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On the Integrability of Tonelli Hamiltonians

Alfonso Sorrentino∗

In this article we discuss a weaker version of Liouville’s theorem on the integra-

bility of Hamiltonian systems. We show that in the case of Tonelli Hamiltonians

the involution hypothesis on the integrals of motion can be completely dropped

and still interesting information on the dynamics of the system can be deduced.

Moreover, we prove that on the n-dimensional torus this weaker condition

implies classical integrability in the sense of Liouville. The main idea of the proof

consists in relating the existence of independent integrals of motion of a Tonelli

Hamiltonian to the “size” of its Mather and Aubry sets. As a byproduct we point

out the existence of “non-trivial” common invariant sets for all Hamiltonians

that Poisson-commute with a Tonelli one.

1 Introduction

A classical result in the study of Hamiltonian systems is what is generally called Liouville’s
Theorem (or Arnol’d-Liouville’s Theorem, see [1]), which is concerned with the integrability of
these systems, i.e., the possibility of expressing their solutions in a closed form. Actually, in
the case of Hamiltonian systems this notion assumes a more precise connotation, sometimes
specified as integrability in the sense of Liouville: it refers to the existence of a regular foliation
of the phase space by invariant Lagrangian submanifolds, which are diffeomorphic to tori and
on which the dynamics is conjugated to a rigid rotation. Liouville’s theorem provides sufficient
conditions for the existence of such a foliation. Let us state Liouville’s result in a more pre-
cise way. Consider a Hamiltonian system with n degrees of freedom, given by a Hamiltonian
H : V → R defined on a 2n-dimensional symplectic manifold (V, ω) and denote by {·, ·} the as-
sociated Poisson bracket, defined as follows: if f, g ∈ C1(M), then {f, g} = ω(Xf , Xg) = df ·Xg,
where Xf and Xg denote the Hamiltonian vector fields associated to f and g (see for instance
[1]). An important role in the study of the dynamics is played by the functions F : V → R that
are in involution with the Hamiltonian, i.e., whose Poisson bracket {H,F} ≡ 0 on V (equiva-
lently we can say that H and F Poisson-commute). Such functions, whenever they exist, are
called integrals of motion (or first integrals) of H. It is quite easy to check that the condition of
being in involution is equivalent to ask that F is constant along the orbits of the Hamiltonian
flow of H and vice versa; moreover, this implies that the associated Hamiltonian vector fields
XH and XF commute (see Lemma 5). Liouville’s theorem relates the integrability of a given
Hamiltonian system to the existence of “enough” integrals of motion.
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Theorem [Liouville] Let (V, ω) be a symplectic manifold with dimV = 2n and let H : V −→ R

be a Hamiltonian. Suppose that there exist n integrals of motion F1, . . . , Fn : V −→ R such
that:

i) F1, . . . , Fn are independent on V , i.e., their differentials dF1, . . . , dFn are linearly inde-
pendent as vectors;

ii) F1, . . . , Fn are pairwise in involution, i.e., {Fi, Fj} = 0 for all i, j = 1, . . . n.

Then, all non-empty level sets Λa := {F1 = a1, . . . , Fn = an}, where a = (a1, . . . , an) ∈ R
n,

are invariant under the Hamiltonian flow of H and each of their connected components is a
smooth Lagrangian submanifold. Moreover, such Lagrangian submanifolds are diffeomorphic to
n-dimensional tori and the dynamics on them are conjugated to rigid rotations on T

n.

See for instance [1, Section 49] for a proof of this theorem.

Remark 1. It turns out from the above theorem that having n independent integrals of motion,
pairwise in involution, is a very strong assumption with significant implications on the dynamics
of the system and the topology of the underlying configuration space. Observe, in fact, that
while the invariance of these Λa’s simply follows from Fi being integrals of motion (and Lemma
5), the fact that these submanifolds are Lagrangian, that they are diffeomorphic to tori and that
the motion on each of them is conjugated to a rigid rotation, strongly relies on these integrals
of motion being pairwise in involution.

Is it possible to weaken the assumptions in Liouville’s theorem? It is easy to see that condi-
tion i) can be replaced by assuming that the integrals of motion are not independent everywhere,
but in an open dense set of the space. Then, the same conclusions will continue to hold for all
level sets that are not in the singular set of the integrals of motion. On the other hand, in the
light of Remark 1, condition ii) is definitely less easy to weaken or to drop. In [14], for instance,
Fomenko and Mishchenko proved a non-commutative version of Liouville’s theorem, in which
they consider the case in which only a subfamily of the integrals of motion are pairwise in in-
volution; as a counterbalance, they need to require that extra independent integrals of motion
exist. As we shall point out in Remark 4, this cannot happen for a Tonelli Hamiltonian (unless
one excludes the Mather and Aubry sets from the domain of independence of the integrals).
Observe moreover that the statement in [14] would become trivial if one assumed that none
of the integrals of motion were in involution; in fact, this would require the existence of 2n
integrals of motion, exactly as many as the dimension of the phase space.

In this work we would like to address the following question: what happens when the
involution hypothesis on the integrals of motion is completely dropped. Let us introduce the
following the definition.

Definition 1 (Weak integrability). Let H be a Hamiltonian on (V, ω). H is called weakly
integrable if there exist n independent integrals of motion, where 2n is the dimension of V .

Certainly Liouville integrable Hamiltonians are weakly integrable. As we shall prove in Ap-
pendix A (see Proposition 4), other interesting examples of weakly integrable Hamiltonians,
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which are not necessarily integrable in the classical sense, are provided by geodesic flows asso-
ciated to left-invariant Riemannian metrics on compact Lie groups.

In the following we shall show that in the case of Tonelli Hamiltonians - i.e., Hamiltonians
defined on the cotangent space of a compact connected finite-dimensional manifold, which are
strictly convex and superlinear in each fiber (see section 2) - one can deduce interesting infor-
mation on the dynamics of weakly integrable Hamiltonian systems. More precisely (see section
3 for a more precise statement):

Theorem 1 (Weak Liouville’s theorem). If H : T∗M → R is a weakly integrable Tonelli
Hamiltonian, then for each cohomology class c ∈ H1(M ; R) there exists a unique smooth invari-
ant Lagrangian graph Λc with cohomology class c, on which the dynamics is recurrent, i.e., each
orbit returns infinitely many often close to its initial data.

Observe that this implies that the associated Hamilton-Jacobi equation H(x, c + du) = E ad-
mits a (unique) smooth solution for each cohomology class c ∈ H1(M ;R).

Moreover, we shall prove that in some cases (essentially on the torus) this notion of inte-
grability coincides with the classical one.

Theorem 2. Let dim H1(M ; R) = dim M and let H : T∗M → R be a weakly integrable Tonelli
Hamiltonian with integrals of motion F1, . . . , Fn. If all level sets {F1 = a1, . . . , Fn = an} are
connected, then the system is integrable in the sense of Liouville. In particular, M is diffeo-
morphic to T

n.

In particular, this implies that the integrals of motion are pairwise in involution everywhere,
although we had not assumed it a-priori.

The main idea behind our approach consists in studying how the existence of independent
integrals of motion of a Tonelli Hamiltonian H relates to the structure of its action-minimizing
sets, namely its Mather and Aubry sets (see section 2 for a definition); moreover, using the
symplectic structure of the Aubry set (see (1) and Remark 2) we shall be able to recover the
involution hypothesis at least on these sets. The key properties that we are going to use can
be summarized as follows:

• the Mather and Aubry sets are invariant under the flow of any integral of motion of H

[Lemma 1];

• the existence of k independent integrals of motion implies that the “size” of each Mather
and Aubry set is bigger or equal than k [Proposition 1];

• the integrals of motion are locally in involution on the Mather and Aubry sets [Proposition
2].

As a byproduct of this discussion, we shall also point out some results about the existence of
“non-trivial” common invariant sets (or measures) for Poisson-commuting Hamiltonians. It will
turn out, in fact, that if H is a Tonelli Hamiltonian, then there exists a family of “non-trivial”
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compact invariant subsets, which are also invariant under the flows of ALL Hamiltonians that
Poisson-commute with H [Proposition 3].

The paper is organized as follows. In Section 2, after having briefly recalled what Mather’s
theory is about and introduced the notion of Mather and Aubry sets, we shall discuss the
relation between these sets and the integrals of motion of the Hamiltonian. In Section 3 we
shall prove the main results announced in this Introduction. In Section 4 we shall prove a
fundamental lemma, stated in Section 2, about the symplectic invariance of the Mather and
Aubry sets. To conclude, in Appendix A we shall discuss some examples of weakly integrable
Tonelli Hamiltonian systems, namely the geodesic flows associated to left-invariant Riemannian
metrics on compact Lie groups.

Acknowledgements. I am grateful to Patrick Bernard for his interest in this work and for
his invaluable comments and suggestions.

2 Aubry-Mather sets and Integrals of motion

In this section we would like to discuss the relation between the Aubry-Mather sets of a Tonelli
Hamiltonian and its integrals of motion, with particular attention to how their flows act on
these sets. Before entering into details, let us try to describe “in a nutshell” what Mather’s
theory is about, in order to help an unaware reader to understand the concepts and the results
that we shall be dealing with, although we refer her or him to [10, 17, 18] for more exhaustive
presentations of the material.

Mather’s theory consists in a variational approach to the study of convex Lagrangian sys-
tems, called Tonelli Lagrangians, with particular attention to their action-minimizing invariant
probability measures and their action-minimizing orbits. Let M be a compact and connected
smooth n-dimensional manifold without boundary. Denote by TM its tangent bundle and T∗M

the cotangent one and denote points in TM and T∗M respectively by (x, v) and (x, p). We
shall also assume that the cotangent bundle T∗M is equipped with the canonical symplectic
structure, which we shall denote ω. A Tonelli Lagrangian is a C2 function L : TM → R, which
is strictly convex and uniformly superlinear in the fibers; in particular this Lagrangian defines
a flow on TM , known as Euler-Lagrange flow. Instead of considering just this Lagrangian
L, John Mather [17] proposed to consider a family of modified Tonelli Lagrangians given by
Lη(x, v) = L(x, v) − 〈η(x), v〉, where η is a closed 1-form on M . These Lagrangians, in fact,
have all the same Euler-Lagrange flow as L, but different action-minimizing orbits and mea-
sures, according to the cohomology class of η. In this way for each c ∈ H1(M ; R), if we choose
η to be any smooth closed 1-form on M with cohomology class [η] = c and we consider the
Lagrangian Lη, it is possible to define two compact invariant subsets of TM :

• M̃c(L), the Mather set of cohomology class c, given by the union of the supports of
all invariant probability measures that minimize the action of Lη (c-action minizimizing
measure or Mather’s measures of cohomology class c);

• Ãc(L), the Aubry set of cohomology class c, given by the union of all regular global mini-
mizing curves of Lη (or c-regular minimizers); see [18, 10] for a precise definition.
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These sets are such that M̃c(L) ⊆ Ãc(L) and moreover one of their most important features
is that they are graphs over M (Mather’s graph theorem [17, 18]); namely, if π : TM → M

denotes the canonical projection along the fibers, then π|Ãc(L) is injective and its inverse(
π|Ãc(L)

)−1
: π

(
Ãc(L)

)
−→ Ãc(L) is Lipschitz.

In the following we would like to consider the Hamiltonian setting rather than the Lagrangian
one. If one considers the Legendre transform associated to L, i.e., the diffeomorphism LL :
TM −→ T∗M defined by LL(x, v) = (x, ∂L

∂v
(x, v)), then it is possible to introduce a Hamiltonian

system H : T∗M → R, where H(x, p) = supv∈TxM (〈p, v〉 − L(x, v)). It is easy to check that H

is also C2, strictly convex and uniformly superlinear in each fiber: H will be called Tonelli (or
sometimes optical) Hamiltonian. Moreover, the flow on T∗M associated to this Hamiltonian,
known as the Hamiltonian flow of H, is conjugated - via the Legendre transform - to the Euler-
Lagrange flow of L. Therefore, one can define the analogous of the Mather and Aubry sets in
the cotanget space, simply considering M∗

c(H) = LL

(
M̃c(L)

)
and A∗

c(H) = LL

(
Ãc(L)

)
. These

sets still satisfy all the properties mentioned above, including the graph theorem. Moreover,
they will be contained in the energy level {H(x, p) = αH(c)}, where αH : H1(M ; R) −→ R

is called Mather’s α-function (or Mañé’s critical value or effective Hamiltonian) and −αH(c)
represents the average action of c-action minimizing measures; see [17, 10] for a more precise
definition.
Before concluding this preamble, let us recall that using Fathi’s weak KAM theory [10] it is
possible to obtain a nice characterization of the Aubry set in terms of critical subsolutions of
Hamilton-Jacobi equation. As above, let η be a closed 1-form with cohomology class c; we shall
say that u ∈ C1,1(M) is an η-critical subsolution if it satisfies H(x, η + dxu) ≤ αH(c) for all
x ∈ M . The existence of such functions has been showed by Bernard [4]. If one denotes by Sη

the set of η critical subsolutions, then:

A∗
c(H) =

⋂

u∈Sη

{(x, ηx + dxu) : x ∈ M} . (1)

Remark 2. Recall that in T∗M , with the standard symplectic form, there is a 1-1 correspon-
dence between Lagrangian graphs and closed 1-forms (see for instance [8]). Therefore, we could
interpret the graphs of these critical subsolutions as Lipschitz Lagrangian graphs in T∗M . We
shall see that the fact that the Aubry set can be seen as the intersection of these special La-
grangian graphs (see Definition 2 and Remark 8), will play a key role in our proof.

Now that we have recalled most of the definitions that we shall need, we can start our
discussion. Let H be a Tonelli Hamiltonian on T∗M and F an integral of motion of H. As we
have already mentioned, the main idea behind our approach consists in undestanding how the
flow of F acts on the Mather and Aubry sets of H.

Lemma 1. Let H be a Tonelli Hamiltonian on T∗M and F an integral of motion of H. Let
us denote by ΦH and ΦF the respective flows. Then, the following holds:

(i) If µ is a c-action minimizing measure of H, then Φt
F ∗µ is still a c-action minimizing

measure of H, for each t ∈ R, where the lower ∗ denotes the push-forward of the measure.

(ii) The Mather set M∗
c(H) and the Aubry set A∗

c(H) are invariant under the action of Φt
F ,
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for each t ∈ R and for each c ∈ H1(M ; R). In particular, for each t ∈ R, Φt
F maps each

connected component of M∗
c(H) and A∗

c(H) into itself.

We postpone the proof of this result to section 4.

Remark 3. It is worthwhile to point out that this result can be also deduced from a result by
Patrick Bernard [3, Theorem in § 1.10, page 6] on the symplectic invariance of the Mather and
Aubry sets. In fact for any fixed time t the Hamiltonian flow Φt

F is an exact symplectomorphism
that preserves H. Essentially, in section 4 we shall provide a different proof of this result, but
in the autonomous case.
Another related result is contained in [15], where the author considers the action of symmetries
of the Hamiltonian, i.e., C1-diffeomorphisms of M that preserve H. One can deduce from
the results therein that the Mather and Aubry sets of H are invariant under the action of
the identity component of the group of such diffeomorphisms. From our point of view, these
diffeomorphisms correspond to integrals of motion depending only on the x-variables.

As recalled in Section 1, Liouville’s theorem is concerned with independent integrals of
motion, i.e., integrals of motion whose differentials are linearly independent, as vectors, at each
point. Let us see how the existence of independent integrals of motion relates to the “size”
of the Mather and Aubry sets of H. In order to make clear what we mean by “size” of these
sets, let us introduce some notion of tangent space. We shall call generalized tangent space
to M∗

c(H) (resp. A∗
c(H)) at a point (x, p), the set of all vectors that are tangent to curves

in M∗
c(H) (resp. A∗

c(H)) at (x, p). We shall denote it by T(x,p)M
∗
c(H) (resp. T(x,p)A

∗
c(H))

and we shall define its rank to be the largest number of linearly independent vectors that it
contains. Observe that T(x,p)M

∗
c(H) ⊆ T(x,p)A

∗
c(H). In particular, if the Mather set does not

contain any fixed point (i.e., dH(x, p) 6= 0 for all (x, p) ∈ M∗
c(H)), then rank T(x,p)A

∗
c(H) ≥

rank T(x,p)M
∗
c(H) ≥ 1; in fact, since these sets are invariant, the Hamiltonian vector field

XH(x, p) 6= 0 is tangent to them.

Proposition 1. Let H be a Tonelli Hamiltonian on T∗M and suppose that there exist k in-
dependent integrals of motion. Then, rank T(x,p)M

∗
c(H) ≥ k at all points (x, p) ∈ M∗

c(H) for
each c ∈ H1(M ; R).

Proof. It follows from the fact that M∗
c(H) is invariant under the flows of the k independent

integrals of motion (Lemma 1). The linear independence of the corresponding vector fields
(which are therefore tangent to this set) follows from the independence of the integrals of
motion and the non-degeneracy of the symplectic form ω.

Conversely, some information on the existence of independent integrals of motion of H can
be obtained from the “structure” of the Mather sets. Let us define

λ(H) := min
c∈H1(M ;R)

min
(x,p)∈M∗

c(H)
rank T(x,p)M

∗
c(H) .

This quantity is clearly well-defined and, if the Mather sets do not contain any fixed point, it
is bigger or equal than 1.
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Corollary 1. Let H be a Tonelli Hamiltonian on T∗M . Then, there may exist at most λ(H)
independent integrals of motion of H. In particular, if some M∗

c(H) contains an isolated
periodic orbit, then λ(H) = 1 and therefore all integrals of motion of H are linearly dependent
on H on this orbit.

Remark 4. (i) Observe that the above results remain true if we assume that the integrals of
motion are defined only locally, i.e., in an open region of the phase space. In this case, we can
still apply the same ideas and get information on the Mather and Aubry sets contained in this
open region. (ii) From Corollary 1, it results clear that there may exist at most n integrals of
motion (n = dimM) that are independent in a region containing some Mather or Aubry set.

Another important peculiarity of the Mather and Aubry sets, with respect to their interplay
with the integrals of motion, is that they are not only invariant under the action of their
flows, but they also force the integrals of motion to Poisson-commute. In fact, using the
characterization of the Aubry set in terms of critical subsolutions of Hamilton-Jacobi (see (1))
and its symplectic interpretation (see Remark 2), one can recover the involution property of
the integrals of motion, at least locally.

Proposition 2. Let H be a Tonelli Hamiltonian on T∗M and let F1 and F2 be two integrals
of motion. Then for each c ∈ H1(M ; R) we have that {F1, F2}(x, π̂−1

c (x)) = 0 for all x ∈

Int
(
Ac(H)

)
, where π̂c = π|A∗

c(H) and Ac(H) = π
(
A∗

c(H)
)
.

Proof. From weak KAM theory we can deduce that A∗
c(H) is contained in a Lipschitz La-

grangian graph Λ (see (1) and Remark 2), which is the graph of a Lipschitz closed 1-form
η : M → T∗M . Observe that η = π̂−1

c on Ac(H). Moreover η is differentiable almost ev-
erywhere on M and at all differentiability points x the tangent space Tη(x)Λ is a Lagrangian

subspace. Let x ∈ Int
(
Ac(H)

)
be a differentiability point of η (observe that η is differentiable

at almost every point in the interior of Ac(H)). Since A∗
c(H) is invariant under the action of

both flows ΦF1 and ΦF2 , then the associated vector fields XF1 and XF2 are tangent to Λ on
A∗

c(H). Using the definition of the Poisson-bracket and the fact that Tη(x)Λ is Lagrangian,
we get: {F1, F2}(x, η(x)) = ω(XF1

(x, η(x)), XF2
(x, η(x))) = 0. By continuity, this extends to

Int
(
Ac(H)

)
.

Before concluding this section, let us point out an interesting consequence of Lemma 1. A
natural question that someone might ask is the following. Suppose that we have two Poisson-
commuting Hamiltonians H and F on T∗M , i.e., {H,F} = 0. Then: is it possible to find sets
or measures that are invariant under the action of both flows? For instance, it is easy to check
that all energy levels of H are also invariant under the flow of F (and vice versa). However,
these “trivial” sets do not seem to provide a satisfactory answer; rather, it would be interesting
to show the existence of “non-trivial” common invariant sets, such as, for example, invariant
sets that have positive codimension in a given energy level.
Lemma 1 provides a positive answer to such a question in the case of Tonelli Hamiltonians.
Actually, something more is true.

Proposition 3. Let H be a Tonelli Hamiltonian on T∗M . Then, there exists a family of
compact invariant sets of H, parametrized over H1(M ; R), which are invariant under the flows
of ALL integrals of motion of H. These sets are supported on Lipschitz Lagrangian graphs over
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M and, if H1(M ; R) is not trivial, each energy level above Mañé’s strict critical value (i.e., the
minimum of Mather’s α-function) contains at least one of them.

Proof. This family is given by M∗
c(H) and A∗

c(H) for all c ∈ H1(M ; R) (because of Lemma 1).
If H1(M ; R) is not trivial, then for each energy value E ∈ R above the minimum of αH (which
is a convex function), there exists at least one c ∈ H1(M ; R) such that αH(c) = E. This energy
value will contain M∗

c(H) and A∗
c(H).

We can also deduce the following consequence.

Corollary 2. Let H be a Tonelli Hamiltonian on T∗M and F an integral of motion of H.
If H has an invariant Lipschitz Lagrangian graph Λ supporting an invariant measure µ of full
support (i.e., supp µ = Λ), then Λ is also invariant under the flow of F .

Proof. The proof follows from the fact that if such Λ exists, then Λ = M∗
cΛ

(H) = A∗
cΛ

(H),
where cΛ denotes the cohomology class of Λ (see [11]).

One could also ask about the existence of common invariant ergodic probability measures.
In general (i) in Lemma 1 does not imply Φt

F ∗µ = µ (take for instance the case of an invariant
torus foliated by periodic orbits and choose µ to be a measure supported on one of these orbits).
However in some cases it is possible to deduce it.

Corollary 3. Let H be a Tonelli Hamiltonian on T∗M and F an integral of motion of H. If
M∗

c(H) is uniquely ergodic, i.e., H has a unique c-action minimizing measure µ, then Φt
F ∗µ = µ

for all t ∈ R. In other words, µ is also invariant for F .

Proof. From (i) in Lemma 1, it follows that Φt
F ∗µ is still a c-action minimizing measure of H

for all t ∈ R. The unique ergodicity of M∗
c(H) implies that necessarily Φt

F ∗µ = µ.

Remark 5. In [16] Ricardo Mañé showed that for any given Tonelli Hamiltonian H, there
exist residual subsets S(H) ⊆ C2(M) and C(H) ⊆ H1(M ; R) such that for each V ∈ S(H) and
c ∈ C(H), the Mather set M∗

c(H + V ) is uniquely ergodic. With this on mind one can deduce
that for a generic Tonelli Hamiltonian H, all integrals of motion of H have uncountably many
invariant ergodic measures in common (assuming that H1(M ; R) is not trivial). In particular,
these measures are c-action minimizing measures for H + V , for some c ∈ C(H) (observe
that this set does not depend on V ). Furthermore, for each E ∈ R, infinitely many of these
measures will have energy bigger than E (i.e., their supports will be contained in an energy
levels of H + V bigger that E). However, it is important to point out that most likely all these
integrals of motion will be functionally dependent on H + V at some point, since the existence
of independent integrals of motion is a highly non-generic situation.

3 Weak Liouville’s Theorem

In this section we shall prove our weak version of Liouville’s theorem for Tonelli Hamiltonians
and the other results announced in section 1. Let us start by stating our results.
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Theorem 1 (Weak Liouville’s theorem). Let M be a compact connected n-dimensional
manifold without boundary and let H : T∗M → R be a weakly integrable Tonelli Hamiltonian.
Then:

i) for each cohomology class c ∈ H1(M ; R) there exists a smooth invariant Lagrangian graph
Λc with cohomology class c, which supports an invariant measure of full support, i.e., Λc =
M∗

c(H) = A∗
c(H). In particular, the motion on each Λc is recurrent.

ii) These Lagrangian graphs {Λc}c∈H1(M ;R) are disjoint and any other invariant Lipschitz
Lagrangian graph with cohomology class c must coincide with the corresponding Λc in this
family.

iii) Let us denote Λ∗ := ∪c∈H1(M ;R)Λc. Λ∗ is closed and if some Λc ⊆ Int(Λ∗), then Λc is
diffeomorphic to an n-dimensional torus and the motion on it is conjugated to a rotation
on T

n; in particular, M is diffeomorphic to T
n. If Λ∗ is open, then the system is integrable

in the classical (Liouville) sense.

Remark 6. 1) Observe that point i) of Theorem 1 implies that the associated Hamilton-
Jacobi equation H(x, c + du) = αH(c) admit a unique smooth solution for each cohomology
class c ∈ H1(M ;R) (αH(c) is the unique energy value for which a solution may exist, see for
instance [10]).
2) One could assume that the integrals of motion are not independent everywhere, but only in
an open dense set of the phase space. In this case, in the light of Remark 4, the conclusions
i) and ii) of Theorem 1 will continue to hold, but only for those cohomology classes whose
Aubry-Mather sets lie in this region.
3) As far as the uniqueness result of point ii) is concerned, it is easy to see that these graphs
are also unique in the class of smooth Lagrangian submanifolds isotopic to the zero section. It
suffices to consider their graph selectors (see [9, 19]) and use the same proof as in ii).
4) Using the disjointness of these Lagrangian graphs, one can to conclude that, as for Liouville
integrable systems, αH is strictly convex and its convex conjugate βH is C1 (Corollary 4). Recall
that βH(h) := supc∈H1(M ;R)(〈c, h〉 − αH(c)); this function, also called Mather’s β-function,
represents the minimal action of invariant probability measures with rotation vector h (see [17]
for a precise definition).

Now it would be interesting to understand whether or not there are cases in which this
weaker notion of integrability is equivalent to the classical one (in the sense of Liouville). As
remarked in point iii) of Theorem 1, the union of these Lagrangian graphs is not necessarily a
foliation of the whole space (and when this happens, the manifold has to be diffeomorphic to
a torus). In fact, if the dimension of H1(M ; R) is less than the dimension of M , this family of
graphs is not sufficient to foliate T∗M or even to have non-empty interior (for instance, think
about the case in which H1(M ; R) is trivial). What we shall prove is that when this obstacle is
removed, then the two notions coincide.

Theorem 2. Let M be a compact connected n-dimensional manifold, such that dim H1(M ; R) =
dimM . If H : T∗M → R is a weakly integrable Tonelli Hamiltonian with integrals of motion
F1, . . . , Fn, such that the level sets {F1 = a1, . . . , Fn = an} are connected for all (a1, . . . , an) ∈
R

n, then the system is integrable in the sense of Liouville. In particular, M is diffeomorphic to
T

n.
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We shall split the proof of these theorems into several lemmata. Let us start by observing
that Proposition 1 allows us to deduce more information on the structure of the Mather and
Aubry sets associated to a weakly integrable Tonelli Hamiltonian.

Lemma 2. Let H be a weakly integrable Tonelli Hamiltonian on T∗M . Then, for each c ∈
H1(M ; R) we have that M∗

c(H) = A∗
c(H) projects over the whole M and therefore it is an

invariant Lipschitz Lagrangian graph.

Proof. Let c ∈ H1(M ; R) and consider a connected component U∗ of M∗
c(H) and let U =

π(U∗), where π : T∗M −→ M denotes the canonical projection along the fibers. Obviously U is
closed (π|M∗

c(H) is a bi-Lipschitz homeomorphism, see Mather’s graph theorem [17]). We would
like to show that U is also open; if this is the case, then U = M (because of the connectedness
of M) and therefore, using the graph property, M∗

c(H) = A∗
c(H). The fact that it is a Lipschitz

Lagrangian graph follows from weak KAM theory’s characterization of the Aubry set in terms
of subsolutions of Hamilton-Jacobi equation (see (1) and Remark 2). To show that U is open
it is sufficient to use that U∗ is contained in an n-dimensional graph and it is invariant under
the action of n independent vector fields that commute with XH . Denote by F1, . . . , Fn the n

independent integrals of motion and by ΦF1 , . . . ,ΦFn
their respective flows. Let us consider a

point (x0, p0) ∈ U∗ and define Γ0 := {(x0, p0)}. Consider now the evolution of Γ0 under the flow
ΦF1

. Let ε1 > 0 be sufficiently small and define Γ1 := {Φt
F1

(x0, p0), |t| ≤ ε1}. In the same way,
taking ε2 > 0 sufficiently small, one can define Γ2 := {Φt

F2
(x, p), (x, p) ∈ Γ1 and |t| ≤ ε2}. This

set is fibered by Γ
(x,p)
2 := {Φt

F2
(x, p), |t| ≤ ε2} for each (x, p) ∈ Γ1. Using the independence

of the vector fields XF1
and XF2

and the smallness assumptions on ε1 and ε2, one can assume
that these fibers are disjoint and intersect Γ1 only once. In the very same way, one can define
Γ3, . . . , Γk, . . . ,Γn and choose ε3, . . . , εn sufficiently small so that each Γk is fibered over Γk−1

and all fibers are disjoint and intersect Γk−1 only once. Let us now consider ε < min{ε1, . . . , εn}
and define

Θ : [−ε, ε]n −→ U∗

(t1, . . . , tn) 7−→ Φtn

Fn

(
. . . . . .Φt2

F2

(
Φt1

F1
(x0, p0)

)
. . .

)
.

Θ is clearly continuous (because of the continuity of the flows) and it is injective. This allows
us to conclude that there exists an open neighborhood of x0 in U and consequently each x0 is
contained in the interior of U . This concludes the proof.

One can actually show that these graphs are more regular than just Lipschitz.

Lemma 3. If F : T∗M → R is a Hamiltonian and Λ is a Lipschitz Lagrangian graph invariant
under the flow of F , then F is constant on Λ.

Proof. Let Λ be the graph of a closed 1-form η : M → T∗M . Recall that η is differentiable
almost everywhere and that at differentiability points Tη(x)Λ is a Lagrangian subspace. Let
x1, x2 ∈ M and let γ be an absolutely continuous curve in M connecting them, such that η is
differentiable almost everywhere along γ (with respect to the 1-dimensional Lebesgue measure).
In fact, one can consider the family Cx1,x2 of all absolutely continuous curves ξ that connect
x1 to x2 and whose length is, for instance, less than 2 dist(x1, x2). If one denotes by U the set
spanned by these curves, it is easy to see that U \{x1, x2} is open and therefore η is differentiable
almost everywhere in U . Applying Fubini’s theorem one can deduce the existence in Cx1,x2

of
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a curve γ as above.
Let us now consider the lift of γ onto Λ, i.e., Γ := η ◦ γ. This curve Γ is differentiable almost
everywhere and at each differentiability point t0 we have d

dt
F (Γ(t0)) = dF (Γ(t0)) · Γ̇(t0), with

Γ̇(t0) ∈ TΓ(t0)Λ. Using the fact that TΓ(t0)Λ is a Lagrangian subspace and that XF is tangent

to Λ at all points (since Λ is invariant), we can conclude that d
dt

F (Γ(t0)) = dF (Γ(t0)) · Γ̇(t0) =

ω(XF (Γ(t0)), Γ̇(t0)) = 0. Therefore, d
dt

F (Γ(t)) = 0 almost everywhere and integrating along Γ
we obtain that F (η(x1)) = F (η(x2)).

We shall also need the following classical lemma (for its proof we refer the reader to [1,
Section 49])

Lemma 4. Let Nn be a compact connected differentiable n-dimensional manifold, on which we
are given n pairwise commutative vector fields, linearly independent at each point. Then Nn

is diffeomorphic to an n-dimensional torus and the motion on it is conjugated to a rotation on
T

n.

We can now prove our weak version of Liouville’s theorem.

Proof [Theorem 1 (Weak Liouville’s theorem)]. i) The existence of these smooth La-
grangian graphs follows from Lemmata 2 and 3. In fact, if we denote by F1, . . . , Fn the n

independent integrals of motion, then for each c ∈ H1(M ; R) we have that M∗
c(H) = A∗

c(H)
coincides with a connected component of {F1 = a1, . . . , Fn = an} for some (a1, . . . , an) ∈ R

n.
Therefore these Lagrangian graphs are smooth and each of them supports an action-minimizing
measure of full support and with a certain rotation vector h(c) ∈ H1(M ; R) (see [17] for a precise
definition of rotation vector). Observe, in fact, that it is always possible to find a c-action min-

imizing measure, whose support is the whole Mather set M̃c(L) (we consider the Lagrangian
setting on TM and then use the Legendre transform LL to push everything forward to T∗M).
In fact, since the space of probability measures on TM is a separable metric space, one can take
a countable dense set {µn}

∞
n=1 of c-action minimizing measures and consider the new measure

µ̃ =
∑∞

n=1
1
2n µn. This is still invariant and c-action minimizing and supp µ̃ = M̃c(L). The

rotation vector h(c) will be the rotation vector of such a measure µ̃. Moreover, because of the
graph property, the Mather set corresponding to this rotation vector h(c) must also coincide
with Λc, i.e., Mh(c)∗(H) = Λc (see [17] for a definition of this set).

ii) From the fact that each Λc coincides with Mh(c)∗(H) for some h(c) ∈ H1(M ; R), we
can deduce that these Lagrangian graphs cannot intersect. In fact, if Λc ∩ Λc′ 6= 0 then
Mh(c)∗(H) ∩M∗

c′(H) 6= 0, but this would imply that Mh(c)∗(H) ⊆ M∗
c′(H) (see [11, Lemma

3.5]), or equivalently Λc ⊆ Λc′ ; since they are both graphs over M , then Λc = Λc′ and necessarily
c = c′ (they must have the same cohomology class). Moreover, if Λ is another invariant
(Lipschitz) Lagrangian graph with cohomology class c, then it must contain the Aubry set
A∗

c(H) = Λc (see (1) and Remark 2); therefore Λ must coincide with Λc.
iii) Let us now consider the union of these Lagrangian graphs, i.e., Λ∗ := ∪c∈H1(M ;R)Λc.

Clearly Λ∗ is closed (it is the union of the graphs of classical solutions of Hamilton-Jacobi,
which are locally equiLipschitz). From Proposition 2, it follows that the integrals of motion
are in involution on Λ∗. Therefore, using Lemma 4 (and Remark 7), one can deduce that
all Λc ⊆ Int(Λ∗) are diffeomorphic to n-dimensional tori and the motion on each of them is
conjugated to a rotation on T

n (with rotation vector h(c)). If Λ∗ is open then it coincides with
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T∗M (because of the connectedness of T∗M) and hence the system would be integrable in the
classical sense; in fact, in this case the integrals of motion would be in involution everywhere.

From the properties of these Lagrangian graphs, in particular the fact that they are disjoint,
we can also conclude the following regularity result for αH and its convex conjugate βH , as
pointed out in Remark 6.

Corollary 4. If H is a weakly integrable Tonelli Hamiltonian, then Mather’s α-function αH

is strictly convex and βH is C1.

Proof. It is easy to deduce that αH is strictly convex from the disjointness of the above
Lagrangian graphs (i.e., the Aubry sets). In fact, suppose by contradiction that there exist
λ ∈ (0, 1) and c, c′ ∈ H1(M ; R) such that αH(λc + (1 − λ)c′) = λαH(c) + (1− λ)αH(c′) and let
µλ be a (λc + (1 − λ)c′) - action minimizing measure. Let us denote by ηc and ηc′ two closed
1-forms with cohomology classes, respectively, c and c′. Then:

−αH(λc + (1 − λ)c′) =

∫ (
L − ληc − (1 − λ)ηc′

)
dµλ =

= λ

∫ (
L − ηc

)
dµλ + (1 − λ)

∫ (
L − ηc′

)
dµλ ≥

≥ −λαH(c) − (1 − λ)αH(c′) = −αH(λc + (1 − λ)c′),

therefore all above inequalities are equalities and this implies that µλ is also c-action minimizing
and c′-action minimizing. Obviously this contradicts the disjointness of the Mather and Aubry
sets (i.e., the Λc’s). As far as the differentiability of βH is concerned, it also follows from
the disjointness of the Λc’s: if c, c′ ∈ ∂βH(h) for some h ∈ H1(M ; R), then the corresponding
Mather sets M∗

c and M∗
c′ would contain Mh∗

and therefore Λc and Λc′ would intersect.

Now, let us prove Theorem 2.

Proof [Theorem 2]. Let us identify H1(M ; R) with R
n. For each cohomology class c ∈ R

n

let us consider the unique Lagrangian graph Λc = {(x, c + duc) : x ∈ M} given by Theorem
1, where uc : M → R is a smooth function. In particular, it follows from Lemma 3 and the
fact that level sets are connected that Λc = {F1 = a1(c), . . . , Fn = an(c)} for some ~a(c) =
(a1(c), . . . , an(c)) ∈ R

n. This allows us to define the following function:

F : R
n −→ R

n

c 7−→ ~a(c) = (a1(c), . . . , an(c)).

This function is clearly well-defined (because of the uniqueness of the Λc’s) and injective (be-
cause of the disjointness of the Λc’s). We want to show that it is also continuous, actually it
is locally Lipschitz. Let K be a compact of R

n. It is easy to check that ∪c∈KΛc is contained
in a compact region of T∗M and let us denote by C(K) > 0 a common Lipschitz constant for
F1, . . . , Fn in such a region . Let us now consider c, c′ ∈ K and observe that there exists at
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least one point x0 ∈ M such that dx0uc = dx0uc′ ; in fact, the function uc − uc′ is a smooth
function on a compact manifold, hence it has critical points. Then:

‖F(c) −F(c′)‖∞ = ‖~a(c) − ~a(c′)‖∞ ≤ max
i=1,...,n

‖Fi(x0, c + dx0uc) − Fi(x0, c
′ + dx0uc′)‖ ≤

≤ C(K)‖(c + dx0
uc) − (c′ + dx0

uc′)‖ = C(K)‖c − c′‖ .

Since F is continuous and injective, then F(Rn) is open (see [5]). If we show that F(Rn)
is also closed, it will follow that F(Rn) = R

n and therefore ∪c∈H1(M ;R)Λc = T∗M ; the proof
will be then concluded applying iii) of Theorem 1. Let us prove that F(Rn) is closed. Suppose
that {~a(k)}k is a sequence in F(Rn) converging to some ~a; we need to show that ~a is in

F(Rn). Since each ~a(k) ∈ F(Rn), there will exist c(k) such that ~a(k) = ~F (x, c(k) + dxuc(k)),

where ~F = (F1, . . . , Fn). Up to extracting a subsequence, we can assume that c(k) converge
to some c̃. It is easy to see that the family of functions {duc(k)}k is equiLipschitz: they are
classical solutions of Hamilton-Jacobi H(x, c(k) + duc(k)) = αH(c(k)), for c(k) in a bounded
region (in general, any family of invariant Lagrangians graphs on which the function αH (or
H) is bounded gives rise to a family of functions with uniformly bounded Lipschitz constants).
Applying Ascoli-Arzelà’s theorem, up to extracting a subsequence, we can assume that there
exists a ũ ∈ C1(M) such that duc(k) → dũ uniformly. Using that H(x, c(k) + duc(k)) = αH(c(k))

and ~F (x, c(k) + dxuc(k)) = ~a(k), we immediately deduce that

H(x, c̃ + dũ) = αH(c̃) and ~F (c̃ + dũ) = ~a . (2)

In particular, ũ is a c-critical subsolution of Hamilton-Jacobi equation and consequentely
Graph(c̃ + dũ) must contain, and therefore coincide with, the Aubry set A∗

c̃(H) = Λc̃. This
implies that F(c̃) = ~a and concludes the proof.

4 Proof of Lemma 1

The proof of Lemma 1 will follow from the following lemmata. First of all, let us recall this
classical result in Hamiltonian dynamics, whose proof can be found, for instance, in [1].

Lemma 5. Let H and F be two Hamiltonians on T∗M . Then:

H is constant on the orbits of F ⇐⇒ F is constant on the orbits of H

⇐⇒ {H,F} = 0 .

Moreover, if {H,F} = 0 then the two flows ΦH and ΦF commute, i.e., Φt
H ◦ Φs

F = Φs
F ◦ Φt

H

for all s, t ∈ R.

Remark 7. Observe that if {H,F} = 0 in an open region, then ΦH and ΦF will com-
mute in that region. This condition is sufficient, but not necessary. One can show that
[XH , XF ] = −X{H,F}, where [·, ·] denotes the commutator between two vector fields and XG

the Hamiltonian vector field associated to a Hamiltonian G. Therefore it is easy to check that
ΦH and ΦF commute if and only if {H,F} is locally constant (see [1])
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Lemma 6. If H and F are two commuting Hamiltonians and µ is an invariant measure of
ΦH , then, for each t ∈ R, Φt

F ∗µ is still ΦH-invariant.

Proof. Let µ̃t := Φt
F ∗µ denote the push-forward of µ. We want to show that for each s ∈ R,

Φs
H∗µ̃t = µ̃t. In fact, since Φt

H and Φs
F commute (because {H,F} = 0) and µ is ΦH -invariant

(i.e., Φs
H∗µ = µ), we have:

Φs
H∗µ̃t = Φs

H∗

(
Φt

F ∗µ
)

= Φt
F ∗ (Φs

H∗µ) = Φt
F ∗µ = µ̃t .

In the following, it will be convenient to consider this characterization of c-action minizimiz-
ing measures, that was proved in [11]. First of all, we need to recall the definition of c-subcritical
Lagrangian graph (also introduced in [11]).

Definition 2 (c-subcritical Lagrangian graph). Given a Lipschitz Lagrangian graph Λ with
cohomology class c, we shall say that Λ is c-subcritical for a Tonelli Hamiltonian H, if

Λ ⊂ {(x, p) ∈ T∗M : H(x, p) ≤ αH(c)},

where αH : H1(M ; R) −→ R is Mather’s α-function associated to H. We shall call its critical
part: Λcrit = {(x, p) ∈ Λ : H(x, p) = αH(c)}.

Remark 8. The interest in such graphs comes from the fact that {H(x, p) ≤ αH(c)} is the
smallest energy sublevel of H containing Lipschitz Lagrangian graphs of cohomology class c.
It follows from the results in [10, 4], that they do always exist. As we have already recalled in
(1), A∗

c(H) can be characterized as the intersection of all the c-subcritical Lagrangian graphs
of H or equivalently of all their critical parts. Therefore, the critical part of these Lagrangian
graphs is always non-empty and contains the Aubry set A∗

c(H). Moreover, there always exists
a c-subcritical Lagrangian graph Λ̃ such that Λ̃crit = A∗

c(H) (see again [10]).

In [11] we proved the following characterization of c-action minimizing measures.

Lemma 7. Let µ be an invariant probability measure for a Tonelli Hamiltonian H on T∗M .
µ is a c-action minimizing measure if and only if suppµ is contained in the critical part of a
c-subcritical Lagrangian graph of H. In particular, any invariant probability measure µ, whose
support is contained in an invariant Lagrangian graph of H with Liouville class c, is c-action
minimizing.

We have now recalled all the needed ingredients for the proof of Lemma 1.

Proof [Lemma 1]. First of all, let us observe that it is enough to show the results for |t| ≤ ε0,
for some sufficiently small ε0 > 0.
(i) From Lemma 6, we know that µ̃t := Φt

F ∗µ is still invariant under the action of ΦH . We
need to show that it is still c-action minimizing. In the light of Lemma 7, it will be sufficient
to prove that supp µ̃t is contained in the critical part of a c-subcritical Lagrangian graph of
H. Hence, let Λ be any c-subcritical Lagrangian graph of H. This graph contains supp µ

in its critical part because µ is c-action minimizing and M∗
c(H) ⊆ A∗

c(H) (see Remark 8).
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Consider now Λ̃ := Φt
F (Λ); this is also a Lagrangian manifold of cohomology class c (since Φt

F

is an exact symplectomorphism) and using that Λ is Lipschitz it is easy to see that there exists
ε0 = ε0(F,Λ) > 0 such that Λ̃ is still a graph for all |t| ≤ ε0. Moreover, it follows from Lemma
5 that Λ̃ is still c-subcritical for H. In order to conclude the proof, it is enough to observe that
supp µ̃ is contained in the critical part of Λ̃ (it follows also from Lemma 5).
(ii) The invariance of the Mather set follows immediately from (i) and its definition (it is the
union of all c-action minimizing measures). To prove that the A∗

c(H) is invariant under Φt
F ,

we proceed exactly as before, using the fact that, as recalled in Remark 8, A∗
c(H) can be

obtained by intersecting all c-subcritical Lagrangian graphs of H. In particular, there exists a
c-subcritical Lagrangian graph Λ such that A∗

c(H) = Λcrit. For |t| ≤ ε0, as in (i), let us consider
Λ̃ := Φ−t

F (Λ). As we have already observed, this is still a c-subcritical Lagrangian graph of H

and therefore A∗
c(H) ⊆ Λ̃crit; moreover, it follows from Lemma 5 that Λ̃crit = Φ−t

F (Λcrit). This
is enough to conclude the proof. In fact:

Φt
F (A∗

c(H)) ⊆ Φt
F

(
Λ̃crit

)
= Λcrit = A∗

c(H) .

Furthermore, it is clear from the proof that each connected component of these sets is mapped
into itself.

To conclude let us observe that part (i) of Lemma 1 can be also showed in a more direct
way, without passing through Lemma 7. However, in order to show the symplectic invariance
of the Aubry set, extra tools are necessary.

Lemma 8. Let µ be an invariant probability measure for a Tonelli Hamiltonian H on T∗M

and Φ : T∗M −→ T∗M an exact symplectomorphism that preserves H, i.e., H ◦Φ = H. Then:

∫ [
p
∂H

∂p
(x, p) − H(x, p)

]
dµ =

∫ [
p
∂H

∂p
(x, p) − H(x, p)

]
dΦ∗µ.

Recall that a symplectomorphism Φ : T∗M −→ T∗M is said to be exact if Φ∗(pdx) − pdx

is an exact 1-form.

Remark 9. Part (i) of Lemma 7 simply follows choosing Φ = Φt
F and using the definition

of action-miniziming measures (see section 2) and the relation between Hamiltonian and La-
grangian (Fenchel-Legendre transform).

Proof. If we denote by λ(x, p) the Liouville form pdx and by XH(x, p) the Hamiltonian vector
field, then:

∫ [
p
∂H

∂p
(x, p) − H(x, p)

]
dµ =

∫ (
λ(x, p)[XH(x, p)] − H(x, p)

)
dµ .

Therefore, using that |det DΦ| = 1 and Φ∗λ − λ = df (since Φ is an exact symplectmorphism)
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and that H is preserved by Φ we obtain:

∫ [
p
∂H

∂p
(x, p) − H(x, p)

]
dΦ∗µ =

∫ (
λ(x, p)[XH(x, p)] − H(x, p)

)
dΦ∗µ =

=

∫ (
Φ∗λ(x′, p′)[XH◦Φ(x′, p′)] − H(Φ(x′, p′))

)
dµ =

=

∫ (
λ(x′, p′)[XH(x′, p′)] − H(x′, p′)

)
dµ +

∫
df(x′, p′)[XH(x′, p′)] dµ =

=

∫ (
p′

∂H

∂p
(x′, p′) − H(x′, p′)

)
dµ.

In the last equality we used that
∫

df(x′, p′)[XH(x′, p′)] dµ = 0, as it follows easily from the
invariance of µ. In fact, let us assume that µ is ergodic (otherwise consider each ergodic
component); using the ergodic theorem and the compactness of M , we obtain that for a generic
point (x0, y0) in the support of µ:

∫
df(x′, p′)[XH(x′, p′)] dµ = lim

N→+∞

1

N

∫ N

0

df(Φt
H(x0, p0))[XH(Φt

H(x0, p0))] dt =

= lim
N→+∞

f(ΦN
H(x0, p0)) − f(x0, p0)

N
= 0 .

Appendix A Examples of weakly integrable Hamiltonians

In this appendix we would like to exhibit an interesting class of weakly integrable Tonelli
Hamiltonians, namely the geodesics flows associated to left-invariant Riemannian metrics on
Lie groups. These flows have been extensively studied in classical mechanics; in fact they
represent, in some sense, a natural generalization of Eulerian motions of a rigid body (this
point of view can be dated back at least to Henri Poincaré’s article [20]).
In the following, we shall mainly follow [1, Appendix 2], but we also refer the reader to [2,
Chapter VI, 1.B] and [13, 20] for more details on the subject.

Let us consider a compact Lie group G and denote by g its Lie algebra, i.e., the tangent
space to the group at the identity element. A Riemannian metric on G is said to be left-invariant
if it is preserved by all left translations Lg : h 7→ gh, i.e., the derivatives of all left translations
map every vector in ThG into a vector of the same length in TghG. Obviously it is sufficient
to specify the metric at one point of the group, for instance the identity element e ∈ G, and
therefore there are as many left-invariant metrics on G as there are euclidean structures on g,
i.e., symmetric positive definite operators from the algebra to its dual space: A : g → g

∗.
We would like to consider the geodesic flow associated to such a left-invariant metric space
(G, A). Sometimes this flow is also referred to as motion of a generalized rigid body with
configuration space G. In classical mechanics, in fact, G = SO(3) - i.e., the group of rotation
of a 3-dimensional euclidean space - can be regarded as the configuration space of a rigid body
fixed at a point (while the Lie algebra g represents the 3-dimensional space of angular velocities
of all possible rotations) and the motion of the body can be described by curves g = g(t) in G,
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that correspond to geodesics of a left-invariant metric. Let us see what happens with a generic
Lie group G. First of all observe that the euclidean structure A can be extended to all fibers:

Ag : TgG −→ T∗
gG

ġ 7−→ L∗
g−1ALg−1

∗
ġ,

where L∗
g−1 and Lg−1

∗
are respectively the maps induced by the left translation Lg−1 to the

cotangent and the tangent space of G. The operator Ã(g, ġ) := (g,Ag(ġ)) is called the moment
of intertia operator. This allows us to define the Lagrangian associated to the geodesic flow on
(G, A):

L : TG −→ R

(g, ġ) 7−→
1

2
〈Ag ġ, ġ〉 ;

in other words, this represents the kinetic energy of the system. It is easy to check that the
associated Hamiltonian is:

H : T∗G −→ R

(g, p) 7−→
1

2
〈p, A−1

g p〉 .

Such a Hamiltonian is a Tonelli Hamiltonian on T∗G. Let us study its integrals of motion.
First, observe that each angular momentum p ∈ T∗

gG can be carried to g
∗ by both left and

right translation: pb = L∗
gp and ps = R∗

gp (Rg denotes the right translation h 7→ hg); in classical
mechanics these two vectors are called respectively angular momentum relative to the body and
relative to the space. Euler showed (in the case G = SO(3), but the same proof works for
a general G) that the motions of these two angular momenta satisfy the following equations
(known as Euler’s equations for the rigid body):

dps

dt
= 0 and

dpb

dt
= ad∗A−1pb

pb ,

where ad∗ξ : g
∗ → g

∗ denotes the so-called co-adjoint representation of the group. In particular,
the second equation determines a flow ϕt : g

∗ → g
∗, which describes the motion of the angular

momentum relative to the body (observe that it does not depend on the position of the body
in the space). If one defines the map π : T∗G → g

∗ given by π(g, p) = L∗
gp, it is not difficult to

see that this map is a factorization of the Hamiltonian flow (T∗G, Φt
H) over the flow (g∗, ϕt),

i.e., the following diagram commutes:

T∗G

π

��

Φt
H

// T∗G

π

��

g
∗

ϕt

// g
∗

From this and the conservation law for the vector of angular momentum relative to the space
(in particular each of its components is conserved), we obtain a set of integrals of motion for
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H. Observe that to each element of the Lie algebra g it corresponds a linear functional on the
space g

∗ and therefore an integral of motion of H. Of course, of all these integrals of motion
at most n can be functionally independent. For instance, one can take the ones obtained by n

linear functionals on g
∗ which form a basis in g. This proves the following.

Proposition 4. All Tonelli Hamiltonians corresponding to geodesic flows associated to left-
invariant Riemannian metrics on compact Lie groups are weakly integrable.

Remark 10. Observe that in general these geodesic flows are not necessarily integrable in the
sense of Liouville (in the form stated in Section 1). The problem of the non-integrability in
the sense of Liouville is extremely subtle and tricky, and may depend on the regularity class in
which we are looking for the integrals of motion (analytic, smooth, etc...) or on which sense of
independence we ask (independent everywhere, on an open dense set, etc ...). See for instance
[6, 7] and references therein.
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132: 369–371, 1901.

Alfonso Sorrentino

CEREMADE, UMR CNRS 7534,

Université Paris-Dauphine,
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