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ABSTRACT 

Vortex-induced vibrations (VIV) and galloping effects are studied for 
the case of two cylinders in tandem arrangement. Both cylinders are 
allowed to move in X and Y directions and rigidity is kept the same for 
both directions. The cross-flow around moving cylinders is computed 
using a specifically designed numerical method which has been 
thoroughly verified and validated with manufactured solutions and 
systematic comparisons between numerical and available experimental 
results. It consists of a monolithic finite element method for solving 
fluid-structure problems. After validation results, we present 
configurations for a center-to-center distance L/D = 4 and reduced 
velocities ranging from 4 to 16 at a laminar Reynolds number of 200. 

KEY WORDS:  vortex-induced vibrations; wake-induced vibrations; 
galloping; circular cylinder; tandem arrangement; XY vibrations.  

INTRODUCTION 

We study vortex-induced vibrations (VIV), interference and galloping 
phenomena occurring when two and three circular cylinders arranged 
in-line are placed in a uniform flow. If VIV for single circular cylinders 
are well documented, VIV, interference and galloping phenomena 
studies for arrays of cylinders remain sparse since Bokaian and Geoola 
(1984) and Zdravkovitch (1985). Recent experiments by Germain et al. 
(2006) showed that wake-induced vibrations occur for reduced 
velocities far beyond than 10. In Germain et al. (2006) peak 
displacements of the rear cylinder are much larger than one diameter 
transversely and it is also shown that in-line peak vibration amplitudes 
may be larger than one diameter. Available numerical studies on XY-
oscillating in-line cylinders in cross-flow depict results below reduced 
velocities of 7 [see Fregonesi et al. (2001); Mittal and Kumar (2001, 
2004); Potanza et al. (2005)]. 

In Etienne (2008), we presented results till values of 10 of the reduced 
velocity. To shed light on wake-induced vibrations and reveal some of 
the features highlighted in the work by Germain et al. (2006), much 
larger reduced velocities shall be studied. In this work the range of 

studied reduced velocities is extended to values of 16. These 
configurations are studied with a numerical method based on the finite 
element method. 

We have performed a parametric study with respect to the reduced 
velocity Ur = U/fD, with U the uniform flow velocity, f the natural 
frequency of cylinders in air f = (k/m)1/2/(2π) and D their diameter. k is 
the rigidity of the spring that supports a unit length cylinder and m is its 
mass per unit length. The non-dimensional center-to-center distance 
L/D = 4 is kept constant throughout this study. Values of the reduced 
velocities Ur  are in the range 4 to 16. 

Note that the reduced velocity can be expressed as 
Ur

*= U/(fn
*D), with  fn

* the natural frequency of cylinders in still water. 
The relation between the two formulas Ur  and Ur

* is such that 

(1)1 r
***

r U)/m + (m= U  

with m*= m/ma the mass ratio and ma = ρπD2/4. 

A Reynolds number value of 200 has been selected for all computations 
presented here. This work is handled in a two-dimensional frame of 
reference. This is justified by the low value of the Reynolds number 
considered here. At this low value of the Reynolds number the flow is 
laminar. Also with cylinder vibrations, the correlation length of the 
flow vortical structures is increased. We assume that under these 
assumptions the flow remains mainly two-dimensional. All variables 
are expressed in terms of unit length in the 3rd direction. 

We have chosen to enrich the solution map with computations for the 
case of an array of 3 in-line two-degree of freedom cylinders to 
highlight wake-induced vibrations phenomena. The motivation to 
explore the behaviour of 3 in-line two-degree of freedom cylinders in 
cross-flow stems from the fact that the second cylinder undergoes 
larger vibrations on a larger reduced velocity range than the front one. 
This induces impacting wake characteristics that are radically different 
on the third cylinder than on the second one. Thus, one could expect an 
amplification of vibrations of the third cylinder compared to the second 
one on the selected range of reduced velocities (Ur = 4 to 16).   
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We will roughly describe the numerical method employed herein and 
present three validation cases close to those of the present study. We 
will then describe results obtained for two- and three-cylinders arrays 
arranged in-line.  

NUMERICAL DETAILS 

All computations are performed with a finite element method. The 
solver has been specifically designed and developed to treat fluid-
structure interactions, may they be of rigid solid type as is the case in 
this article or of flexible type. To sum up, the solver possesses the 
following characteristics 
• Incompressible velocity-pressure formulation of the Navier-

Stokes Equations. The mixed method is used in which the pressure is 
a Lagrange multiplier. 

• 3rd
 order space accuracy thanks to the use of a P2-P1 Taylor-Hood

element. 
• Up to 5th

 order Time accuracy for flow and structure on moving
meshes by making use of Implicit Runge-Kutta of order 5. In this 
study all time simulations have been performed with the 3rd order 
implicit Runge-Kutta scheme. 

• Parallel sparse direct solver PARDISO [Schenk and Gärtner (2004,
2006)]. 

• Implicit method fully coupling all degrees of freedom (Mesh motion,
flow variables and structural/solid variables). This code has been 
thoroughly validated for unsteady flows on moving grids [Etienne et 
al. (2009)]. 

Configurations of cylinders for the two and three cylinders cases are 
depicted on Figure 1-2. All cylinders are allowed to move in both 
directions of space and have same rigidities. In these figures the 
rigidities k are expressed in terms of the reduced velocity for clarity. 
We have k = mU 2 /D 2 (2π /U r ) 2 . This expression shows that the 
rigidity, the fluid velocity as well as the diameter can be used to adjust 
the reduced velocity. Experimentally it is more convenient to vary the 
fluid velocity. It also makes sense since for real applications this is the 
surrounding flow that varies whereas the structural characteristics are 
fixed once and for all at installation in most of the cases. In this study 
we chose to keep the Reynolds number value and the diameters 
constant. This allows us to compare the answer for the various reduced 
velocities for a fixed configuration of the fluid flow. We then adjust the 
reduced velocity by varying the rigidity of cylinders.  

Figure 1: Two cylinders geometry and characteristics. 

Figure 2: Three cylinders geometry and characteristics. 

For the three cylinders cases, center-to-center spacing is the same 
between the first and second cylinders and second and third cylinders. 
Figure 3-4 show meshes used for both cases. They are made of 93000 
nodes for the tandem case and 118000 nodes for the 3 in-line cylinders 

arrangement. Distance from first row of nodes to the wall is set to 
0.0035D. This allows to represent the near-wall boundary layer with 
the required precision. Also, from Figs. 3-4, one can appreciate the 
adapted refinement of the mesh that permits to capture the wake 
characteristics. Non-dimensional simulation time UT/D is of 200 and 
the time step �t/D = 0.01. Each case requires approximately 50 hours 
on a four-node IBM risk machine and 3Go of RAM. 

Figure 3: Mesh for the two cylinders case. 

Figure 4: Mesh for the three cylinders case. 

VALIDATION 

Three validation cases are presented, a fixed circular cylinder in cross-
flow at Re = 200, two fixed tandem circular  cylinders in cross-flow for 
various center-to-center spacings at Re = 200 and a single circular 
cylinder mounted on springs at Re = 200. 

For the classical case of a single fixed cylinder in cross flow, we 
compare on Table 1 results from different references (all numerical 
references) with those obtained with the present formulation. The drag 
and lift coefficients and the Strouhal number have been obtained by 
analysis over a time length of 20 vortex sheddings over which the flow 
is periodical. The drag coefficient in the mean value of the in-line non-
dimensioned force and the lift coefficient is computed as the root mean 
square of non-dimensioned transverse load. Thus, the transient phase 
corresponding to the 50 first non-dimensional time units has been 
discarded. Compared to the other numerical results, those obtained with 
the present numerical algorithm are in good accordance. However, 
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while the Strouhal number is well captured, or seems so, lot of scatter 
can be observed with regards to the lift coefficients among the 
numerical results collected here. The value we computed is close to the 
average of the previously computed values, but this is not sufficient to 
ascertain this is the right lift. 

Fixed Single Cylinder Cd Cl St 

Halse (1997) 1.35 0.62 0.196 

Sa & Chang (1991) 1.13 0.34 0.186 

Braza (1981) 1.38 0.76 0.190 

Present results 1.36 0.67 0.195 

Table 1 :  Single fixed cylinder drag, lift and Strouhal number. 

The second validation case concerns flows involving two fixed 
cylinders in tandem arrangement at Re = 200. Center-to-center spacing 
ratios L/D in the range 1 to 6 have been carried out [see Chagnon 
2008)]. The variation of the drag coefficient as a function of center-to-
center spacing is shown on Figure 5. We did not find drag coefficients 
values for flows over tandem cylinders at low Reynolds number values. 
However Huhe-Aode et al. (1985) measured the Strouhal number 
values for this case at Reynolds numbers of 100 and 300. Table 2 
compares Strouhal number values from experiments by Huhe-Aode et 
al. (1985) and our results at Re = 200. It can be observed that numerical 
values of the Strouhal number compare well with experimental ones. In 
particular, the increase of the Strouhal number value is similar between 
experiments and present numerical results. However, in Huhe-Aode et 
al. (1985), the discontinuous change that can be observed on force 
coefficients on Figure 5 should appear near to L/D = 3.5 at Re = 300 
whereas present numerical results predict the discontinuous change at 
L/D = 3.2±0.015 but for Re = 200. Note also that this discontinuous 
change decreases with Reynolds number raise and seems to stabilize 
near to values of L/D = 3 from collected experimental values by 
Zdravkovitch (1977). 

Strouhal number L/D=3 L/D=5 

Re=100 (Huhe-Aode, exp) 0.107 0.141 

Re=200 (Present, num) 0.126 0.170 

Re=300 (Huhe-Aode, exp) 0.133 0.170 

Table 2 : Strouhal number as a function of center-to-center spacing and 
Reynolds number. 

Finally, to validate the whole computational methodology we have 
chosen a documented case of an isolated cylinder in cross flow. The 
cylinder is supported by constant springs and dampers in both 
directions. Its equations of motion in non-dimensional form are 
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with x* = [x*, y*]T = x/D, fx and fy the fluid loading for each direction. 
For this case, we compare with numerical results reported by Blackburn 
et al. (2000) and Yang et al. (2008). In both studies as well as in this 
present validation case the Reynolds number value is equal to  200, the 

damping ratio ζ  is 0.01, the reduced velocity Ur  equals 5 and the mass 
ratio m* is equal to 4/π. 

Figure 5 : Drag coefficient for tandem cylinders as a function of center-
to-center spacing. 

Figure 6 shows the periodical trajectory of the cylinder. Note that on 
the figure the scale in the horizontal direction extends from 0.6 to 0.7 
diameter. This small range explains why disparity between the three 
results is magnified in the in-line direction. However, there is small 
discrepancy between them. Yang et al. (2008) results are 3% 
downstream in terms of the center of the eight type trajectory compared 
to Blackburn et al. (2000) and present results. In the present 
computations, we have verified that results are converged in terms of 
time step and space discretization.  

Figure 6: Trajectory of an isolated cylinder in cross-flow at Ur=5 and 
Re=200. 
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TANDEM ARRANGEMENT RESULTS 

From now on, all results have been obtained with a mass ratio m* of 1 
and no structural damping considered. This means that damping comes 
from the flow only. Each cylinder obeys to equations of motion (2). 
The relation between the two definitions of the reduced velocities is 
from now on Ur

*= √2Ur. Note that the mesh deforms and follows the 
motion of cylinders. In the numerical procedure, boundaries stick to the 
cylinders at all times in an implicit manner since all the equations are 
solved simultaneously in a monolithic way. No remeshing process is 
performed which could be useful if cylinders were closer or for reduced 
velocities higher than 20. In these configurations, rigidities are so low 
that excursions of cylinders become very important and clashing 
between them may occur. 

Figure 7 : Vorticity fields at nondimensional times 90, 91, 92, 93, 94, 
95, 96. Left at Ur=6 and right at Ur=9.  

Figure 7 shows vorticity fields in the tandem case at Ur = 6 and Ur= 9. 
The flow and cylinders behaviours are radically different. For Ur= 6, 
the first cylinder vibrates with an amplitude of 0.7D while the rear 
cylinder obeys to a non periodic behavior with amplitudes in the range 

0.7 to 1.3D. For Ur = 9, the front cylinder experiences amplitudes of 
0.2D while the rear one undergoes a periodical vibration of 1.1D 
amplitude. In all flow figures presented here red colour corresponds to 
positive values of the non-dimensioned vorticity (ω*= ωD/U) while 
blue colour corresponds to negative values of the vorticity. Lower and 
upper bounds of the non-dimensioned vorticity isolines are -2 and 2. 

Relative displacements of cylinders with respect to their initial 
positions are plotted on Figure 8 andFigure 9 for Ur = 6 and 9 
respectively. One can easily observe that the downstream cylinder 
experiences much larger vibrations than the upstream one. Another 
observation is that when the front cylinder amplitude is large (see. Ur = 
6), the deflection of the rear cylinder is smaller as experimentally 
observed by Germain et al. (2006). This can be viewed as a shielding 
effect. This means that the rear cylinder behaviour is influenced not 
only by the presence of the upstream cylinder but also by its vibrations. 
That justifies modeling the vibrational behaviour of the front cylinder. 

Figure 10 shows the root-mean square of the transverse amplitude as a 
function of the reduced velocity. The curve corresponding to the 
leading cylinder corresponds well to that of an isolated cylinder. Large 
amplitudes are for reduced velocities ranging from 4 to 8. The 
downstream cylinder experiences low amplitudes for the small reduced 
velocities due to a shielding effect while larger amplitudes are obtained 
for Ur > 6. Also, one can observe that it experiences large vibrations 
even for reduced velocities as high as 16. This constitutes an important 
feature of the wake induced oscillations. Also, vibration amplitudes are 
lower than in Germain et al. (2006) since there is an important 
difference in the Reynolds number values with the present numerical 
results. In Germain et al. (2006) experiments, the Reynolds number 
ranges from 5500 to 50000. We know from Jauvtis and Williamson 
(2004) that a super-upper VIV phenomenon occurs for isolated 
vibrating two-degrees of freedom cylinders for Reynolds number 
values higher than 1000 and low mass ratios (m*<3). 

Figure 8 : Displacements of cylinders for the tandem case at Ur=6. 

At the low Reynolds number value of 200 this phenomenon does not 
occur. One may infer that this will have an effect for arrays of 
cylinders. To reach higher values of the Reynolds number, Direct 
Numerical Simulations, i.e. three-dimensional computations without 
turbulence models, are required. This is beyond the scope of the present 
study.  We evaluate in the context of our monolithic formulation that it 
would necessitate 500Go of RAM to perform such computations at 
Reynolds number value of 1000. We presently not have access to such 
computation facilities. Another difference with Germain et al. (2006) 

4



experiments that may have an effect is that a pivoting system was used 
for which two-dimensionality of the cylinder motion is not fully 
ensured. 

Figure 9 : Displacements of cylinders for the tandem case, Ur=9. 

Figure 10 : Transverse displacements of cylinders in the tandem case 
for Ur ranging from 4 to 16.  

THREE IN-LINE CYLINDERS ARRANGEMENT RESULTS 

For the three in-line two-degree of freedom cylinders in cross-flow we 
present results for reduced velocities between 8 and 11. 

It is interesting to compare trajectories of cylinders at the same reduced 
velocity between the tandem and three in-line cylinders cases. Such a 
comparison can be made at Ur = 9 between Figure 9 and Figure 12. At 
first sight, we observe similar trajectories for the two upstream 
cylinders, which was expected. However if we take a more precise look 
at the trajectory of the second cylinder, we can observe that it 
undergoes a smaller deflection in the flow direction for the 3 in-line 
array compared to the tandem case. This is due to a smaller drag 
resulting from the presence of the third cylinder in its wake. For the 
third cylinder, the trajectory is far from the 8-shape trajectory that is 
representative of VIV. Large excursions in x and y directions mean that 
the third cylinder experiences wake dynamics effects very different 
from those experienced by the second one. 

The very perturbed cylinder trajectory of the third cylinder at Ur = 9 is 
not an isolated case. Indeed, taking a look at Figure 11 to Figure 14 
clearly shows that the third cylinder experiences very distinguishable 
trajectories from the two upstream ones. Upstream cylinders observe 
classical eight shape trajectories while the third cylinder does not seem 
to follow a well defined or periodical trajectory.  

From Figure 15, one can observe that the third cylinder is always 
located in vortical zones of the wake. This contributes largely to 
reducing its effective drag. The cylinder is also subject to stronger 
vortex effects on its sides at different times and may explain why its 
excursions are larger than the second cylinder. 

Figure 11 : Displacements of cylinders in the plane x-y, Ur = 8. 

Figure 12 : Displacements of cylinders in the plane x-y, Ur = 9. 

An important feature that one can notice from Figure 11 to Figure 14 is 
that the mean x-displacement of the third cylinder is half that of the two 
other cylinders. This is also observable on Figure 15. Whereas 
displacements in the flow direction of the upstream cylinders are 
comparable and depend on the reduced velocity, displacements of the 
third cylinder vary in the range -0.3 to 2 diameters which is of the same 
order of displacements variations in the y-direction. As an evidence, 
this greatly increases chances of clashing in the array. This has an 
effect on the computations. Indeed, the mesh cannot be squeezed to the 
limit where cylinders come into contact presently. Some remeshing 
process or ghost elements shall be introduced in the numerical 
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procedure to handle such situations. The present technique is able to 
handle gaps as low as 10% of a diameter. Nevertheless, for reduced 
velocities beyond 15 for the three cylinders arrays at L/D=4, there is 
contact. As this is not the point of the present study, we will keep that 
question for future work. 

Finally, simulations should be performed on longer periods of time to 
extract frequency spectra of loads and displacements and eventually 
confirm these trends. 

Figure 13 : Displacements of cylinders in the plane x-y, Ur = 10. 

Figure 14 : Displacements of cylinders in the plane x-y, Ur = 11. 

CONCLUSION 

The flow around tandem and three in-line spring-supported cylinders 
arrays have been studied. Important specificities of such cases have 
been highlighted. 

First, dynamics of upstream cylinders shall be modeled to fully take 
into account the wake dynamics. Indeed, these wake dynamics have a 
non negligible effect on downstream cylinders for low values of the 
reduced velocity or on the whole range for the three-cylinder cases. 

Figure 15 : Three-cylinder in-line array, Vorticity field at times 90 to 
99.5 by increment of 0.5 from top to bottom and left to right, Ur =10. 
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For the tandem case and for a relatively large center-to-center spacing 
ratio, L/D = 4, the range over which vibrations of downstream cylinders 
occur is much broader than for an isolated cylinder, or the upstream 
cylinder. This corresponds to wake-induced oscillations (WIO) 
following the terminology by Germain et al. (2006). For smaller center-
to-center spacings, these WIO may be emphasized since impacting 
flow dynamics are steeper. This will be the object of a separate study. 

For the three in-line arrangement, the two upstream cylinders behave 
similarly to the two-cylinder case which was expected, but nevertheless 
experiencing lower drags due to the presence of the third cylinder, 
whereas the third cylinder experiences larger transverse and in-line 
excursions than both upstream cylinders. 

For future work, the whole range of reduced velocities should be 
simulated to confirm observed trends. Larger time simulations should 
be performed to extract loads and displacements spectra. Finally, three-
dimensional simulations are envisaged for more realistic comparisons 
with experimental data. 
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