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Summary. The chapter focuses on the physics and modelling of the extreme water
wave events called rogue waves. A particular attention is paid to their formation in
presence of strong wind. Two mechanisms producing the giant waves are considered:
The dispersive spatio-temporal focusing and the modulational instability. In both
cases an amplification of the height and duration of the rogue wave event is observed
under wind action.

1 Introduction

Extreme wave events such as rogue waves correspond to large-amplitude waves oc-
curring suddenly on the sea surface. As it has been emphasized by (13) these huge
water waves have been part of marine folklore for centuries. Since the seventies of
the last century, oceanographers have started to believe them. In situ observations
provided by oil and shipping industries and capsizing of giant vessels confirm the
existence of such events. Up to now there is no definitive consensus about a unique
definition of rogue wave event. The definition based on height criterion is often used.
When the height of the wave exceeds twice the significant height it is considered as
a rogue wave. Owing to the non-Gaussian and non-stationary character of the water
wave fields on sea surface, it is a very tricky task to compute the probability density
function of rogue waves. So, the approaches presented herein are rather determinis-
tic than statistical. Recently (7) and (11) provided reviews on the physics of these
events when the direct effect of the wind is not considered. Rogue waves can occur
far away from storm areas where wave fields are generated. In that case huge waves
are possible on quasi still water. Hence, our approach to the problem is aimed at
describing the deterministic mechanisms responsible for the occurrence of these huge
waves in presence of strong wind, that is in storm areas.

There are a number of physical mechanisms producing the occurrence of rogue waves.
Extreme wave events can be due to refraction (presence of variable currents or bot-
tom topography), dispersion (frequency modulation), wave instability (Benjamin-
Feir instability), soliton interactions, etc. that may focus the wave energy into a
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small area. All these different mechanisms can work without direct effect of wind on
waves. For more details see the paper (11).
The most popular example of rogue waves is that corresponding to abnormal waves
appearing suddenly off the south-east coast of South Africa when the dominant
wind-generated waves meet a counter-current (Agulhas Current). Theoretical and
numerical studies have been developed to understand this wave-current interaction
((23), (12), (26)). Recently, (29) reported experimental results of limiting rogue
waves on currents.
Refraction of surface waves can be due to underwater topography as well. The re-
sult is spatial variations of the kinematic (frequency and wavenumber) and dynamic
(amplitude or energy) properties of the wave packets. The geometrical focusing of
wave energy can generate huge waves. Note that rogue waves can arise from wave-
current interactions in water of varying depth. It means that refraction effects due
to sea bottom and current both are working.
Rogue wave events due to spatio-temporal focusing phenomenon can be described
as follows. If initially short wave packets are located in front of longer wave packets
having larger group velocities, then during the stage of evolution, longer waves will
overtake short waves. A large-amplitude wave can occur at some fixed time because
of the superposition of all the waves merging at the same location (the focus point).
Afterward, the longer waves will be in front of the short waves, and the amplitude
of the wave train will decrease. This focusing-defocusing cycle was described by (18)
within the framework of the shallow water theory and later by (22) using the Davey-
Stewartson system for three-dimensional water waves propagating in finite depth.
More recently, this technique was also used in the experiments on rogue waves con-
ducted by (8) and (25).
Another mechanism generating extreme wave events is the modulational instability
or the Benjamin-Feir instability. Due to this instability uniform wave trains suffer
modulation-demodulation cycles (the Fermi-Pasta-Ulam recurrence). At the max-
imum of modulation a frequency downshifting is observed and very steep waves
occur.
Soliton interaction as a possible model for extreme waves in shallow water has been
suggested by (19) and (20). They considered the interaction of two long-crested shal-
low water waves within the framework of the two-soliton solution of the Kadomstev-
Petviashvili equation. It was found that extreme surface elevation exceeds several
times the amplitude of the incoming waves over a small area. In deep water (3) and
(4) showed that strong interactions between envelope-solitons may produce rogue
wave event. They performed long time simulations based on fully nonlinear equa-
tions.

The present study focuses on the two main mechanisms producing rogue waves : The
spatio-temporal focusing mechanism and the modulational instability mechanism.
In section 2 is defined the criterion which characterizes a rogue wave event. Section
3 presents the equations of water waves and the sheltering theory. The experimental
study of extreme wave event is presented in section 4 while section 5 is devoted to
the numerical modelling and simulations.
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 2 Rogue wave definition

In the first approximation, the sea elevation is considered as a summation of si-
nusoidal waves of different frequencies with random phases and amplitudes. The
random wave field is considered as a stationary random Gaussian process with the
following probability density distribution

f(η) =
1√
2πσ

exp(− η2

2σ2
), (1)

where η is the sea surface elevation with zero mean level, < η >= 0, and σ2 is the
variance computed from the frequency spectrum, S(ω)

σ2 =< η2 >=

Z

∞

0

S(ω)dω. (2)

The wind wave spectrum is assumed to be narrow, thus the cumulative probability
function of the wave heights will be given by the Rayleigh distribution

P (H) = exp(− H2

8σ2
). (3)

The probability that the wave heights will exceed a threshold value, H , is given by
(3).
One specific wave height frequently used in oceanography and ocean engineering is
the significant wave height, Hs. This concept was introduced by (24) who defined
Hs as the average of the highest one-third of wave heights. This wave height is close
to the mean wave height estimated by human eye. Using the Rayleigh distribution
(15) showed that Hs is given by

Hs = (3
√

2πerfc(
√

ln 3 + 2
√

2 ln 3)σ ≈ 4σ, (4)

where erfc(.) is the complementary error function. So Hs is four times the standard
deviation σ. Equation (3) can be rewritten as follows

P (H) = exp(−2H2

Hs
2
). (5)

Mathematically, a wave is considered to be a rogue wave if its height, Hf , satisfies
the condition

Hf > 2Hs. (6)

3 Mathematical formulation

3.1 Water wave equations

The fluid is assumed to be inviscid and the motion irrotational, such that the velocity
u may be expressed as the gradient of a potential φ(x, y, z, t): u = ∇φ. If the
fluid is assumed to be incompressible, such that ∇.u = 0, the equation that holds
throughout the fluid is the Laplace’s equation
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∇2φ = 0 for − h < z < η(x, y, t). (7)

where η(x, y, t) is the surface elevation.

The x and y coordinates are taken to be horizontal plane, the z axis vertically
upwards. The bottom is located at z = −h(x, y). The bottom condition is

∂φ

∂x

∂h

∂x
+

∂φ

∂y

∂h

∂y
+

∂φ

∂z
= 0 on z = −h(x, y). (8)

The kinematic requirement that a particle on the sea surface, z = η(x, y, t), remains
on it is expressed by

∂η

∂t
+

∂φ

∂x

∂η

∂x
+

∂φ

∂y

∂η

∂y
− ∂φ

∂z
= 0 on z = η(x, y, t). (9)

Since surface tension effects are ignored, the dynamic boundary condition which
corresponds to pressure continuity trough the interface, can be written

∂φ

∂t
+

1

2
(∇φ)2 + gη +

pa

ρw
= 0 on z = η(x, y, t). (10)

where g is the gravitational acceleration, pa the pressure at the sea surface and ρw

the density of the water. The atmospheric pressure at the sea surface can vary in
space and time. In water of infinite depth, the kinematic boundary equation (8) is
replaced by ∇φ → 0 as z → −∞.

The mathematical formulation of the water wave problem has been presented for
general 3D flows. The present study is confined to 2D flows and the corresponding
equations can be derived from the previous system by using ∂/∂y = 0.

3.2 Wind modelling: The Jeffreys’ sheltering theory

Previous works on rogue wave have not considered the direct effect of wind on their
dynamics. It was assumed that they occur independently of wind action, that is
far away from storm areas where wind wave fields are formed. Herein the Jeffreys’
theory (see (9)) is invoked for the modelling of the pressure, pa. Jeffreys proposed
a plausible mechanism to explain the phase shift of the atmospheric pressure, pa,
needed for an energy transfer from wind to the water waves. He suggested that
the energy transfer was due to the form drag associated with the flow separation
occurring on the leeward side of the crests. The air flow separation would cause a
pressure asymmetry with respect to the wave crest resulting in a wave growth. This
mechanism can be invoked only if the waves are sufficiently steep to produce air
flow separation. (1) have shown that separation occurs over near breaking waves.
For weak or moderate steepness of the waves this phenomenon cannot apply and
the Jeffreys’ sheltering mechanism becomes irrelevant.
Following (9), the pressure at the interface z = η(x, t) is related to the local wave
slope according to the following expression

pa = ρas(U − c)2
∂η

∂x
, (11)
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where the constant, s is termed the sheltering coefficient, U is the wind speed, c is
the wave phase velocity and ρa is atmospheric density. The sheltering coefficient,
s = 0.5, has been calculated from experimental data. In order to apply the relation
(11) for only very steep waves we introduce a threshold value for the slope (∂η/∂x)c.
When the local slope of the waves becomes larger than this critical value, the pressure
is given by equation (11) otherwise the pressure at the interface is taken equal to a
constant which is chosen equal to zero without loss of generality. This means that
wind forcing is applied locally in time and space. Figure 1 1 shows the pressure
distribution at the interface in the vicinity of the crest, given by equation (11), for
a threshold value close to the slope corresponding to the Stokes’ corner.

X

Z
,
p

18.3 18.4 18.5 18.6 18.7 18.8 18.9 19 19.1 19.2 19.3
-0.15

-0.1

-0.05

0

0.05

0.1

0.15

interface elevation

pressure distribution

Fig. 1. Pressure at the interface given in 10−1HPa (dotted line) and surface
elevation given in m (solid line) as a function of x .

4 Rogue wave observation in presence of wind

Rogue waves have been generated in the large wind-wave tank of IRPHE which is
40m long, 1m deep and 2.6m wide. The wind tunnel above the water surface is
40m long, 3.2m wide and 1.6m high. Figure 2 gives a schematic view of the facility.
The blower can produce a wind velocity up to 14m/s and a computer-controlled
submerged wave maker located under the upstream beach can generate regular or
random waves in a frequency range from 0.5Hz to 2Hz. Particular care has been
taken to obtain a pure logarithmic mean wind velocity profile with a constant shear
layer over the water surface. Several wave gauges are installed on a trolley to measure
the water surface elevation at different fetches (distance measured from the upstream
beach). For additional details on experiments see the paper by (25)

Rogue waves are generated using the spatio-temporal focusing mechanism based on
the dispersive nature of water waves. Within the framework of a linear approach
the sea surface can be considered as the superposition of linear waves of frequency

1 Figures 1, 4, 5 and 6 have been reprinted from (25).
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ω(x, t). According to (28), the spatio-temporal evolution of the frequency of these
components is governed by the following hyperbolic equation

∂ω

∂t
+ cg(ω)

∂ω

∂x
= 0, (12)

where cg is the group velocity. This equation can be solved by using the method of
characteristics. The solution is given by

ω(x, t) = ω0(τ ), vg(τ ) = cg(ω0(τ )) on t = τ + x/vg(τ ), (13)

where ω0 corresponds to the temporal frequency distribution of the wave train at
x = 0. The temporal partial derivative of the frequency is

∂ω

∂t
=

dω0

dτ

1 − x
v2

g

dvg

dτ

. (14)

One can notice that the case dvg/dτ > 0, which corresponds to short waves emit-
ted before longer waves, leads to a singularity. This singularity corresponds to the
focusing of several waves at t = Tfth

and x = Xfth
. For infinite depth, the frequency

to impose to the wave maker located at x = 0 is given by

ω(0, t) =
g

2

Tfth
− t

Xfth

, (15)

where Xfth
and Tfth

are the coordinates of the point of focus in the (x − t) plane.
Using ω = 2πf the coordinates of the focus point reads

Tfth
= ∆T

fmax

fmax − fmin

Xfth
=

g∆T

4π

1

fmax − fmin

where fmax and fmin are the maximal and minimal values of the frequency imposed
to the wave maker during a period of time equal to ∆T and g is the acceleration
due to gravity.

The wave amplitude, a, satisfies the following equation

∂a2

∂t
+

∂

∂x
(cga2) = 0. (16)

This equation corresponds to the conservation of wave energy, and its solution is
found explicitly

a(x, t) =
a0(τ )

q

1 − x
v2

g

dvg

dτ

, (17)

where a0(τ ) is the temporal distribution of the wave amplitude at x = 0. Within the
framework of the linear theory focus points are singular points where the amplitude
becomes infinite and behaves like (Xfth

− x)−1/2.
The wave train generated at the wave maker is uniform in amplitude and frequency
modulated. The experimental data are: fmax = 1.3Hz, fmin = 0.8Hz and ∆T = 10s.
Experiments are performed with and without wind. Figure 3 shows the surface
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elevation at a distance of 1m from the upstream beach for two values of the wind
velocity. It can be seen that the initial group of waves is almost uniform in amplitude
and unaffected by wind. From the data we find that Tfth

= 26s and Xfth
= 17m

while the experimental values are Tfexp = 26s and Xfexp = 20m (see Figure 4
corresponding to U = 0m/s). Experimental data are in close agreement with the
linear theory. The difference observed between the theoretical and experimental
values of the focus point is mainly due to the nonlinearity of the experimental
wave train. Note that the wave train generated at the wave maker is uniform in
amplitude, hence the short waves are steeper than the longer waves, and the result
is a downstream shift of the focusing location. From Figure 4 it can be seen that
dispersion leads short waves to propagate slower than long waves, and as a result,
the waves focus at a given position in the wave tank leading to the occurrence of a
large amplitude wave. Downstream the point of focus, the amplitude of the group
decreases rapidly (defocusing).
The same initial wave train is generated and propagated under the action of wind for
several values of the wind velocity ranging from U = 4m/s to 10m/s respectively.
In presence of wind, the focusing wave train is generated once wind waves have
developed. For each value of the mean wind velocity U the water surface elevation
is measured at 1m fetch and at different fetches between 3m and 35m. The fetch
is measured from the entrance of the wave tank where the air flow meets the water
surface i.e. at the end of the upstream beach. The wave maker is totally submerged,
to avoid any perturbation of the air flow which could be induced by its displacement.
Figure 5 shows the same time series of η(x, t), at several values of the fetch x, and
for a wind speed U = 6m/s. The wave groups mechanically generated by the wave
maker are identical to those used in the experiments without wind (see Figure 3).
Nevertheless, short wind waves can be observed. In any case, some differences appear
in the time-space evolution of the focusing wave train. One can observe that the
group of the rogue wave event is sustained longer.

The amplification factor A(x,U) of the group between fetches x and 1m is defined
as follows

A(x,U) =
Hmax(x, U)

Href

, (18)

where U is the mean wind velocity and Hmax(x, U) is the maximal height between
two consecutive crest and through in the transient group. The height, Href , of the
quasi uniform wave train generated at the entrance of the tank is measured at 1m.
The mean height crest to through is Href = 6.13cm. Figure 6 shows how evolves in
space the amplification factor for three values of the wind velocity. For U = 0m/s
(without wind) as expected the amplification is maximal at the focus point and the
curve exhibits a symmetry with respect to the straight line of equation x = Xfexp .
Focusing and defocusing stages present a symmetrical behaviour. For U = 4m/s
and U = 6m/s this symmetry is broken and the focus point is shifted downstream.
One can notice that the amplification factor increases as the wind velocity increases.
Another important feature is observed: The rogue wave criterion, A > 2, is satisfied
on a longer distance (or period of time) while the wind velocity increases.
The experiments suggest that the physical mechanism which could be responsible
of the persistence of rogue events is the occurrence of air flow separation over steep
waves.
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Fig. 2. Schematic view of the wind-wave facility
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Fig. 3. Surface elevation (in cm) at fetch 1m for wind velocities U = 0m/s and
U = 6m/s.

5 Numerical modelling

5.1 Focusing due to linear dispersion

Herein we considered a numerical wave tank simulating the experimental water wave
tank briefly described in the previous section. The gravity wave train is generated
by a piston-type wave maker. An absorbing beach located at the end of the wave
tank dissipates the incident wave energy.

The Laplace equation (7) is solved within a domain bounded by the water surface and
solid boundaries of the numerical wave tank. The condition on the solid boundary
writes

∇φ · n = v · n, on ∂ΩS, (19)

where ∂ΩS corresponds to solid boundaries, v is the velocity of the solid boundaries,
set equal to zero on the horizontal bottom and downstream wall of the wave tank
and equal to the velocity of the piston at any point of the wave maker, and n is the
unit normal vector to the boundaries.

A Lagrangian description of the water surface is used
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Fig. 4. Surface elevation (in cm) at several fetches (in m) for wind velocity U =
0m/s as a function of time

Dη

Dt
=

∂φ

∂z
, (20)

Dx

Dt
=

∂φ

∂x
, (21)

where x is the abscissa of the water surface and D/Dt = ∂/∂t + ∇φ · ∇.

Equation (20) is an alternative form of equation (9). The kinematic boundary con-
dition writes as well

DS

Dt
= 0, (22)

where S(x, z, t) = η(x, t) − z = 0 is the water surface equation.

The dynamic boundary condition (10) is rewritten as follows

Dφ

Dt
=

1

2
(∇φ)2 − gη − pa

ρw
, (23)

where the pressure, pa(x, t), at the water surface is given by equation (11), i.e. the
Jeffreys’ theory presented in subsection 3.2 is used for modelling wind effect on
the extreme waves. Over waves presenting slopes less than a threshold value, the
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Fig. 5. Surface elevation (in cm) at several fetches (in m) for wind velocity U =
6m/s as a function of time

atmospheric pressure is uniform, set equal to zero without loss of generality.

The system of equations to solve is (7), (19), (20), (21), and (23). The method to
integrate numerically this system is a boundary integral equation method (BIEM)
with a mixed Euler-Lagrange (MEL) time marching scheme. The numerical method
is based on the Green’s second identity. For more details see the paper (25).

A focusing wave train is generated by the piston wave maker, leading during the
focusing stage to the generation of a extreme wave followed by a defocusing stage.
The water surface and the solid boundaries (downstream wall, bottom and wave
maker) are discretised by 2000 and 1000 meshes respectively, uniformly distributed.
The time integration is performed using a RK4 scheme, with a constant time step
of 0.01 s. To avoid numerical instability the grid spacing ∆x and time increment
∆t have been chosen to the satisfy the following Courant criterion derived from the
linearized surface conditions

(∆t)2 ≤ 8∆x

πg
. (24)

The focusing mechanism is investigated with and without wind as well.
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Fig. 6. Experimental amplification factor A(x,U) as a function of the distance (in
m) for several values of the wind velocity

A series of numerical simulations have been run for three values of the wind veloc-
ity: U = 0 m/s, 4 m/s, 6 m/s. Using equation (18), Figure 7 describes the spatial
evolution of the amplification factor computed numerically. It can be observed that
the numerical curves behave similarly to those plotted in Figure 6 and thus em-
phasize the asymmetry found in the experiments. This asymmetry results in an
increase of the life time of the rogue wave event which increases with the wind ve-
locity. The threshold value of the slope beyond which the wind forcing is applied
is (∂η/∂x)c = 0.5. This value corresponds to a wave close to the limiting form for
which the Jeffreys’ theory applies. Hence the duration of the wind effect is relatively
short to increase the amplification of the rogue wave event significantly. However a
very weak increase of the amplification factor is observed in presence of wind which
is significantly weaker than in the experiments. The main effect of Jeffreys’ shelter-
ing mechanism is to sustain the coherence of the short group involving the rogue
wave event. Inspection of Figures 6 and 7 shows that the numerical maxima of the
amplification factor are larger than those obtained experimentally. This can be due
to spilling breaking events which where observed in the experiments, resulting in
energy dissipation and in saturation in the growth of amplitude. Notice that the
present model which is based on the assumption of inviscid fluid cannot describe
energy dissipation. In our model, the transfer of energy from the wind to the water
waves depends on the wind velocity and threshold wave slope value. If the latter
value is low the energy transferred becomes high and breaking occurs.
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To summarize, within the framework of the spatio-temporal focusing both experi-
mental and numerical results are in qualitative good agreement even if some quan-
titative difference have been observed for the height of the rogue wave.

X (m)

A

10 15 20 25 30
1

1.5

2

2.5

3

3.5

4

U=0 m/s

U=4 m/s

U=6 m/s

Fig. 7. Numerical amplification factor A(x,U) as a function of the distance (in m)
for several values of the wind velocity

5.2 Focusing due to modulational instability

Beside the focusing due to dispersion of a chirped wave group, another mechanism,
the modulational instability or Benjamin-Feir instability (see the paper (2)) of uni-
form wave trains, can generate extreme wave events. This periodic phenomenon is
investigated numerically using a high-order spectral method (HOSM) without ex-
perimental counterpart. The question is to know how evolve extreme wave events
due to modulational instability under strong wind action. How is modified their am-
plification and time duration under wind effect? Are these effects similar or different
from those observed in the case of extreme wave due to dispersive focusing?
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Fig. 8. Time histories of the amplitude of the fundamental, k0 = 5 (solid line),
subharmonic, k1 = 4 (dashed line), and superharmonic, k2 = 6 (dotted line), modes
for an evolving perturbed Stokes wave of initial wave steepness ǫ = 0.11 and funda-
mental wave period T , without wind action. The two lowest curves (dashed-dotted
lines) correspond to the modes k3 = 3 and k4 = 7.

Introducing the potential velocity at the free surface φs(x, t) = φ(x, η(x, t), t), equa-
tions (9) and (10) write

∂φs

∂t
= −η − 1

2
∇φs · ∇φs +

1

2
W 2[1 + (∇η)2] − pa, (25)

∂η

∂t
= −∇φs · ∇η + W [1 + (∇η)2], (26)

where

W =
∂φ

∂z
(x, y, η(x, y, t), t). (27)

Equations (25) and (26) are given in dimensionless form. Reference length, reference

velocity and reference pressure are, 1/k0,
p

g/k0 and ρwg/k0 respectively.
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Fig. 9. Time histories of the amplitude of the fundamental, k0 = 5 (solid line),
subharmonic, k1 = 4 (dashed line), and superharmonic, k2 = 6 (dotted line), modes
for an evolving perturbed Stokes wave of initial wave steepness ǫ = 0.11 and fun-
damental wave period T , with wind action (U = 1.75c). The two lowest curves
(dashed-dotted lines) correspond to the modes k3 = 3 and k4 = 7.

The numerical method used to solve the evolution equations is based on a pseudo-
spectral treatment with a fourth-order Runge-Kutta integrator with constant time
step, similar to the method developed by (6). For more details see the paper (21).

It is well known that uniformly-traveling wave train of Stokes’ waves are unstable
to the Benjamin-Feir instability (or modulational instability) which results from
a quartet resonance, that is, a resonance interaction between four components of
the wave field. This instability corresponds to a quartet interaction between the
fundamental component (the carrier) k0 = k0(1, 0) counted twice and two satellites
k1 = k0(1 + p,q) and k2 = k0(1 − p,−q) where p and q are the longitudinal
wavenumber and transversal wavenumber respectively of the modulation. Instability
occurs when the following resonance conditions are fulfiled.
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Fig. 10. Numerical amplification factor as a function of time without wind (solid
line) and with wind (dotted line) for U = 1.75c

k1 + k2 = 2k0. (28)

ω1 + ω2 = 2ω0. (29)

where ωi with i = 0, 1, 2 are frequencies of the carrier and satellites.
A presentation of the different classes of instability of Stokes waves is given in the
review paper (5).

The procedure used to calculate the linear stability of Stokes waves is similar to the
method described by (10). Let η = η̄ + η′ and φ = φ̄+φ′ be the perturbed elevation
and perturbed velocity potential where (η̄, φ̄) and (η′, φ′) correspond respectively to
the unperturbed Stokes wave and infinitesimal perturbative motion (η′ ≪ η̄, φ′ ≪
φ̄). Following (14), the Stokes wave of amplitude a0 and wavenumber k0 is computed
iteratively. Substitute these decomposition in the boundary conditions linearized
about the unperturbed motion and using the following forms for a two-dimensional
flow:

η′ = exp(λt + ipx)

∞
X

−∞

aj exp(ijx), (30)
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Fig. 11. Surface wave profile at t = 260T : without wind (solid line) and with wind
(dotted line).

φ′ = exp(λt + ipx)
∞

X

−∞

bj exp(ijx + γjz)), (31)

where λ, aj and bj are complex numbers and γj =| p + j |.

Equations (30) and (31) correspond to an eigenvalue problem for λ with eigenvector
u = (aj,bj)

t:
(A − λB)u = 0, (32)

where A and B are complex matrices depending on the unperturbed wave steepness
of the basic wave, ǫ = a0k0, and the arbitrary real number p. The eigenvalue, λ,
satisfies

det(λB − A) = 0. (33)

The physical disturbances are obtained from the real part of the complex expressions
η′ and φ′ at t = 0.
(17) and (16) showed that the dominant instability of a uniformly-traveling train of
Stokes’ waves in deep water is the two-dimensional modulational instability (class I)
provided its steepness is less than ǫ = 0.30. For higher values of the wave steepness
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Fig. 12. Surface wave profile at t = 265T : without wind (solid line) and with wind
(dotted line).

three-dimensional instabilities (class II) become dominant, phase locked to the un-
perturbed wave. Herein we shall focus on the two-dimensional nonlinear evolution
of a Stokes’ wave train suffering modulational instability with and without wind
action.

Numerical simulation without wind action:

The initial condition is a Stokes wave of steepness ǫ = 0.11, disturbed by its most
unstable perturbation which corresponds to p ≈ 0.20 = 1/5. The fundamental
wavenumber of the Stokes wave is chosen so that integral numbers of the side-
bands perturbation (satellites) can be fitted into the computational domain. For
p = 1/5 the fundamental wave harmonic of the Stokes wave is k0 = 5 and the
dominant sidebands are k1 = 4 and k2 = 6 for subharmonic and superharmonic
part of the perturbation respectively. The wave parameters have been re-scaled in
order to have the wavelength of the perturbation equal to 2π. There exists higher
harmonics present in the interactions which are not presented here. The normalized
amplitude of the perturbation relative to Stokes wave amplitude is initially taken

17



X

η

0 1 2 3 4 5 6
-0.1

-0.05

0

0.05

0.1
t/T=270

Fig. 13. Surface wave profile at t = 270T : without wind (solid line) and with wind
(dotted line).

equal to 10−3. The order of nonlinearity is M = 6, the number of mesh points is
N > (M + 1)kmax where kmax is the highest harmonic taken into account in the
simulation. The latter criterion concerning N is introduced to avoid aliasing errors.
To compute the long time evolution of the wave packet the time step ∆t is chosen
equal to T/100 where T is the fundamental period of the basic wave. This temporal
discretisation satisfies the CFL condition.

For the case without wind, the time histories of the normalized amplitude of the
carrier, lower sideband and upper sideband of the most unstable perturbation are
plotted in Figure 8. Another perturbation which was initially linearly stable becomes
unstable in the vicinity of maximum of modulation resulting in the growth of the
sidebands k3 = 3 and k4 = 7. The nonlinear evolution of the two-dimensional wave
train exhibits the Fermi-Pasta-Ulam recurrence phenomenon. This phenomenon is
characterized by a series of modulation-demodulation cycles in which initially uni-
form wave trains become modulated and then demodulated until they are again
uniform. Herein one cycle is reported. At t ≈ 360T the initial condition is more or
less recovered. At the maximum of modulation t = 260T , one can observe a tempo-
rary frequency (and wavenumber) downshifting since the subharmonic mode k1 = 4
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Fig. 14. Surface wave profile at t = 275T : without wind (solid line) and with wind
(dotted line).

is dominant. At this stage a very steep wave occurs in the group as it can be seen
in Figure 11.

Numerical simulation with wind action:

Figure 9 is similar to Figure 8, except that now water waves evolve under wind
action. Wind forcing is applied over crests of slopes larger than (∂η/∂x)c = 0.405.
This condition is satisfied for 256T < t < 270T , that is during the maximum of
modulation which corresponds to the formation of the extreme wave event. When
the values of the wind velocity are too high numerical simulations fail during the
formation of the rogue wave event, due to breaking. During breaking wave process
the slope of the surface becomes infinite, leading numerically to a spread of energy
into high wavenumbers. This local steepening is characterized by a numerical blow-
up (for methods dealing with an Eulerian description of the flow). In order to avoid
a breaking wave too early, the wind velocity is fixed U ≈ 1.75c. Owing to the weak
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effect of the wind on the phase velocity of the crests on which it acts, the phase ve-
locity, c, is computed without wind. The effect of the wind reduces significantly the
demodulation cycle and thus sustains the rogue wave event. This feature is clearly
shown in Figure 10. The amplification factor is stronger in presence of wind and the
rogue wave criterion given by equation (6), A > 2, is satisfied during a longer period
of time. Figures 11, 12, 13 and 14 display water wave profiles at different instant
of time in the vicinity of the maximum of modulation with and without wind. The
solid lines correspond to waves propagating without wind while the dotted lines rep-
resent the wave profiles under wind action. These figures show that the wind does
not modify the phase velocity of the very steep waves while it increases their height.

To summarize the results of this section, we can claim that extreme wave events gen-
erated by modulational instability in presence of wind behave similarly to those due
to dispersive spatio-temporal focusing discussed in previous section 4 and subsection
5.1.

6 Conclusion

Two main mechanisms yielding to rogue wave events have been investigated ex-
perimentally and numerically. Within the framework of extreme wave events due to
spatio-temporal focusing a good qualitative agreement is found between experiments
and numerical simulations. It is shown that the wind amplifies the height of the steep
waves and increases their duration. A second series of numerical simulations have
been performed within the framework of rogue waves due to modulational instability
. For this case no experiments have been conducted. Nevertheless the simulations
have confirmed the results found for extreme wave events due to the spatio-temporal
focusing phenomenon.
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