)/6) and ε > 0 such that s + ε < (k -1)/6, every r ≥ 4,

ρ u ∈ H -ε/10 : u H -ε/10 + e -itH u L 2(k-1)+ε 2π W s+ε k-1 ,r > λ ≤ Ce -cλ 2 .
This completes the proof of Lemma 7.1.

7.2. Solution spaces and linear estimates. -We define the solution spaces of functions on [-T, T ] × R, defined by

X s T = {u ∈ L ∞ T H -ε/10 ∩ L 2 T H s x -s-ε/4 ∩ L 2(k-1)+ε T W s+ε k-1 ,r
where s satisfies (7.1), ε is a small positive number and r ≫ 1 is a large number, to be chosen in function of s. We equip X s T with the norm

u X s T = u L ∞ T H -ε/10 + u L 2(k-1)+ε T W s+ε k-1 ,r + u L 2 T H s x -s-ε/4
.

In the next lemma, we state the linear estimates.

Lemma 7.2. -For every τ ∈ R and T ≤ 2π,

e -iτ H u X s T ≤ u Y s , e -iτ H u Y s = u Y s .
Moreover, if s satisfies (7.1), there exist ε 0 > 0 and r 0 ≥ 2 such that for ε, η ∈ (0, ε 0 ), r > r 0 ,

(7.3) t 0 e -i(t-τ )H (F (τ ))dτ X s T ≤ C F L 1 T H s-η and for t ∈ [-T, T ] (7.4) t 0 e -i(t-τ )H (F (τ ))dτ Y s ≤ C F L 1 T H s-η
(recall that the dependence on ε and r of X s T and Y s is implicit).

Proof. -The first estimate is a direct consequence of the definition. Let us prove (7.3). We first observe that if s satisfies (7.1) then thanks to the Sobolev inequality and (2.7) we have

(7.5) u L 2(k-1)+ε T W s+ε k-1 ,r ≤ C( u L ∞ T H s-η + u L 4 T W s-η,∞ ),
provided the positive numbers ε 0 is small enough and r is large enough. Indeed, thanks to the Sobolev embedding, we have that

u L 2(k-1)+ε T W s+ε k-1 ,r ≤ C u L 2(k-1)+ε T W s+ε k-1 +σ, 4k-4+2ε 2k-6+ε , provided σ > 2k -6 + ε 4k -4 + 2ε - 1 r .
Observe that the couple (p, q) = (2(k -1) + ε, 4k-4+2ε 2k-6+ε ) satisfies p ≥ 4 and 2 p + 1 q = 1 2 . Therefore (7.5) holds, if we can assure that

s -η > 2k -6 + ε 4k -4 + 2ε - 1 r + s + ε k -1 .
But the last condition follows from (7.1), provided 0 < ε, η < ε 0 , if ε 0 is small enough and r large enough. This proves (7.5). Using (7.5), the Strichartz estimates of Lemma 5.1 and the Minkowski inequality, we obtain that

t 0 e -i(t-τ )H (F (τ ))dτ L 2(k-1)+ε T W s+ε k-1 ,r ≤ C e iτ H F (τ ) L 1 T H s-η = C F L 1 T H s-η .
We next observe that as a consequence of Lemma 6.1, for every s satisfying (7.1) there exists ε 0 such that for ε ∈ (0, ε 0 ),

(7.6) e -itH L 2 →L 2 T H s x -s-ε/4 ≤ C.
Using (7.6) and the Minkowski inequality, we obtain that

t 0 e -i(t-τ )H (F (τ ))dτ L 2 T H s x -s-ε/4 ≤ C F L 1 T L 2 ≤ C F L 1 T H s-η . The proof of (7.3) is completed by the straightforward bound t 0 e -i(t-τ )H (F (τ ))dτ L ∞ T H -ε/10 ≤ C F L 1 T H -ε/10 ≤ C F L 1 T H s-η .
Let us now prove (7.4). Using (7.5), (7.6) and the Minkowski inequality, we obtain that for t ∈ [0, T ],

t 0 e -i(t-τ )H (F (τ ))dτ Y s ≤ C e -i(t-τ )H (χ(τ, t)F (τ )) L 1 T H s-η ≤ C F L 1 T H s-η
, where χ(τ, t) denotes the indicator function of τ ∈ [0, t]. This completes the proof of Lemma 7.2.

Multilinear estimates. -

Proposition 7.3. -Assume that s satisfies (7.1) and let η > 0. There exist ε 0 > 0 and r 0 ≥ 2 such that the following holds true. For every ε ∈ (0, ε 0 ), and every r > r 0 satisfying 3εr > 4(k -1), there exists κ > 0 such that for T ≤ 2π we have the estimates

(7.7) u 1 • • • u k L 1 T H s-η ≤ CT κ k j=1 u j X s T
and, uniformly in N ,

(7.8) S N ((S N u 1 )(S N u 2 ) • • • (S N u k )) L 1 T H s-η ≤ CT κ k j=1 S N u j X s T ≤ CT κ k j=1 u j X s T .
(we recall again that the dependence on ε and r of X s T is implicit). Proof. -Recall that by (2.3), S N = χ H 2N +1 . Therefore the second inequality is a consequence of the first as thanks to Proposition 4.1 the map S N is bounded on X s T uniformly in N .

Let us now prove the first inequality. Consider a classical Littlewood-Paley decomposition of unity with respect to H,

(7.9) Id = N ∆ N ,
where the summation is taken over dyadic integers N = 2 k , ∆ 0 = ψ 0 ( √ H) and for N ≥ 1, ∆ N = ψ( √ H/N ), where ψ 0 , ψ are suitable C ∞ 0 (R) functions (the support of ψ does not meet zero). Estimate (7.7) is a consequence of the following localized version of it.

Lemma 7.4. -For any δ > 0, there exists C > 0 such that for

N 1 ≤ • • • ≤ N k , ∆ N 1 (u 1 ) • • • ∆ N k (u k ) L 1 T L 2 ≤ CT κ N -s+δ k k j=1 u j X s T .
Let us now explain how Lemma 7.4 implies Proposition 7.3. Using the definition of H s , after performing (7.9), we can write

u 1 • • • u k L 1 T H s-η ≤ C M N 1 ≤•••≤N k σ∈S k (1 + M ) s-η ∆ M ∆ N 1 (u σ(1) ) • • • ∆ N k (u σ(k) ) L 1 T L 2 .
We now observe that Proposition 7.3 is a consequence of Lemma 7.4 (with the choice δ = η/2) and the following statement, applied with α > 0 small enough.

Lemma 7.5. -Let α > 0. For every K > 0, there exists C > 0 such that for

M ≥ N 1+α k , N 1 ≤ • • • ≤ N k , (7.10) ∆ M ∆ N 1 (u 1 ) • • • ∆ N k (u k ) L 1 T L 2 ≤ CT (1 + M ) -K k j=1 u j X s T .
Let us observe that in [START_REF] Burq | Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations[END_REF], a similar stronger property (assuming only M ≥ DN k , D ≫ 1) in the context of the analysis on a compact Riemannian manifold is proved, the projectors ∆ N being replaced by the corresponding objects associated to the Laplace-Beltrami operator. In the context of our analysis below the argument is much simpler compared to [START_REF] Burq | Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations[END_REF].

Proof of Lemma 7.5. -Since the space X s T is embedded in L ∞ T H -ε/10 (which is the only L 2 type component of our resolution space), by duality and summing of geometric series the bound (7.10) is a consequence of the eigenfunction bound

(7.11) ∀ K > 0, ∃ C K : ∀ N i ≥ 1, ∀ M ≥ 1, ∀ n i , m : N i ≤ √ 2n i + 1 ≤ 2N i , M ≤ √ 2m + 1 ≤ 2M, R h n 1 • • • h n k h m ≤ C K (1 + M ) -K
(the argument is trivial in the time variable). By writing h m = 1 (2m+1) j H j h m , we make integrations by parts in the left hand-side of (7.11). Starting from the definition of h n (2.1) we have the relations (7.12)

h ′ n (x) = n 2 h n-1 (x) - n + 1 2 h n+1 (x)
and x h n (x) = h ′ n (x) + 2(n + 1) h n+1 (x), which implies the bound (for p ≥ 2), (7.13) x

k 1 ∂ k 2 x h n L p (R) ≤ C k 1 ,k 2 (1 + |n|) k 1 +k 2 2
. Using (7.13) (applied when extending the powers of H) we obtain that the left handside of (7.11) is bounded by C j (N k /M ) 2j which implies the needed bound thanks to our restriction on M . This completes the proof of Lemma 7.5.

It remains to prove Lemma 7.4.

Proof of Lemma 7.4. -We take the parameters ε and r in the scope of applicability of Lemma 7.1 and Lemma 7.2. By introducing artificially the weight x s+ε/4 , using the Hölder inequality and Proposition 4.1, we can write

(7.14) ∆ N 1 (u 1 ) • • • ∆ N k (u k ) L 1 T L 2 ≤ ≤ C x -s-ε/4 ∆ N k (u k ) L 2 T L 2 k-1 j=1 x s+ε/4 k-1 u j L 2(k-1) T L ∞ .
We now estimate the right hand-side of (7.14). First, we observe that there exists κ > 0 such that for j = 2, • • • k, using the Sobolev inequality, and the boundedness on L r (1 < r < ∞) of zero-th order pseudo-differential operators, we can write (7.15)

x s+ε/4 k-1 u j L 2(k-1) T L ∞ ≤ CT κ u j L 2(k-1)+ε T W s+ε k-1 ,r ≤ CT κ u j X s T ,
provided 3ε 4(k-1) r > 1. Next, using similar arguments as in the proof of Lemma 7.5, we obtain the following statement.

Lemma 7.6. -For any κ > 0 and any K, there exists C such that for any M satisfying M ≤ N 1-κ , we have

∆ M x -s-ε/4 ∆ N (u) L 2 T L 2 ≤ C(1 + M + N ) -K u X s T .
As a consequence of Lemma 7.6, we obtain for arbitrarily small κ > 0,

x -s-ε/4 ∆ N k (u k ) L 2 T L 2 ≤ M ≥N 1-κ k ∆ M ( x -s-ε/4 ∆ N k (u k )) L 2 T L 2 + CN -s k u k X s T ≤ C M ≥N 1-κ k ∆ M √ H s M s ( x -s-ε/4 ∆ N k (u k )) L 2 T L 2 + CN -s k u k X s T ≤ CN -s+κs k √ H s ( x -s-ε/4 ∆ N k (u k )) L 2 T L 2 + CN -s k u k X s T .
Using Proposition 4.1, we can write

√ H s ( x -s-ε/4 ∆ N k (u k )) L 2 T L 2 ≤ C u k L 2 T H s x -s-ε/4 + [ √ H s , x -s-ε/4 ]∆ N k (u k ) L 2 T L 2 .
In order to estimate the commutator contribution, we shall use the Weyl-Hörmander pseudo-differential calculus associated to the metric (7.16)

dx 2 1 + x 2 + dξ 2 1 + ξ 2 .
The symbol classes S(µ, m) associated to (7.16) are the spaces of smooth functions on R 2 satisfying the bounds

|∂ α x ∂ β ξ a(x, ξ)| ≤ C α,β x µ-α ξ m-β .
Then we have (see cf. [START_REF] Hörmander | The analysis of linear partial differential operators III[END_REF], Section 18.5, [START_REF] Robert | Autour de l'approximation semi-classique[END_REF] or [START_REF] Bouclet | Distributions spectrales pour des opérateurs perturbés[END_REF]) that if a 1 ∈ S(µ 1 , m 1 ) and a 2 ∈ S(µ 2 , m 2 ) with corresponding operators Op(a 1 ) and Op(a 2 ) then the commutator [Op(a 1 ), Op(a 2 )] is a pseudo-differential operator with symbol in S(µ

1 + µ 2 -1, m 1 + m 2 -1). Using this fact, we obtain that [ √ H s , x -s-ε/4 ]∆ N k (u k ) L 2 T H ε/4 ≤ C ∆ N k (u k ) L 2 T L 2
and by duality

[ √ H s , x -s-ε/4 ]∆ N k (u k ) L 2 T L 2 ≤ C ∆ N k (u k ) L 2 T H -ε/4 ≤ CT 1 2 u k X s T .
Therefore, we obtain the bound (7.17)

x -s-ε/4 ∆ N k (u k ) L 2 T L 2 ≤ CN -s+κs k u k X s T .
We now collect (7.14), (7.15) and (7.17) in order to complete the proof of Lemma 7.4. This completes the proof of Proposition 7.3.

7.4.

Further properties of Y s with respect to the measure ρ. -From now each time we invoke the space Y s , we mean that s satisfies (7.1) and ε and r are in the scope of applicability of Lemma 7.1, Lemma 7.2 and Proposition 7.3. Let us next define some auxiliary spaces. Let Y s be defined by

Y s = u ∈ H -ε/20 : e -itH (u) ∈ L 2(k-1)+ε 2π W s+ε k-1 ,r ∩ L 2 2π H s x -s-ε/5
, equipped with the natural norm. The remaining part of this section is devoted to three lemmas needed in the proof of Theorem 2.4. Using the density in L p , 1 ≤ p < ∞ of the Schwartz class S(R), as a consequence of Proposition 4.1 (and the fact that the result is straightforward if f ∈ S), we have the following statement.

Lemma 7.7. -For every f ∈ Y s , (1 -S N )(f ) Y s = o(1) N →∞ . A similar state- ment holds for Ỹ s .
One can easily see that the analysis of Lemma 5.2 and Lemma 6.2 implies that ϕ N , defined by (2.6) is a Cauchy sequence in L 2 (Ω; Y s ) and thus we may see the measures µ and ρ as finite Borel measures on Y s . We deduce, thanks to Lemma 7.1

Lemma 7.8. -There exist C, c > 0 such that ρ(u : u Y s > λ) + ρ(u : u Ỹ s > λ) ≤ Ce -cλ 2 .
We also have the following statement. Lemma 7.9. -Assume that s < s ′ < s + ε 20 . Then we have that Ỹ s ⊂ Y s and the embedding is compact. In particular, thanks to Lemma 7.8, for every δ > 0 there exists a compact K of Y s such that ρ(Y s )ρ(K) < δ.

Notice that as soon we gain some positive power in H, we gain compactness because powers of H controls both powers of |D x | and of x. As a consequence, the assumption s ′ > s ensures that we have compactness in terms of x derivatives and weights in x for the second norm, whereas it ensures compactness in terms of derivatives in the third norm, while the assumption

s ′ < s + ε 20 ⇒ s ′ + ε 5 < s + ε
ensures compactness in terms of weights in x in this last norm. Finally, since the second and the third term in the definition of Y s are defined in terms of the free evolution, we may exchange some saving derivatives in H for some compactness in time. We omit the details. 

(i∂ t -H)u = κ 0 S N |S N u| k-1 S N u , u(0, x) = u 0 (x) ∈ E N .
Here is a precise statement.

Proposition 7.10. -There exist C > 0, c ∈ (0, 1), γ > 0 such that for every A ≥ 1 if we set T = cA -γ then for every N ≥ 1, every u 0 ∈ E N satisfying u 0 Y s ≤ A there exists a unique solution of (7.18) 

on the interval [-T, T ] such that u X s T ≤ A + A -1 . In addition for t ∈ [0, T ], (7.19) u(t) Y s ≤ A + A -1 .
Moreover, if u and v are two solutions with data u 0 and v 0 respectively, satisfying

u 0 Y s ≤ A, v 0 Y s ≤ A then u -v X s T ≤ C u 0 -v 0 Y s and for t ∈ [0, T ], u(t) -v(t) Y s ≤ C u 0 -v 0 Y s .
Proof. -We rewrite (7.18) as the integral equation

u(t) = e -itH (u 0 ) + κ 0 t 0 e -i(t-τ )H S N |S N u(τ )| k-1 S N u(τ ) dτ ≡ Φ u 0 (u).
Using Lemma 7.2 and Proposition 7.3, we infer the bounds

(7.20) Φ u 0 (u) X s T ≤ u 0 Y s + CT κ u k X s
T and (after some algebraic manipulations on

|u| k-1 u -|v| k-1 v) (7.21) Φ u 0 (u) -Φ u 0 (v) X s T ≤ CT κ u -v X s T ( u k-1 X s T + u k-1 X s T
).

Therefore if we choose T as T = cA -K with c ≪ 1 and K > (k+10)/κ, the estimates (7.20) and (7.21) yield that the map Φ u 0 is a contraction on the ball of radius 2A and centered at the origin of X s T . The fixed point of this contraction is a solution of (7.18). The uniqueness and the estimate on the difference of two solutions is a consequence of Proposition 7.3. Finally coming back to (7.20), we infer that the solution satisfies

(7.22) u X s T = Φ u 0 (u) X s T ≤ A + Cc κ (1 + A) -κK A k ≤ A + A -1
, for c small enough and by possibly taking K slightly larger (replacing K by K + 1/κ for instance). Let us now prove (7.19). Using Lemma 7.2 ( η in the scope of its applicability), Proposition 7.3 and (7.22), we obtain of Lemma 7.2,

u(t) Y s ≤ u 0 Y s + CT κ |u| k-1 u L 1 T H s-η ≤ A + CT κ u k X s T ≤ A + A -1 .
This completes the proof of Proposition 7.10.

Let us remark that the existence statement in Proposition 7.10 is not of importance (indeed see the next section for a global existence statement). The important point is the uniformness with respect to N of the bounds obtained. Similarly, we can also obtain a well-posedness result for the original problem

(7.23) (i∂ t -H)u = κ 0 |u| k-1 u, u(0, x) = u 0 (x) ∈ Y s .
Proposition 7.11. -Then there exist C > 0, c ∈ (0, 1), γ > 0 such that for every

A ≥ 1 if we set T = cA -γ for every u 0 ∈ Y s satisfying u 0 Y s ≤ A there exists a unique solution of (7.23) on [-T, T ] such that u X s T ≤ A + A -1 . In addition for t ∈ [0, T ], u(t) Y s ≤ A + A -1 .
Moreover, if u and v are two solutions with data u 0 and v 0 respectively, satisfying

u 0 Y s ≤ A, v 0 Y s ≤ A then u -v X s T ≤ C u 0 -v 0 Y s .
The proof of Proposition 7.11 is essentially the same as that of Proposition 7.10 and hence will be omitted.

Global well-posedness

In this section, we prove the global existence results for a full measure set for (1.1). Moreover this set will be reproduced by the flow which is a key element in the measure invariance argument of the next section. 

(i∂ t -H)u = κ 0 S N |S N u| k-1 S N u , u(0, x) = Π N (u(0, x)) ∈ E N , with κ 0 = ±1 if k = 3 and κ 0 = 1 if k ≥ 5. For u ∈ E N , write u = N n=0 c n h n = N n=0 (a n + ib n )h n , a n , b n ∈ R.
Then we have the following result.

Lemma 8.1. -Set J(a 0 , , • • • , a N , b 0 , • • • , b N ) = 1 2 N n=0 λ 2 n (a 2 n + b 2 n ) + κ 0 k + 1 S N N n=0 (a n + ib n )h n k+1 L k+1 (R) .
The equation (8.1) is a Hamiltonian ODE of the form

(8.2) ȧn = ∂J ∂b n , ḃn = - ∂J ∂a n , 0 ≤ n ≤ N.
In particular J is conserved by the flow. Moreover the mass

(8.3) u 2 L 2 (R) = N n=0 (a 2 n + b 2 n )
is conserved under the flow of (8.1). As a consequence, (8.1) has a well-defined global flow ΦN .

Proof. -The proof of (8.2) is straightforward. Let us next show the L 2 conservation. Multiply the equation (8.1) with u and integrate over R. First, by an integration by parts, we have

(8.4) - R u Hu = R |H 1/2 u| 2 ∈ R.
Then by (2.4), we deduce that

R S N |S N u| k-1 S N u u = R S N |S N u| k-1 S N u S N u (8.5) = R |S N u| k-1 S N u S N u ∈ R.
Hence, from (8.4) and (8.5) we infer that d dt u 2 L 2 (R) = 0. This completes the proof of Lemma 8.1.

Denote by Φ N (t) : E N -→ E N the flow of the ode (8.1). We now state an invariance result which holds both in the defocusing and in the focusing cases. Proof. -The proof is based on the Liouville theorem which we recall below. Lemma 8.3. -Consider the ODE ẋ(t) = F (t, x(t)), x(t) ∈ R n with a local flow Φ(t). Suppose also that F is divergence free, i.e. n j=1 ∂ j F = 0 (∂ j being the derivative with respect to the (j + 1)'th variable of F ). Then the Lebesgue measure of R n is invariant under the flow Φ(t).

Observe that the ODE's in the scope of applicability of the Liouville theorem are not necessarily autonomous. Let us now return to the proof of Proposition 8.2. By Lemma 8.3, the measure dadb = N n=0 a n b n is invariant under Φ N . Then, as the Hamiltonian J is conserved, the measure d -1

N e -J N n=0 da n db n is also invariant by the flow of (8.1). This completes the proof in the defocusing case. A similar argument applies in the focusing case by invoking the L 2 conservation. This completes the proof of Proposition 8.2.

Let us now decompose the space H -σ (R) = E ⊥ N ⊕ E N , and denote by Φ N (t) = (e itH , ΦN (t)) the flow of the equation

(8.6) (i∂ t -H)u = κ 0 S N |S N u| k-1 S N u , u(0, x) = (u N 0 , u 0,N ) ∈ E ⊥ N ⊕ E N , Corollary 8.4. -The measure ρ N is invariant under the flow Φ N (t).
Indeed, it is clear for product sets

A = A N × A N , A N ⊂ E ⊥ N , A N ⊂ E N
and these sets generate the Borelian σ-algebra. 8.2. Global existence. -Here we show that the problem (1.1) is globally wellposed on a set of full ρ measure. Our first result gives bounds (independent of N ) on the solution of the approximate equation (8.6).

Proposition 8.5. -There exists a constant C > 0 such that for all i, N ∈ N * , there exists a ρN measurable set Σi

N ⊂ E N so that for all i, N ∈ N * ρN (E N \ Σi N ) ≤ 2 -i . For all f ∈ Σi N and t ∈ R (8.7) ΦN (t)f Y s ≤ C i + log(1 + |t|) 1 2 .
Moreover, there exists c > 0 such that for every t 0 , every i ≥ 1 and N ≥ 1,

(8.8) ΦN (t 0 )( Σi N ) ⊂ Σi+[c log(|t 0 |+1)]+3 N .
The property (8.8) allows to simplify the construction of a set invariant by the limit flow, compared to a similar situation in [START_REF] Tzvetkov | Invariant measures for the defocusing NLS[END_REF][START_REF] Burq | Invariant measure for the three dimensional nonlinear wave equation[END_REF].

Proof. -We set, for i, j integers ≥ 1, Bi,j N (D) ≡ u ∈ E N : u Y s ≤ D(i + j) 1 2
, where the number D ≫ 1 (independent of i, j, N ) will be fixed later. Thanks to Proposition 7.10, there exist c > 0, γ > 0 only depending on s such that if we set τ ≡ cD -γ (i + j) -γ/2 then for every t ∈ [-τ, τ ], (8.9) ΦN (t) Bi,j

N (D) ⊂ u ∈ E N : u Y s ≤ D(i + j) 1 2 + D -1 (i + j) -1 2 ≤ D(i + j + 1) 1 2 
, provided D ≫ 1, independently of i, j. Following [START_REF] Bourgain | Periodic nonlinear Schrödinger equation and invariant measures[END_REF], we set Σi,j

N (D) ≡ [2 j /τ ] k=-[2 j /τ ] ΦN (-kτ )( Bi,j N (D)) ,
where [2 j /τ ] stays for the integer part of 2 j /τ . Notice that thanks to (8.9), we obtain that the solution of (8.6) with data f ∈ Σi,j

N (D) satisfies (8.10) ΦN (t)(f ) Y s ≤ D(i + j + 1) 1 2 , |t| ≤ 2 j .
Indeed, for |t| ≤ 2 j , we can find an integer k ∈ [-[2 j /τ ], [2 j /τ ]] and τ 1 ∈ [-τ, τ ] so that t = kτ + τ 1 and thus u(t) = ΦN (τ 1 ) ΦN (kτ )(f ) . Since f ∈ Σi,j N (D) implies that ΦN (kτ )(f ) ∈ Bi,j N (D), we can apply (8.9) and arrive at (8.10).

By Proposition 8.2, the measure ρN is invariant by the flow ΦN . Hence

ρN E N \ Σi,j N (D) ≤ (2[2 j /τ ] + 1)ρ N E N \ Bi,j N (D) ≤ C2 j D γ (i + j) γ/2 ρN E N \ Bi,j N (D)
. Now, by the large deviation bounds of Lemma 7.1 (8.11) ρN

E N \ Σi,j N (D) ≤ C2 j D γ (i + j) γ/2 e -cD 2 (i+j) ≤ 2 -(i+j) , provided D ≫ 1, independently of i, j, N . Next, we set Σi N = ∞ j=1 Σi,j N (D) .
Thanks to (8.11), ρN (E N \ Σi N ) ≤ 2 -i . In addition, using (8.10), we get that there exists C such that for every i, every N , every

f ∈ Σi N , every t ∈ R, ΦN (t)(f ) Y s ≤ C(i + 2 + log(1 + |t|)) 1 2 .
Indeed for t ∈ R there exists j ∈ N such that 2 j-1 ≤ 1 + |t| ≤ 2 j and we apply (8.10) with this j. This proves (8.7).

Let us now turn to the proof of (8.8). Consider f ∈ Σi N = ∩ j≥1 Σi,j N . Denote by j 0 the integer part of 2 + log(1+|t 0 |) log(2) . According to (8.10), as soon as j ≥ j 0 , we have |t 0 | ≤ 2 j-1 , and for any |t| ≤ 2 j-1 (8.12) ΦN (t) ΦN (t 0 )f ∈ Bi+2,j-1

N (D) ⊂ Bi+j 0 +2,j-1 N (D), which implies that ΦN (t 0 )f ∈ Σi+j 0 +2,j-1 N (D), ∀ j > j 0 .
On the other hand, the trivial relation (for

j 0 -k > 0, i.e. k = 1, 2, • • • j 0 -1) Bi+2,j 0 N (D) = Bi+2+k,j 0 -k N (D) ⊂ Bi+j 0 +2,j 0 -k N (D),
and (8.12) (applied with j = j 0 + 1) implies that for j < j 0 and |t| ≤ 2 j ≤ 2 j 0 -1 ,

ΦN (t) ΦN (t 0 )f ∈ Bi+j 0 +2,j N (D), ∀ 1 ≤ j < j 0 ,
and consequently ΦN (t 0 )f ∈ Σi+j 0 +2,j N (D), ∀ j ≥ 1. This proves (8.8) and therefore the proof of Proposition 8.5 is completed.

For integers i ≥ 1 and N ≥ 1, we define the cylindrical sets

Σ i N ≡ u ∈ H -σ : Π N (u) ∈ Σi N . Next, for i ≥ 1, we set Σ i = u ∈ H -σ : ∃N k , lim k→+∞ N k = ∞, ∃ u N k ∈ Σ i N k , lim k→+∞ S N k u N k -u Y s = 0 .
Observe that Σ i is a closed subset of Y s . Indeed, assume that there exists

u N k ∈ Σ i N k , lim k→+∞ S N k u N k -u Y s = 0.
Then for any P ∈ N, as soon as N k ≫ P , we have

S P (u N k -u) Y s = S P (S N k u N k -u) Y s ≤ C S N k u N k -u Y s → 0
As a consequence, using (8.7) (with t = 0), we deduce (8.13) S P (u) Y s ≤ lim sup

k→+∞ S P (u N k ) Y s = lim sup k→+∞ S P (u N k ) Y s ≤ C sup Q S Q L(L r (R)) i 1/2
and passing to the limit P → +∞, we deduce

u ∈ Y s , u Y s ≤ C ′ i 1/2 .
The closeness property is clear. Notice also that we have the following inclusions (8.14) lim sup

N →+∞ Σ i N = ∞ N =1 ∞ N 1 =N Σ i N 1 ⊂ Σ i . Indeed, if u ∈ lim sup N →+∞ Σ i N , there exists N k → +∞ such that Π N k (u) ∈ Σi N k
, and the same proof as above shows that

u ∈ Y s , u Y s ≤ C ′ i 1/2 .

Now, we clearly have

S n uu Y s = o(1) n→+∞ , and since S n (Π n (u)) = S n (u), the sequence u N k ≡ Π N k (u) is the one ensuring that u ∈ Σ i . This proves (8.14). As a consequence of (8.14), we get (8.15) ρ Σ i ≥ ρ lim sup

N →+∞ Σ i N .
Using Fatou's lemma, we get (8.16) ρ(lim sup

N →∞ Σ i N ) ≥ lim sup N →∞ ρ(Σ i N ) .
In the defocusing case, consider G N (u) = exp(-

1 k+1 S N u k+1 L k+1 (R) ) and G(u) = exp(-1 k+1 u k+1 L k+1 (R)
). In the focusing case, let G N be defined by (2.12) and G by Theorem 2.3. We have that

ρ(Σ i N ) = Σ i N G(u)dµ(u), and ρ N (Σ i N ) = Σ i N G N (u)dµ N (u) = Σi N G N (u)dμ(u) = ρN ( Σi N ).
Therefore, thanks to (3.16), we get lim

N →∞ ρ(Σ i N ) -ρ N (Σ i N ) = 0 .
Therefore, using Proposition 8.5 and (3.17), we obtain (8.17) lim sup

N →∞ ρ(Σ i N ) = lim sup N →∞ ρ N (Σ i N ) = lim sup N →∞ ρN ( Σi N ) = lim sup N →∞ ρ N (Y s ) -2 -i = ρ(Y s ) -2 -i .
Collecting the last estimate and (8.15), (8.16), we obtain that

(8.18) ρ Σ i ≥ ρ(Y s ) -2 -i . Now, we set (8.19) Σ ≡ ∞ i=1 Σ i .
Then, by (8.18), the set Σ is of full ρ measure. It turns out that one has global existence for any initial condition f ∈ Σ. We now state the global existence results for the problem (7.23).

Proposition 8.6. -For every integer i ≥ 1 the local solution u of (7.23) with initial condition f ∈ Σ i is globally defined and we shall denote it by u = Φ(t)f . Moreover, there exists C > 0 such that for every f ∈ Σ i and every t ∈ R,

u(t) Y s ≤ C i + log(1 + |t|) 1 2 . Furthermore, if (f p ) p≥0 ∈ Σ i Np , N p → +∞ are so that lim p→+∞ S Np f p -f Y s = 0, then (8.20) lim p→+∞ u(t) -S Np (Φ Np (t)(f p )) Y s = 0.
Finally, for every t ∈ R, Φ(t)(Σ) = Σ.

Proof. -The key point is now the following lemma.

Lemma 8.7. -There exist Λ 0 > 0, C > 0, K > 0 such that the following holds true. Consider a sequence u 0,Np ∈ E Np and u 0 ∈ Y s . Assume that there exists

Λ > Λ 0 such that u 0,Np Y s ≤ Λ, u 0 Y s ≤ Λ, lim p→+∞ S Np u 0,Np -u 0 Y s = 0.
Then if we set τ = CΛ -K then Φ Np (t)(u 0,Np ) and Φ(t)(u 0 ) exist for t ∈ [0, τ ] and satisfy

Φ Np (t)(u 0,Np ) L ∞ τ Y s ∩X s τ ≤ Λ + 1, Φ(t)(u 0 ) L ∞ τ Y s ∩X s τ ≤ Λ + 1. Furthermore lim p→+∞ S Np Φ Np (t)(u 0,Np ) -Φ(t)(u 0 ) L ∞ ((0,τ );Y s ) = 0.
Proof. -The first part of this lemma is a direct consequence of our local well posedness results of Propositions 7.10, 7.11. For the second part, let us write

Φ(t)(u 0 ) ≡ u = e -itH (u 0 ) + v, Φ Np (t)(u 0,Np ) ≡ u p = e -itH (u 0,Np ) + v p ,
and w p = v -S Np v p . We have uu p = e -itH (u 0 -S Np u 0,Np ) + w p and by assumption,

e -itH (u 0 -S Np u 0,Np ) Y s = u 0 -S Np u 0,Np Y s = o(1) p→+∞ .
Therefore it remains to show that

w p L ∞ τ Y s ≤ C w p L ∞ τ Y s = o(1)
p→+∞ , for τ chosen as in the statement of the lemma. Observe that w p solves the problem (Id -S 2 Np )(|u| k-1 u) L 1 ((0,τ );H s-η ) → 0 as p → +∞ . We estimate the second term in the r.h.s. of (8.21) by using a direct manipulation on the expression |z 1 | k-1 z 1 -|z 2 | k-1 z 2 and invoking Proposition 7.3. This yields (8.23) 

(8.21) (i∂ t -H)w p = κ 0 |u| k-1 u -κ 0 S 2 Np (|S Np u p | k-1 S Np u p ) = κ 0 (Id -S 2 Np )(|u| k-1 u) + κ 0 S 2 Np (|u| k-1 u -|S Np u p | k-1 S Np u p )
|u| k-1 u -|S Np u p | k-1 S Np u p L 1 ((0,τ );H s-η ) ≤ Cτ κ u -S Np u p X s τ ( u k-1 X s τ + S Np u p k-1 X s τ ) ≤ Cτ κ (Λ + 1) k-1 ( e -itH (u 0 -S Np (u 0,Np )) Y s + w p X s τ ) ≤ o(1) p→+∞ + Cτ κ (Λ + 1) k-1 w p X s
τ . We deduce from (8.22) . The strategy of proof consists in proving that as long as the solution to (7.23) exists, we can pass to the limit in (8.24) and there exists a constant C ′ independent of i such that 

(8.25) Φ(t)(u) Y s ≤ C ′ C(i + log(1 + |t|))
Φ(t)(u 0 ) Y s ≤ C ′ Λ, for |t| ≤ T.
As a first step, let us fix

t = 0. For Q ∈ N, if N p ≥ Q, Π Np • S Q = S Q
and consequently, using Proposition 4.1 and the definition of Σ i , we obtain

S Q (u 0 ) Y s = lim p→+∞ S Q Π Np (u Np ) Y s ≤ C ′ Λ
and passing to the limit Q → +∞, we deduce

u 0 Y s = lim Q→+∞ S Q (u 0 ) Y s ≤ C ′ Λ
This implies that the sequences Π Np u Np ≡ u 0,p and u 0 satisfy the assumptions of Lemma 8.7 (with Λ replaced by C ′ Λ). As a consequence, we know that

lim p→+∞ Φ Np (t)(Π Np (u Np )) -Φ(t)(u 0 ) L ∞ ((0,τ );Y s ) = 0
for τ ≡ cΛ -K . This convergence allows to pass to the limit in (8.26) for t = τ , using again Proposition 4.1. Indeed, fix Q, then for N p ≫ 2Q,

S Q Φ(τ )(u 0 ) Y s = lim p→∞ S Q Φ Np (τ )Π Np (u Np ) Y s
and using first (8.26) and passing to the limit Q → +∞, we deduce

(8.28) Φ(τ )(u 0 ) Y s = lim Q→+∞ S Q Φ(τ )(u 0 ) Y s ≤ sup Q S Q L(Y s ) Λ.
Now, we can apply the results in Lemma 8.7, with the same Λ as in the previous step, which implies that (8.27) holds for t ∈ [0, 2τ ], and so on and so forth.

Notice here that at each step the a priori bound does not get worse, because we only use the results in Lemma 8.7 to obtain the convergence of Φ Np (t)(Π Np (u Np ))-Φ(t)u 0 Y s to 0, and then obtain the estimates on the norm Φ(t)(u 0 ) Y s by passing to the limit in (8.26) (applying first S Q , passing to the limit p → +∞, then to the limit Q → +∞). A completely analogous argument holds for the negative times t.

In order to prove the last statement in Proposition 8.6 we observe that, according to (8.8) there exists c > 0 such that for any t ∈ R,

Φ(t)(Σ i ) ⊂ Σ i+[c log(|t|+1)]+3
which is a straightforward consequence of (8.20) and (8.8). As consequence we have Φ(t)(Σ) ⊂ Σ and thanks to the reversibility of the flow Φ(t), we infer that Φ(Σ) = Σ. This completes the proof of Proposition 8.6.

Measure invariance

In this section, we prove the last part of Theorem 2.4. Recall that we see ρ as a finite Borel measure on Y s . Let Σ be the set of full ρ measure constructed in the previous section. This is the set involved in the statement of Theorem 2.4. Recall that thanks to Proposition 8.6, Φ(t)(Σ) = Σ and thanks to the reversibility of the flow Φ(t), it suffices to prove that for every ρ measurable set A ⊂ Σ and every t ∈ R, ρ(A) ≤ ρ(Φ(t)(A)). We perform several reductions which will allow us to reduce the matters to compact sets A and small times t. First by the regularity properties of ρ, we may assume that A is a closed set of Y s . Then thanks to Lemma 7.9, it suffices to prove ρ(K) ≤ ρ(Φ(t)(K)) for K a compact set of Y s . Let us fix a compact K of Y s and a time t > 0 (the case t < 0 is analogous). Thanks to Proposition 8.6, there exists R > 1 such that {Φ(τ )(K), 0 ≤ τ ≤ t} ⊂ B R , where here and for future references B R denotes the open ball of Y s centered at the origin and of radius R. We have the following statement comparing Φ(t) and Φ N (t) for small (but uniform) times and compacts contained in B R . Lemma 9.1. -There exist c > 0 and γ > 0 such that the following holds true. For every R > 1, every compact K of B R and every ε > 0 there exists N 0 ≥ 1 such that for every N ≥ N 0 , every

u 0 ∈ K, every τ ∈ [0, cR -γ ], Φ(τ )(u 0 )-Φ N (τ )(u 0 ) Y s < ε. Proof. -To prove this lemma, take two new cut off S N,i = χ i ( H 2N +1 ) with χ 1 χ = χ, χ 2 χ 1 = χ 1 so that S N,1 S N = S N , S N,2 S N,1 = S N,1 . Notice first that (9.1) Φ(τ )(u 0 ) -Φ N (τ )(u 0 ) Y s ≤ (1 -S N,1 ) Φ(τ )(u 0 ) -Φ N (τ )(u 0 ) Y s + S N,1 Φ(τ )(u 0 ) -Φ N (τ )(u 0 ) Y s .
To bound the first term, we notice that

(1 -S N,1 ) Φ N (τ )(u 0 ) Y s = (1 -S N,1 ) e itH u 0 Y s = (1 -S N,1 )(u 0 ) Y s ,
and lim

N →=∞ (1 -S N,1 ) Φ(τ )(u 0 ) Y s = 0
uniformly with respect to u 0 in a compact set of Y s . To bound the second term, we notice that

S N,1 Φ(τ )(u 0 ) -Φ N (τ )(u 0 ) Y s = S N,1 Φ(τ )(u 0 ) -S N,2 Φ N (τ )(u 0 ) Y s .
Now to estimate this term we proceed as in the proof of Lemma 8.7, the only additional point being the observation that S N,2 (u) converges to u in Y s , uniformly with respect to u in a compact of Y s .

We next observe that we only need to prove ρ(K) ≤ ρ(Φ(τ )(K)) for τ ∈ [0, cR -γ ], where R and γ are fixed by Lemma 9.1. Then we can iterate the inequality on the same time intervals since we know that Φ(τ )(K) remains included in B R as far as τ ∈ [0, t]. Using (2.13), Lemma 9.1 and the well-posedness result of Proposition 7.10 (notice that, though only stated for the flow ΦN (t) on E N , the result holds clearly for the flow Φ

N = (e itH , ΦN (t)) on E ⊥ N × E N ), we can write ρ(Φ(τ )(K) + B 2ε ) = lim N →∞ ρ N (Φ(τ )(K) + B 2ε ) ≥ lim sup N →∞ ρ N (Φ N (τ )(K) + B ε ) ≥ lim sup N →∞ ρ N (Φ N (τ )(K + B αε )),
where α is a fixed constant depending on R but independent of ε. Next, using the invariance of the measure ρ N under the flow Φ N (t) and using once again (2.13), we can write

ρ(Φ(τ )(K) + B 2ε ) ≥ lim sup N →∞ ρ N (K + B αε ) = ρ(K + B αε ) ≥ ρ(K) .
Using that Φ(t)(K) is closed and letting ε to zero, the dominated convergence theorem implies that ρ(Φ(τ )(K)) ≥ ρ(K). This proves the measure invariance. The proof of Theorem 2.4 is therefore completed.

Proof of Theorem 1.2

Suppose that v(s, y) is a solution of the problem (10.1)

i∂ s v + ∂ 2 y v = |v| k-1 v, s ∈ R, y ∈ R. We define u(t, x) for |t| < π 4 , x ∈ R by (10.2) u(t, x) = 1 cos 1 2 (2t) v tan(2t) 2 , x cos(2t) e -ix 2 tg(2t) 2 .
We then can check that u solves the problem

(10.3) i∂ t u -Hu = cos k-5 2 (2t)|u| k-1 u, |t| < π 4 , x ∈ R.
One also has that the map (10.2) sends solutions of the linear Schrödinger equation without harmonic potential to solutions of the linear Schrödinger equation with harmonic potential. We refer to [START_REF] Carles | Rotating points for the conformal NLS scattering operator[END_REF] for a use of (10.2) in the context of scattering for L 2 critical problems, i.e. quintic nonlinearities in 1d. The problem (10.3) has also the following Duhamel formulation (10.4)

u(t) = e -i(t-t 0 )H (u(t 0 )) -i t t 0 e -i(t-τ )H cos k-5 2 (2τ )|u(τ )| k-1 u(τ ) dτ with t 0 , t ∈ (-π 4 , π 4 
). The local analysis of (10.3) will be applied to (10.4) which fits well in the framework of Propositions 7.10, 7.11. By the transformation (10.2) we may link the solutions of (10.1) on R×R to the solutions of (10.3) on (-π/4, π/4)×R. The results of Theorem 1.2 will therefore be a consequence of the following local in time (but large data) result concerning (10.3), together with the observation that thanks to (10.2) the Y s and H s convergence in the context of (10.3) implies the Y s and H s convergence for the original problem (10.1). w ± (t) H s = 0 .

Proof of Proposition 10.1. -The proof of this proposition is very similar in spirit to the proof of Theorem 2.4. The local analysis is essentially the same. There is however a nontrivial modification in the globalization arguments because of the lack of energy conservation of (10.3). We consider the ODE (10.5)

i∂ t u -Hu = cos k-5 2 (2t)S N (|S N u| k-1 S N u), u(0) ∈ E N .
One may multiply (10.5) by ū and integrate over R to obtain that the L 2 norm is conserved by the flow and combining this fact with the local existence theory of ODE's, we obtain that the ODE (10.5) with phase space E N has a unique global in time solution. For two real numbers t 1 , t 2 let us denote by ΦN (t 1 , t 2 ) the flow of (10.5) from t 1 to t 2 . We have the following monotonicity property for the solutions of (10.5).

Lemma 10.2. -Set E N (t, u(t)) = 1 2 √ H u(t) 2 L 2 (R) + cos k-5 2 (2t) k + 1 S N u(t) k+1 L k+1 (R)
. Then the solution of (10.5) satisfies

E N (t, u(t)) ≤ E N (0, u(0)), |t| ≤ π 4 .
Proof. -A direct computation shows that along the flow of (10.5) one has

d dt E N (t, u(t)) = - (k -5) sin(2t) cos k-5 2 (2t) k + 1 S N u(t) k+1 L k+1 (R) .
Therefore the function E N (t, u(t)) increases on the interval [-π/4, 0] and decreases on the interval [0, π/4], and attain its maximum at 0. This completes the proof of Lemma 10.2.

We shall prove that (10. 

(A)) ≥ ρN (A). Proof. -By definition μN (Φ N (t, 0)(A)) = d N ΦN (t,0)(A) e -1 2 √ H u 2 L 2 (R) du,
where du is the Lebesgue measure on E N induced by C 2(N +1) by the map (2.5).

Let us perform the variable change u → ΦN (t, 0)(u). We can apply the result of Lemma 8.3 to obtain that the Jacobian of this variable change is one (the divergence free assumption can be readily checked by expressing ΦN (t, 0)(u) in terms of its decomposition with respect to h 0 , • • • h N ). This completes the proof of Lemma 10.3.

For I in interval, we can define the spaces X s I similarly to the spaces X s T by replacing [-T, T ] by I. We have the following well-posedness result concerning (10.5).

Proposition 10.4. -There exist C > 0, c ∈ (0, 1), γ > 0, κ > 0 such that for every A ≥ 1 if we set T = cA -γ then for every N ≥ 1, every t 0 ∈ [-π 4 , π 4 ], every u 0 ∈ E N satisfying u 0 Y s ≤ A there exists a unique solution of (10.5) with data u(t 0 ) = u 0 on the interval I = [t 0 -T, t 0 +T ] such that u X s I ≤ A+A -1 . In addition for t ∈ I, (10.6) u(t) Y s ≤ A + A -1 .

Moreover, if u and v are two solutions with data u 0 and v 0 respectively, satisfying

u 0 Y s ≤ A, v 0 Y s ≤ A then u -v X s I ≤ C u 0 -v 0 Y s and for t ∈ I, u(t) -v(t) Y s ≤ C u 0 -v 0 Y s .
Finally, if J ⊂ I is an interval, then for η > 0, (10.7) J e -i(t-τ )H cos k-5

2 (2τ )|u(τ )| k-1 u(τ ) dτ H s-η ≤ C|J| κ A.
Proof. -The proof of this statement is completely analogous to that of Proposition 7.10, one needs to observe that in Lemma 7.2 and Proposition 7.3 one may replace [-T, T ] by an arbitrary interval, T by the size of this interval and one may add the factor cos k-5 2 (2τ ) with the same conclusion. The only additional point is the estimate (10.7). To prove estimates (10.7), we use that , where the number D ≫ 1 (independent of i, N ) will be fixed later. Thanks to Proposition 10.4, there exist c > 0, γ > 0 only depending on s such that if we set τ ≡ cD -γ i -γ/2 then for every t 1 , t 2 , such that |t 1t 2 | ≤ τ , Notice that thanks to (10.8), we obtain that the solution of (10.3) with data f ∈ Σi N (D) satisfies (10.9) ΦN (t, 0)(f ) Y s ≤ D(i + 1) Since we are only concerned with a well-posedness statement, we need to prove less compared with Theorem 2.4 (we do not need to prove that the statistical ensemble is a set reproduced by the flow). For integers i ≥ 1 and N ≥ 1, we define the cylindrical sets Σ i N ≡ u ∈ Y s : Π N (u) ∈ Σi N . For i ≥ 1, we set

Σ i = u ∈ Y s : ∃ N k ∈ N, N k → +∞, ∃ u N k ∈ Σ i N k , S N k (u N k ) → u in Y s .
As in the proof of Theorem 2.4, we obtain the bound (10.10) ρ Σ i ≥ ρ(Y s ) -2 -i .

Next, we set In particular, for almost all ω ∈ Ω, ϕ(ω, x) -→ 0 when x -→ ±∞.

Proof. -Let α < 1 6 . Then choose s > 0 so that s + α < 1 6 and p ≥ 4 so that s > 1 p . Then by Sobolev, there exists C > 0 so that for all ω ∈ Ω we can conclude with the Proposition A.1, as s + α < θ(p).

x α ϕ(ω, •) L ∞ (R) ≤ C x α ϕ(ω, •) W s,p (R) .
Proposition A.3 (Hölderian regularity). -Let α < 1 6 . There exist C, c > 0 so that for all x, y ∈ R p ω ∈ Ω : |ϕ(ω, x)ϕ(ω, y)| > λ|x -y| α ≤ Ce -cλ 2 .

In particular, for almost all ω ∈ Ω, the function x -→ ϕ(ω, x) is α-Hölderian on R. 

≤ C √ r|x -y| α ∞ n=0 1 λ 2(1-α+ 1 6 ) n 1 2 ≤ C √ r|x -y| α ,
for all 0 ≤ α < 1 6 . We conclude with the Tchebychev inequality. The Proposition A.1 shows that the random variables g n (ω) n≥0 yield no gain of derivatives in H s spaces, however we can prove a local gain of regularity. With (2.1) and (A.4), we deduce that E(x, y, α) = 1 4π 3/2 e (x 2 +y 2 )/2 n≥0 α n 2 n n ! R (i ξ) n e ixξ-ξ 2 /4 dξ R (i η) n e iyη-η 2 /4 dη = 1 4π 3/2 e (x 2 +y 2 )/2 R 2 n≥0 1 n ! -α ξ η n e i(xξ+yη)-ξ 2 /4-η 2 /4 dξ dη = 1 4π 3/2 e (x 2 +y 2 )/2 R 2 e -α ξ η/2+ix (ξ+η)-ξ 2 /4-η 2 /4 dξ dη.

To compute the last integral, we make the change of variables (ξ ′ , η ′ ) = 1 √ 2 (ξ + η, ξη) and use (A.3). This completes the proof. 

  1 and we have(2.4) S N Π N = Π N S N = S N , and S * N = S N . The interest of introducing the smooth cut-off S N is its better mapping properties on L p , p = 2, compared to Π N (see Proposition 4.1).
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 24 -Assume that k = 3 in the focusing case and 3 ≤ k < +∞ in the defocusing case. Then the Cauchy problem (1.1) is, for µ-almost every initial data, globally well posed in a strong sense and the Gibbs measure ρ constructed in Theorem 2.

h 4

 4 xy sin(2h 2 τ )(∂τ ψ) 2 we used Lemma 4.3 to estimate one of the ∂ τ ψ factors and Lemma 4.4 to estimate the other one. This concludes the proof of (4.4) and hence of Lemma 4.2.

7. 5 .

 5 Local well-posedness results. -Using the results of the previous subsections, we can now get local well-posedness results (uniform with respect to the parameter N ) for(7.18) 

8. 1 .

 1 Hamiltonian structure of the approximate problem. -Here we consider again the problem (8.1)

Proposition 8 . 2 .

 82 -The measure ρN defined by (2.10) (or(2.11)) is invariant under the flow ΦN of (8.1).

  with initial condition w p | t=0 = 0. Using Proposition 7.3 and Proposition 7.11, we obtain that for η > 0|u| k-1 u L 1 ((0,τ );H s-η ) ≤ Cτ κ u k X s τ ≤ Cτ κ (Λ + 1) k and consequently,(8.22) 

S-1 2 √ H u 2 L 2 1

 2221 N ΦN (t,0)(u) k+1 L k+1 (R) du . Using Lemma 10.2 we hence obtain μN ( ΦN (t, 0)(A)) ≥ d N A e k+1 S N u k+1 L k+1 (R) du = ρN (A).

Je 5 2 1 J 2 .

 512 -i(t-τ )H cos k-(2τ )F (τ ) dτ H s-η ≤ C F L H s-ηand apply the estimates of Proposition 7.3.The rest of the proof of Proposition 10.1 is very similar to the existence part of Theorem 2.4. We start by the counterpart of Proposition 8.5.Proposition 10.5. -There exists a constant C > 0 such that for all i, N ∈ N * , there exists a ρ N measurable set Σi N ⊂ E N so that for all i, N ∈ N* ρN (E N \ Σi N ) ≤ 2 -i . For all f ∈ Σi N and t ∈ [-π 4 , π 4 ] ΦN (t, 0)f Y s ≤ Ci 1 Proof. -We set, for i an integer ≥ 1, Bi N (D) ≡ u ∈ E N : u Y s ≤ Di 1 2

(10. 8 ) 2 ,

 82 ΦN (t 1 , t 2 ) Bi N (D) ⊂ u ∈ E N : u Y s ≤ D(i + 1) 1 provided D ≫ 1, independently of i. Set Σi N (D) ≡ [π/4τ ] k=-[π/4τ ]ΦN (kτ, 0) -1 ( Bi N (D)) .

1 2 , |t| ≤ π 4 .

 14 Indeed, for |t| ≤ π 4 , we can find an integer k ∈ [-[π/4τ ], [π/4τ ]] and τ 1 ∈ [-τ, τ ] so that t = kτ + τ 1 and thusΦN (t, 0)(f ) = ΦN (t, kτ ) ΦN (kτ, 0)(f ). Since f ∈ Σi N (D) implies that ΦN (kτ, 0)(f ) ∈ Bi N (D), we can apply (10.8) and arrive at (10.9). It remains to evaluate the ρN complementary measure of the set Σi N (D). Using Lemma 10.3, we can write ρNE N \ Σi N (D) ≤ (2[π/4τ ] + 1)ρ N ΦN (kτ, 0) -1 (E N \ Bi N (D)) ≤ CD γ i γ/2 μN E N \ Bi N (D). By the large deviation bounds of Lemma 7.1, we getρN E N \ Σi N (D) ≤ CD γ i γ/2 e -cD 2 i ≤ 2 -i , provided D ≫ 1,independently of i, N . This completes the proof of Proposition 10.5.

1 .

 1 and by(10.10), the set Σ is of full ρ measure. We now state a proposition yielding the existence part of Proposition 10.Proposition 10.6. -For every integer i ≥ 1, every f ∈ Σ i , the problem (10.3) with initial condition f has a unique solution in C([-π 4 , π 4 ]; Y s ).

Now by [ 33 ,

 33 Lemma 2.4],x α ϕ(ω, •) W s,p (R) ≤ C ϕ(ω, •) W s+α,p (R) , thus ω ∈ Ω : x α |ϕ(ω, x)| > λ ⊂ ω ∈ Ω : ϕ(ω, •) W s+α,p (R) > λ C .

  Proof. -By Lemma 3.2, for all x, y ∈ R we have|h n (x)h n (y)| ≤ Cλ -1 6 n .By Lemma 3.2 again, we also have the bound (see (7.12))|h n (x)h n (y)| ≤ h n W 1,∞ (R) |x -y| ≤ Cλ

5 6 n 6 n∞ n=0 1 λ 2 n

 5662 |x -y|, and we can deduce by interpolation that for all 0 ≤ α ≤ 1,|h n (x)h n (y)| ≤ Cλ α-1 |x -y| α . Now, by Lemma 3.1, for all r ≥ 2 ϕ(ω, x)ϕ(ω, y) L r (Ω) ≤ C √ r |h n (x)h n (y)| 2 1 2

Proposition A. 7 ( 4 . 2 n≥0 α 2n+1 λ 2 n2n+1 λ 2 nn h n 2 L ∞ (R) ≤ C 1 n 1+ 1 6 , 2 λ 2 n 0 ∂ 2 n≥0β

 742222162202 Spatial decorrelation).-There exists C > 0 so that for all x, y ∈ R,(A.5) E ϕ(x, ω) ϕ(y, ω) ≤ Ce -(x-y) 2Proof. -Consider the function F defined byF (x, y, α) = h n (x) h n (y) = 2 n≥0 α 2n+1 2n + 1 h n (x) h n (y), for (x, y, α) ∈ R × R × [0, 1].Thanks to the bound (3.2) we haveα h n (x) h n (y) ≤ C 1 hence F ∈ C R × R × [0, 1]; R . Therefore, (A.6) F (x, y, α) -→ n≥0 h n (x) h n (y) = E ϕ(x, ω) ϕ(y, ω) , when α -→ 1. Now observe that F is smooth in α ∈ [0, 1[. Thus (as F (x, y, 0) = 0) (A.7) F (x, y, α) = α α F (x, y, β) dβ.By (A.2) we have ∂ α F (x, y, β) = 2n h n (x) h n (y)

  ,(8.23),(8.21) and Lemma 7.2 that if η ≪ 1, Let us now finish the proof of Proposition 8.6. By assumption, we know that there exist sequencesN p ∈ N, u Np ∈ Σ i Np (i.e. Π Np (u Np ) ∈ Σ i N k ) such that lim Np u Npu 0 Y s = 0. Np (u Np )) Y s ≤ C(i + log(1 + |t|))

	Consequently, by Proposition 8.5, we know that
	(8.24)	ΦNp (t)(Π 1 2
		w k X s τ ≤ Cτ κ (Λ + 1) k-1 w p X s τ + o(1) p→+∞ .
	By taking Cτ κ (Λ+1) k-1 < 1/2, we infer that w p X s τ = o(1) p→+∞ . Next using (7.4) of Lemma 7.2, we obtain that w p L ∞ τ Y s = o(1) p→+∞ . This completes the proof of Lemma 8.7.

p→+∞

S

  which (taking into account that the norm in Y s controls the local existence time), implies that the solution is global and satisfies (8.25) for all times.Equivalently, let us fix T > 0 and Λ > Λ 0 (the number Λ 0 being fixed in Lemma 8.7). We assume(8.26) Φ Np (t)(Π Np (u Np )) Y s ≤ Λ, for |t| ≤ T

	1
	2
	and we want to show
	(8.27)

  Proposition 10.1. -The equation (10.3) has µ almost surely a unique solution in C([-π 4 ,

π 

4 ]; Y s ). Moreover we can write the solution as

u(t) = e -itH (f ± ) + w ± (t),

with f ± ∈ Y s and where w ± are such that lim t→±π/4

  3) is well-posed on [-π/4, π/4] ρ-almost surely which in turn will imply the claimed well-posedness µ a.s. The result of Lemma 10.2 implies the following key measure monotonicity property. Lemma 10.3. -For every Borel set A of E N and every |t| ≤ π

	4 ,
	μN ( ΦN (t, 0)
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The proof of Proposition 10.6 is very similar (simpler) to that of Proposition 8.6, by invoking the counterpart of the approximation statement of Lemma 8.7. This implies the existence part of Proposition 10.1. Namely we proved the well-posedness for data in Σ (defined by (10.11)) and since Σ is of full ρ measure it is of full µ measure too.

To prove the last statement of Proposition 10.1, we write the obtained solution as

and we apply estimate (10.7). A similar argument applies near -π/4. This completes the proof of Proposition 10.1.

A Typical properties on the support of the measure

In this section, we give some additional properties of the stochastic series

which have their own interest.

A. 

In particular ϕ(ω, •) W s,p (R) < +∞, p a.s.

Proof. -The proof is essentially the same as the proof of Lemma 3.3, using the precise L p bounds on the Hermite functions h n (see [START_REF] Yajima | Smoothing property for Schrödinger equations with potential superquadratic at infinity[END_REF] or [27, Theorem 2.1]).

Corollary A.2 (Decay). -Let α < 1 6 . Then there exist C, c > 0 so that for all

Proposition A.4 (Local smoothing). -Let ν > 0 and define Ψ(x) = x -1 2 -ν . Then for all s < 1 2 , there exist C, c > 0 so that

In particular Ψ ϕ(ω, •) H s (R) < +∞, p a.s.

Proof.

-By [28, Corollary 1.2] the following bound holds

Then we can perform the same argument as in the proof of Lemma 3.3.

Then we have an explicit formula for E.

Remark A.6. -Notice that by taking α = e 2it , one can see that Lemma A.5 is equivalent to Mehler formula (4.1), which in turn implies that the function defined by (10.2) satisfies (10.3). Actually, one could probably extend Lemma A.5 to more general potential (with quadratic growth) by precisely writing down a parametrix for e it(-∂ 2 x +V (x)) , or for the heat kernel e -t(-∂ 2 x +V (x)) .

Proof. -First we recall that the Fourier transform of the Gaussian reads

Hence there exists C > 0 so that for all x, y ∈ R and β ∈ [0, 1[

, and this, together with (A.6) and (A.7) yields the estimate (A.5).

A.3. Bilinear estimates. -In this section we give a proof of (1.2). Observe that (1.2), applied with t = 0 implies that ϕ 2 (ω, x) is a.s. in H θ for every θ < 1/2 which is a remarkable smoothing property satisfied by the random series ϕ(ω, x).

The key point in the proof of (1.2) is the following bilinear estimate for Hermite functions.

Lemma A.8. -There exists C > 0 so that for all 0 ≤ θ ≤ 1 and n, m ∈ N

Proof. -We give an argument we learned from Patrick Gérard. It suffices to prove (A.8) for θ = 0 and θ = 1 (the general case then follows by interpolation). The case θ = 1 can be directly reduced to the case θ = 0 thanks to (7.12). Let us now give the proof of (A.8) in the case θ = 0. Consider again the function E defined by (A.1) which can also be expressed by (A.2). Let 0 ≤ α, β < 1 and x ∈ R. By (A.2) we have

Therefore, if we set

On the other hand, coming back to the definition

Hence to get a useful expression for the L 2 norm of the product of two Hermite functions, it suffices to expand (A.9) in entire series in α and β. Write

Therefore, by the Stirling formula, there exists C > 0 so that |c p | ≤ C √ p + 1 for all p ≥ 0. Now by (A.9) and the previous estimate

Without restricting the generality we may suppose that m ≥ n. If m ≤ 2n then we obtain the needed bound by considering separately the cases when the sum runs over r < m/2 and r ≥ m/2. If m > 2n, then we can write (mr + 1)

and the needed bound follows directly. Therefore we get (A.8) in the case θ = 0. This completes the proof of Lemma A.8.

Denote by u(ω, t, x) the free Schrödinger solution with initial condition ϕ(

Write the decomposition u = u 0 + N u N , where the summation is taken over the dyadic integers and for N a dyadic integer

α n (t)h n (x)g n (ω), α n (t) = 2 2n + 1 e -i(2n+1)t .

Let us fix t ∈ R and 0 ≤ θ < 1 2 . It suffices to show that the expression

belongs to L 2 (R × Ω) (here the summation is again taken over the dyadic values of M, N ). Using the Cauchy-Schwarz inequality, a symmetry argument and summing geometric series, for all ε > 0 we can write (A.10)

Coming back to the definition we can write

We now estimate H θ/2 u N u M L 2 (Ω) . We make the expansion

The random variables g n are centered and independent, and consequently, we have E g n 1 g n 2 g m 1 g m 2 = 0, unless the indexes are pairwise equal (i.e. (n 1 = n 2 and m 1 = m 2 ), or (n 1 = m 2 and n 2 = m 1 ). This implies that (A.11)

We integrate (A.11) in x and by (A.8) we deduce that for all ε > 0

Therefore using that |α n | ≤ n -1 2 , we get Ω×R (J(t, x, ω))

provided ε is small enough, namely ε such that -1 2 + θ + 2ε < 0. This completes the proof of (1.2).