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ABSTRACT

The Thorpe analysis is a recognized method used to identify and characterize turbulent regions within

stably stratified fluids. By comparing an observed profile of potential temperature or potential density to

a reference profile obtained by sorting the data, overturns resulting in statically unstable regions, mainly

because of turbulent patches and Kelvin–Helmholtz billows, can be identified. However, measurement noise

may induce artificial inversions of potential temperature or density, which can be very difficult to distinguish

from real (physical) overturns.

A method for selecting real overturns is proposed. The method is based on the data range statistics; the

range is defined as the difference between the maximum and the minimum of the values in a sample. A

statistical hypothesis test on the range is derived and evaluated through Monte Carlo simulations. Basically,

the test relies on a comparison of the range of a data sample with the range of a normally distributed pop-

ulation of the same size as the data sample. The power of the test, that is, the probability of detecting the

existing overturns, is found to be an increasing function of both trend-to-noise ratio (tnr) and overturns size. A

threshold for the detectable size of the overturns as a function of tnr is derived. For very low tnr data, the test is

shown to be unreliable whatever the size of the overturns. In such a case, a procedure aimed to increase the

tnr, mainly based on subsampling, is described.

The selection procedure is applied to atmospheric data collected during a balloon flight with low and high

vertical resolutions. The fraction of the vertical profile selected as being unstable (turbulent) is 47% (27%)

from the high (low) resolution dataset. Furthermore, relatively small tnr measurements are found to give rise

to a poor estimation of the vertical extent of the overturns.

1. Introduction

Small-scale mixing is an important issue for a variety

of atmospheric and oceanic processes. In situ measure-

ments of velocity and/or temperature microstructures in

the atmosphere and ocean enable direct estimates of

turbulence parameters to be obtained, but such mea-

surements remain difficult, expensive, and sparse (e.g.,

Alisse and Sidi 2000; St. Laurent and Schmitt 1999).

Thorpe (1977) proposed an elegant method to identify

and characterize turbulent patches from in situ mea-

surements by comparing an observed and a sorted verti-

cal profile of potential density (or potential temperature).

The stable sorted profile corresponds to a rearranged

(reference) profile that can be obtained by adiabatic
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displacements. Because a vertical profile of potential

density (temperature) in a stably stratified fluid is a

monotonic function of depth (altitude), overturns display

clear signatures in the difference between the measured

and sorted profiles. Such overturns trigger convective

instabilities, which in turn produce turbulent mixing.

The Thorpe method can a priori be applied to standard

soundings, either conductivity–temperature–depth (CTD)

measurements in the ocean or lakes (e.g., Thorpe 1977;

Galbraith and Kelley 1996; Ferron et al. 1998; Alford

and Pinkel 2000) or pressure–temperature (PT) mea-

surements in the atmosphere (Luce et al. 2002; Gavrilov

et al. 2005; Clayson and Kantha 2008). Recently, it has

been proposed to apply the Thorpe analysis to a huge

meteorological radiosondes database to infer the space–

time variability of atmospheric turbulence (Clayson and

Kantha 2008).

The Thorpe signal is defined at each altitude (or depth)

as the signal difference (potential density or potential

temperature) between the observed and ordered pro-

files. The difference of altitude (depth) of a data bin in

the observed and sorted profiles defines the Thorpe dis-

placement. Thorpe displacements can be viewed as the

vertical distances the observed fluid parcels must be adi-

abatically displaced so that the fluid becomes gravita-

tionally stable everywhere, the available potential energy

reaching a minimum. Thorpe displacements are thus

related to the available turbulent potential energy (Dillon

1984). The Thorpe length LT of an overturn is the root-

mean-square (rms) of Thorpe displacements for the con-

sidered overturn. The Thorpe length is thought to be

proportional to the Ozmidov scale L0 5 (Ek/N3)1/2, where

Ek is the kinetic energy dissipation rate, and N is the

buoyancy frequency (Ozmidov 1965; Dillon 1982). Sev-

eral methods have been proposed to relate either Ek or LT

to an eddy diffusion coefficient K (Gavrilov et al. 2005).

The Thorpe scale approach has several limitations,

however. For example, ship motions or balloon wake

can cause severe errors in perturbing the probe move-

ment or the flow itself. Beyond such problems (not dis-

cussed here), instrumental noise is a key issue, because

noise can produce potential density/temperature inver-

sions in the observed profile, especially in case of weak

background stability. In the present context, an inver-

sion is defined as a localized decrease of potential tem-

perature versus height, or of potential density versus

depth, whatever its origin. Following the terminology

used by Johnson and Garrett (2004), the term inversion

will refer to both real and artificial structures in a po-

tential density/temperature profile. The term overturn

will specifically refer to an inversion resulting from at-

mospheric motions (turbulence or Kelvin–Helmholtz

billows). The selection of artificial inversions as overturns

may result in a dramatic overestimation of the turbulent

fraction. The space–time inhomogeneity of turbulence

can give rise to diffusion coefficient estimations diver-

ging by several orders of magnitude. It is therefore crucial

to apply quantitative procedures to discriminate over-

turns from inversions produced by noise.

A variety of approaches have been proposed for this

objective. Thorpe (1977) rejected displacements for

which the Thorpe signal does not exceed a predetermined

noise level. Ferron et al. (1998) and Gargett and Garner

(2008) defined an intermediate density profile in which

the density of neighboring points only differs if the dif-

ference between them is larger than a predetermined

noise threshold. Also, these authors required an over-

turn to be an isolated region, that is, a region for which

fluid parcels are exchanged with others belonging to the

same region. Galbraith and Kelley (1996) proposed a se-

ries of tests for identifying overturns within CTD profiles.

First, they considered limits on the minimum size for

overturns to be detectable based on the instrumental

noise and density gradient. Second, the authors suggested

that the run length, defined as the number of adjacent

bins of the Thorpe signal with the same sign, can be

a useful diagnostic. They based the selection of overturns

on an ad hoc value of the ratio between the observed run

lengths and that expected from noise. Timmermans et al.

(2003) suggested comparing their observed run lengths to

the rms run length expected from a random sequence of

Bernoulli trials with probability of ½. Gavrilov et al.

(2005) selected data segments (arbitrarily of 12.8-m

length) as not affected by the noise by applying two

combined criteria: 1) the horizontal structure function

at 1 m should exceed twice the noise variance, and (2)

a potential temperature increase defined as LTdu0 /dz

(where u0 is the sorted potential temperature) should

exceed twice the noise standard deviation. Piera et al.

(2002) proposed another approach. After a wavelet

denoising of the data, they estimated the potential dis-

placement errors defined as the standard deviation of

displacements induced by random instrumental noise.

They then considered a data segment as a part of an

overturn from the fraction of displacements exceeding

the potential errors within that segment.

Alternatively, Alford and Pinkel (2000) qualified se-

lected inversions as overturns when these inversions were

present in both temperature and density profiles. Gargett

and Garner (2008) proposed a diagnostic parameter al-

lowing for the elimination of inversions resulting from

density spikes. Finally, Galbraith and Kelley (1996) as

well as Gargett and Garner (2008) introduced tests for

rejecting density inversions caused by time-response mis-

matches in temperature and conductivity sensors. Such

validation methods, mostly relevant in an oceanographic
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context, were addressed in a recent paper of Gargett and

Garner (2008) and will not be further discussed here.

The selection methods based on a threshold depend-

ing on the noise level (amplitude of Thorpe signal, run

lengths, and noise-induced displacements) are poten-

tially very effective if measurement noise induces ran-

dom errors in the sorted profile. The key assumption of

these methods is that the errors on the Thorpe signal, or

on the Thorpe displacements, induced by instrumental

noise are independent. This assumption is questionable,

however. For instance, Johnson and Garrett (2004) in-

vestigated the effects of noise on run lengths. These au-

thors clearly demonstrated that the run-length statistics

are related to both the background stratification and the

size of the data sample. They concluded that ‘‘comparing

the distribution of run-lengths or the rms run-length with

that expected from a random uncorrelated series is not a

reliable way of distinguishing between signal and noise.’’

In the present paper, we propose an alternative method

to discriminate overturns from inversions induced by

random noise. The method is based on the data range

statistics within the detected inversions. The range of a

sample is defined as the difference between the maxi-

mum and the minimum values in that sample. A statistical

hypothesis test enabling for the discrimination of turbu-

lent overturns from noise-induced inversions is described.

The paper is structured as follows. In section 2, the

effects of noise upon a sorting procedure are investi-

gated. It is shown that the Thorpe signal and displace-

ments due to noise are not independent. A quantitative

criterion for the minimum size an overturn must reach to

be detected is derived. In section 3, we describe the se-

lection method of overturns and evaluate its performance

through Monte Carlo simulations. Section 4 illustrates

the use of the method on an atmospheric profile at low

and high vertical resolutions. The conclusions are drawn

in section 5.

2. Instrumental noise effects on the Thorpe analysis

a. Basic illustration

Measured density (or temperature) profiles are affected

by random instrumental noise. Considering for simplicity

a monotonic profile of potential density/temperature to

which noise is added, artificial inversions can be pro-

duced by the noise only. The probability of occurrence

for noise-induced permutations depends on the stratifi-

cation, on the vertical resolution, and on the noise level

(see appendix A).

We consider the signal X (potential density or tem-

perature) regularly sampled along the vertical, that is,

Xi 5 X(zi), where zi 5 z0 1 i 3 dz is the ith sampled

level (altitude or depth); z0 and dz are an initial level and

the vertical sample step, respectively. A key parameter

for quantifying the impact of measurement noise in a

sorting procedure is the average of the signal difference

between consecutive data bins t scaled by the standard

deviation of instrumental noise sN:

z 5
t

s
N

, (1)

where t 5 X(z
i11

)�X(z
i
) and the overbar denoting a

spatial averaging operator. Hereafter, the averaged con-

secutive differences t will be labeled as the trend, and

the ratio z as the trend-to-noise ratio (tnr). Considering

a data sample of size n, the trend estimate reduces to

t 5
1

n� 1
�
n�1

i51
(X

i11
� X

i
) 5

X
n
�X

1

n� 1
. (2)

It is shown in appendix A that the probability of a noise-

induced permutation between two bins can be expressed

as a simple function of tnr z only. A bulk tnr z ’ 1 cor-

responds to standard soundings (CDT or PT) within

moderately stratified regions (e.g., Galbraith and Kelley

1996), with z ’ 10�1 corresponding to microstructure

measurements for comparable stratification conditions

(e.g., Gavrilov et al. 2005).

Artificial inversions can easily be produced in case of

weak stability. Figure 1a shows a synthetic signal (dots)

made of two sections with distinct linear trends: a region

with small tnr [z 5 0.5 3 1022, from bin 50 to bin 150,

is enclosed within a region with larger tnr (z 5 1021)].

A normally distributed noise B ; N(0, 1) is added.

There is no overturn in this case. Such staircase profiles

are commonly observed in real geophysical flows (e.g.,

Dalaudier et al. 1994; Woods 1968; Coulman et al. 1995).

The dashed curve of Fig. 1a shows the sorted profile.

Within the weakly stratified region, the sorted profile is

clearly biased because of the sorting of noise. Figures 1b

and 1c show the Thorpe signal and the Thorpe displace-

ments, respectively. The Thorpe signal (displacements) is

biased toward positive (negative) values in the lower part

of the weakly stratified region and toward negative (pos-

itive) values in the upper part of this region. Such vertical

distributions for the Thorpe signal or Thorpe displace-

ments are very similar to the ones observed in case of

a real overturn. The issue is how to discriminate without

ambiguity overturns from such noise-induced inversions.

b. Sorting of a noise sample

To illustrate the impact of the sorting of noise, Fig. 2a

shows a sample of 100 independent normally distributed

variables B ; N(0, 1) (dots on left panel). The solid line

shows the sorted profile. As expected, the lower part of
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the sorted bins are systematically negative, the upper

part positive, and the slope of the sorted profile is pos-

itive everywhere. The sorted profile is indeed an em-

pirical estimate of the cumulative distribution function

(cdf) of the sample. The dashed curve of Fig. 2a shows

the associated theoretical cdf (3100) for a normally dis-

tributed population. The Thorpe signal and the Thorpe

displacements are shown in Figs. 2b and 2c, respectively.

Clearly, the Thorpe signal or Thorpe displacements of

neighboring points are correlated.

The moments of the Thorpe displacements can easily

be estimated for such a noise sample. Let D(i) be the

difference between the position i and the rank of the ith

bin R(i), that is, D(i) 5 i 2 R(i). [The Thorpe displace-

ment DT is simply DT(i) 5 D(i) 3 dz.] For n independent,

identically distributed (iid) variables, the probability for

the ith bin to be at any rank k is simply 1/n. On the other

hand, the possible values for D(i) range between i 2 n

and i 2 1, that is,

Pr[D(i) 5 k] 5 1/n, �(n� 1) # k # i� 1. (3)

The displacement D(i) is uniformly distributed: D(i) ;

U(2n 1 i; i 21), and the mathematical expectation

E[D(i)] is

E[D(i)] 5
1

n
�
i�1

k5�n1i
k 5

1

2
(2i� n� 1). (4)

For a given bin i, the expectation of displacement for

n iid variables depends on position i, but also on the

sample size n (dashed curve of Fig. 2c). The sorting of

a noisy signal within a neutral (or weakly stratified) re-

gion will systematically produce such a positive bias in

the reference profile, and thus in the Thorpe signal and

Thorpe displacements, making such a region indistin-

guishable from an overturn (cf. with Fig. 1c).

It is clear from this example that the run-length di-

agnostic (Galbraith and Kelley 1996) cannot be rele-

vant for such cases. As already noticed by Johnson and

Garrett (2004), long run lengths are expected at the top

and bottom of weakly stratified regions. The method

based on a comparison between Thorpe displacements

and noise-induced displacements (Piera et al. 2002) also

fails because 1) the displacements due to noise are no

longer iid; 2) the noise-induced displacements are not

simply proportional to the standard deviation of noise

(Fig. 2c); and 3) the mean stratification (from which are

estimated the noise-induced displacements), usually eval-

uated from the sorted profile, is systematically biased

(overestimated) due to the sorting of noise (Fig. 2a) if

the stability is weak.

c. Size of detectable overturns

As stated by Galbraith and Kelley (1996), a limit in

the detection of overturns results from the need to mea-

sure density (temperature) differences within overturns

FIG. 1. (a) Raw and sorted synthetic signals. Normally distributed noise is added to a monotonic profile (solid line),

the central part of which is weakly stratified. The dashed line shows the sorted profile. (b) The Thorpe signal and

(c) Thorpe displacements are shown.
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exceeding a threshold imposed by noise and background

stratification. However, this threshold not only depends

on the noise level but also on the size of the overturn.

The difference between the maximum and minimum of

the values of a sample defines the sample range W. The

statistics of the range for an n sample of iid variables

(i.e., random noise) depends on both the probability dis-

tribution and the size of the sample n (e.g., David 1981,

and appendix B). For instance, Fig. 3 shows the pdf of the

range WN(n) of n iid variables N(0, 1), for n 5 10, 20, 50

(the subscript N stands for a normally distributed parent

population). These pdfs are estimated by numerical in-

tegrations of Eq. (B5). As the sample size increases, the

pdf of the range is shifted toward larger values and its

standard deviation decreases. From these pdfs, various

moments and percentiles can be estimated. Figure 4

shows the expectation of the range E[WN(n)] as well as

the 95 and 99 percentiles, w95 and w99, respectively, for

iid variables, X ; N(0, 1), as a function of the sample size

n for 2 # n # 5000 (see also Table 2).

We now consider an inversion of size n, that is, thick-

ness LI 5 (n 2 1)dz. To distinguish an overturn from

a noise-induced inversion, the range of the data (potential

density or temperature) within the inversion W(n) must

significantly exceed the range of a noise sample of sim-

ilar size, WN(n), that is,

W(n) ’ (n� 1) tj jn s
N

W
N

(n). (5)

The order of magnitude of the minimum tnr for an over-

turn of size n to be detectable is derived from (5):

FIG. 2. (a) Raw (dots) and sorted (solid line) noise sample [N(0, 1)]. The dashed curve shows the theoretical cdf

(3 the sample size) for a normally distributed population. (b) The Thorpe signal and (c) Thorpe displacements are

shown, with the dashed line showing the expectation of displacements.

FIG. 3. Theoretical pdf of the range WN 5 max(Xi) 2 min(Xi) of

n iid variables Xi, 1 # i # n, (n 5 10, 20, 50). The parent population

is normally distributed N(0, 1).
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jtj
s

N

� �
min

[ z
min

’
W

N
(n)

n� 1
. (6)

Figure 5 shows zmin as a function of the sample size n,

that is, the size of a detected inversion. The points below

the curves are unlikely to be observed, especially if a

trend (negative or positive) exists (if any trend exists, the

expectation of range is always larger than the expecta-

tion for the the null-trend case). For a given tnr, that is,

for a given stratification, measurement resolution, and

noise level, the curves indicate the minimum length (in

bins number) for an overturn to be detectable. For the

sake of comparison, the threshold tnr proposed by

Galbraith and Kelley (1996) is, with our notations, zGK 5

2/(n 2 1) [from their Eq. (5)]. This threshold is shown on

Fig. 5 (dotted line). For large inversions, this criterion is

too optimistic, as the increase of data range due to the

sorting of noise is ignored.

3. Overturn identification

a. The selection procedure

The basic idea of this paper is to infer the existence of

an overturn from the range of the signal within the iden-

tified inversions (artificial or real). If an inversion is pro-

duced by the sorting of noise (H0 or null hypothesis), the

range of the data is expected to be distributed as the

range of an n sample of noise. Conversely, if an overturn

is produced within a stably stratified region (H1 hypoth-

esis), the signal range is expected to exceed significantly

the range of a noise sample. Indeed, as the background

trend increases, whatever the sign of the trend is, the pdf

of the range is shifted toward larger values. A quanti-

tative criterion allowing for the acceptance or rejection

of the null hypothesis (H0) can be obtained by com-

paring the signal range with the pdf of a noise sample of

the same size. The inversion is likely to be an overturn if

the signal range exceeds a threshold corresponding to a

large percentile of the noise sample. Otherwise, one can

not draw a conclusion.

To illustrate our purpose, we build a synthetic signal

Xi, 1 # i # 100. Normally distributed noise B ; N(0, 1) is

added to a test model profile. A realization for which

z 5 0.25 (and thus z 5 0.5 because sN 5 1) is shown in

Fig. 6. ‘‘Solid-body’’ and ‘‘sine’’ overturns are simulated

from bin 11 to 30 and 71 to 90, respectively (Fig. 6a). A

weakly stratified region, from bin 41 to 60, produces an

artificial inversion that is clearly visible in the Thorpe

displacements profile (Fig. 6d).

To determine the size of the detectable overturns,

we first evaluate a bulk tnr. From the trend estimate

t 5 Xi11 �Xi [ (X100 �X1)/(100� 1) and standard de-

viation of noise sN, we deduce z 5 t/sN (dashed line of

Fig. 6b). A local value for the tnr is estimated from the

sorted profile: zi 5 (Xi11:100 2 Xi21:100)/2sN, where Xi:100

is the bin of rank i within the sorted 100 samples (dashed

FIG. 4. Expectation of the range E[WN(n)] of iid N(0, 1) variables vs the sample size n (solid

curve). The dashed and dotted curves show the 95th and 99th percentiles, respectively.
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curve of Fig. 6a). A minimum of tnr is clearly visible in

the central part of the profile, where the stratification

is weak. Given the bulk tnr, an order of magnitude for

the size of a detectable overturn can be estimated from

Fig. 5. From our simulated dataset, the bulk tnr is 0.5 and

the size for a detectable overturn is on the order ;10 bins

(Fig. 5). Consequently, noise reduction is not required

because we consider 20 bin inversions in the present case.

The noise reduction of data will be discussed in section 4c.

The next step consists of identifying inversions (real

and artificial) from the signal (potential density or po-

tential temperature). According to Dillon (1984), an in-

version is defined as an isolated region, that is, a region

for which �n

k51D
T

(k) 5 0, where n is the size of the

inversion. We also required, for any 1 # k # n, that

�k

i51DT(i) , 0. This last condition implies that the dis-

placements are negative at the bottom of the inversion

and positive at the top, as expected for an inversion

(taking into account our definition of Thorpe displace-

ments). Owing to this process, both artificial inversions

and overturns are selected. Figure 6c shows the cumu-

lative sum of displacements versus bins. Three large in-

versions are identified at bins 11–30, 41–60, and 71–90.

Smaller size inversions are also visible.

The final step consists of selecting the overturns among

the detected inversions. The selection method is based

on a statistical hypothesis test. A given inversion is ei-

ther an overturn (H1 hypothesis) or not (H0 hypothesis).

If not, the inversion is believed to be induced by noise.

The signal range within the detected inversions has to be

compared with the range of a noise sample of the same

size because the pdf of the range depends on the size of

the sample (see Fig. 3). Let wp(n) be the p percentiles of

the range of n iid normally distributed variables, that is,

Pr[WN(n) , wp(n)] 5 p/100. By retaining a p% confi-

dence level, an inversion of size n is recognized as a

noise-induced one (H0 hypothesis) if its data range W(n)

is such that

W(n)

s
N

, w
p
(n) (7)

and is rejected otherwise (H1 hypothesis). The proba-

bility of rejecting H0 if H0 is realized (type I error,

corresponding to an erroneous detection) defines the

significance level a (a 5 1 2 p/100 5 0.05 or 0.01). The

probability b of accepting the H0 hypothesis when H1 is

realized (type II error, corresponding to the nondetec-

tion of a real overturn) depends on the characteristics of

the overturns and may be estimated through Monte

Carlo simulations (see Table 1). The power of a hypoth-

esis test is usually defined as the probability of rejecting

FIG. 5. Relationship between overturn size, n, and threshold tnr zmin for normally distributed

noise. The solid curve shows the threshold tnr deduced from the expectation of range WN. The

dashed curves show the thresholds corresponding to the 95th and 99th percentiles. The dotted

curve shows the threshold proposed by Galbraith and Kelley (1996). The positions of triangles,

circles, and diamonds correspond to test power of 0.1, 0.5, and 0.95, respectively.

JUNE 2010 W I L S O N E T A L . 983

D
ow

nloaded from
 http://journals.am

etsoc.org/jtech/article-pdf/27/6/977/3342935/2010jtecha1357_1.pdf by guest on 23 N
ovem

ber 2020



H0 when it is false, that is, to detect an existing overturn,

which is equal to 1 2 b (Freeman 1963). The thresholds

of range wp(n) corresponding to significance levels a 5

0.05 and a 5 0.01, that is, w95 and w99, are plotted in Fig. 4

and tabulated in Table 2. The expectation, standard de-

viation, as well as various percentiles of the range of a

normally distributed population N(0, 1) can be down-

loaded as an American Standard Code for Information

Interchange (ASCII) file (available online at ftp://ftp.aero.

jussieu.fr/pub/os/WN.txt). If the noise is assumed to fol-

low a distribution other than normal, the percentiles of the

range have to be numerically calculated from Eq. (B5).

b. Validation of the hypothesis test

Monte Carlo simulations (1000 runs) were performed

from the synthetics presented in the previous section

with various bulk tnr values. For the particular realiza-

tion shown in Fig. 6, for which tnr 5 0.5, the detected

inversions extend over about 85% of the profile due to

the generation of small size noise-induced inversions.

The thresholds of range corresponding to significance

levels of 5% and 1% for a 20-bin noise sample are

w95(20) 5 5.01 and w99(20) 5 5.65, respectively (Table 2).

For a tnr z 5 0.5, and with a significance level of 1%,

the solid-body overturn (bins 10–30) is always detected,

(power 5 1), the corresponding observed range (mean 6

standard deviation) is W 5 11.9 6 1.8 (here sN 5 1). The

sine overturn (bins 71–90) for which W 5 7.0 6 1 is

identified for 98.1% of the runs (type II error for about

1.9% of the cases). For the artificial inversion (bins 40–60),

W 5 3.6 6 0.95. The inversion is selected as an overturn

for about 0.7% of the runs (see Table 1). Figure 6 (top

panel) shows the position and vertical extent of the

overturns as well as the corresponding Thorpe lengths

for this particular realization, a case where the two over-

turns are correctly identified (more than 98% of the cases).

FIG. 6. One realization of a synthetic profile made for a linear trend and additive noise. (top) Solid-body and sine inversions (bins 11–30

and 71–90, respectively) with the central region (bins 41–60) being weakly stratified are shown. (bottom) As in the top, but with fully-

stirred inversions. (a),(f) The profiles for the solid curve, the dots, and the dashed curve show the signal, the signal plus noise, and the

sorted profile, respectively. (b),(g) The tnr for local (solid curve) and bulk (dashed line) estimates. (c),(h) The cumulative sum of Thorpe

displacements. (d),(i) Thorpe displacements, with the selected overturns highlighted. (e),(j) Thorpe lengths for the detected inversions,

with the sorted profile being superimposed (dashed curve).
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For z 5 1, 100% of the overturns (solid body and

sine) are selected (power 5 1) with a 99% confidence

level, and 0.6% of the artificial inversions are selected as

overturns (Table 1); for z 5 0.25, the power falls down

to 0.77 (solid body) and 0.62 (sine). On the other hand,

the artificial inversion is selected as an overturn for

13.7% of the cases. Such a large percentage of type I

errors are due to the poor detection of the boundaries of

the inversions (see the widening of the detected in-

versions in Table 1). The range test is then applied to

samples mixing inversions and ‘‘stratified’’ zones. The

test fails.

c. Influence of stirring by turbulence

Within the ocean or atmosphere, overturning layers

frequently contain random (turbulent) fluctuations and

solid-body or sine overturns are only seldom observed.

Furthermore, the cumulative sum criterion applied for

the detection of inversions may appear questionable in

case of a random distribution of fluid particles posi-

tions within the inversions. Another simulation was thus

performed by assuming particles randomly distributed

within the inversions. Such a complete randomization

of the bins’ positions simulates an extreme influence of

stirring. Compared to the previous case, the data range

remains unchanged within the inversions, but the Thorpe

displacements are now fully random (and not only ran-

domized by the noise). It is likely that most of the oceanic

or atmospheric overturns lie in between these two extreme

cases, from ‘‘solid’’ to ‘‘fully stirred’’ overturns.

As mentioned previously, we performed 1000 runs

with various bulk tnr but with stirred inversions. The

lower panels of Fig. 6 show the results of the selection

procedure for the same particular realization (upper

panels) but with fully stirred inversions. No significant

difference was noticed, neither in the inversions detec-

tion nor the fraction of selected overturns (Table 1). The

Thorpe length estimate does not seem to be affected

much by the assumed complete stirring, although it is

slightly smaller in case of a solid-body overturn. Also,

the shape and amplitude of the cumulative sums of dis-

placements are now roughly the same for the three main

inversions (Fig. 6h). Therefore, one can conclude that

the proposed selection criterion for the detection of over-

turns does not depend on the presence (or importance)

of stirring within the inversions.

Results of Monte Carlo simulations for three different

bulk tnr z and n 5 20 are summarized in Table 1. Clearly,

for n 5 20 the selection method is not effective if z , 0.5

because inversions are not correctly resolved (one ob-

serves an increase in width of the detected inversions).

For the extreme case z 5 0 (shown in Fig. 2) the whole

profile is recognized as a single inversion.

d. Power of the hypothesis test

For a fixed inversion size (n 5 20), the power of the

test is observed to increase with tnr z. It also likely depends

on n. The power of the test was estimated through Monte

Carlo simulations for 2 # n # 1000, and 0.001 # z # 10.

TABLE 1. Results of the Monte Carlo simulations. Here, LT and

inversion widths are expressed in bin units. L1, L2, L3 designate the

solid-body, noise-induced, and sine inversions, respectively. The

percentage of selected overturns (PSO) shows the power of the test

for L1 and L3 overturns.

No stirring Stirring

z 5 1

PSO (%) LT Width Layer PSO (%) LT Width

100 11.6 20.9 L1 100 8.2 20.8

0.6 8.1 20.0 L2 0.9 8.8 20.0

100 9.9 20.4 L3 100 9.2 21.9

z 5 0.5

PSO (%) LT Width Layer PSO (%) LT Width

100 11.0 24.3 L1 100 7.8 24.0

0.7 7.8 20.8 L2 0.7 8.2 20.5

98.1 9.7 21.3 L3 99.5 9.0 22.7

z 5 0.25

PSO (%) LT Width Layer PSO (%) LT Width

77.0 9.8 33.8 L1 75.2 7.4 33.9

13.2 7.4 41.5 L2 12.7 7.4 40.2

62.7 8.4 31.7 L3 67.5 8.1 32.5

TABLE 2. Moments and percentiles of the range for n iid with

normal N(0, 1) pdf.

n E[WN] s[WN] w95 w99

2 1.13 0.85 2.77 3.64

3 1.69 0.89 3.31 4.12

5 2.33 0.86 3.86 4.60

7 2.70 0.83 4.17 4.88

10 3.08 0.80 4.47 5.16

12 3.26 0.78 4.62 5.29

15 3.47 0.76 4.80 5.45

17 3.59 0.74 4.89 5.54

20 3.73 0.73 5.01 5.65

25 3.93 0.71 5.17 5.79

30 4.09 0.69 5.30 5.91

35 4.21 0.68 5.41 6.01

40 4.32 0.67 5.50 6.09

45 4.42 0.66 5.58 6.16

50 4.50 0.65 5.65 6.23

60 4.64 0.64 5.76 6.34

70 4.75 0.63 5.86 6.43

80 4.85 0.62 5.95 6.51

100 5.02 0.60 6.09 6.64

120 5.14 0.59 6.20 6.74

150 5.30 0.58 5.33 6.86

200 5.49 0.57 6.50 7.02
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The size–tnr coordinates for which the test power is 0.1,

0.5, and 0.95 are shown as symbols in Fig. 5. Clearly, the

power is an increasing function of both n and z. For

a considered size n, the power is increasing from 0 to 1

starting from a tnr threshold depending on n. Identically,

the power is increasing with n for constant z. For large

overturns (n . 50), the test power is high (.0.9) for the

tnr values corresponding to a significance level 0.05 or

0.01 (dashed curves). Conversely, for the small over-

turns (n # 10) the power is only slightly larger than 0.5

for the threshold tnr.

4. Example with real atmospheric data

a. Dataset description

The proposed selection procedure is now applied to

vertical profiles of atmospheric temperature and pres-

sure. We used data collected from a RS90G Vaisala

radiosonde launched during a radar-balloon observa-

tion campaign called the Middle and Upper Atmosphere

(MU) Radar, Temperature Sheets, and Interferometry

(MUTSI; Luce et al. 2002; Gavrilov et al. 2005). The

initial sampling frequency and vertical resolution (after

resampling at a constant vertical step) were 0.69 Hz and

6 m, respectively. High-resolution (HR) balloon mea-

surements were also performed with sampling frequency

and vertical resolution of 50 Hz, and ;10 cm, respectively.

The reader can find more details about the HR mea-

surements in Gavrilov et al. (2005). By contrast, the

Vaisala data will hereafter be labeled as low-resolution

(LR) data. The HR and LR sensors were on the same

gondola, and the data were collected simultaneously.

Figure 7 shows a vertical profile of tropospheric tem-

perature measured on 13 May 2000. The potential tem-

perature u is inferred from the measured temperature and

pressure using the relation for ideal diatomic gas:

u 5 T
1000

P

� �2/7

, (8)

where T is the temperature (K) and P is the pressure

(hPa). Several nearly neutral layers can be seen around

4-km altitude and above 10-km altitude.

In the present work, we consider tropospheric data

only (from 4.5- to 11.8-km altitude), that is, data ac-

quired in relatively weak stability (low tnr) conditions.

The noise is evaluated experimentally from the tem-

perature measurements for both LR and HR data: after

the removal of a linear trend on short data sequences

(five points), we calculated the mean of the squared data

differences. The average from all the sequences is an

estimate of twice the noise variance. The standard de-

viation of noise for LR (HR) temperature measurements

is found to be 22 (2.2) mK. The noise level of the observed

FIG. 7. Temperature in the upper troposphere (solid line and bottom scale) measured by the

RS90G Vaisala radiosonde launched on 13 May 2000 at Kyotanabe, Japan, during the MUTSI

campaign. The dashed line (top scale) shows the corresponding potential temperature.
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temperature data is independent of altitude, whereas the

noise level of the potential temperature slightly varies

with altitude because of the pressure term [Eq. (8)]: it

increases from 26 to 35 (2.6–3.5) mK for LR (HR) data

for heights ranging from 4.5 to 11.8 km.

The vertical profile of tnr for the LR data is shown in

Fig. 8a. The bulk tnr z
LR

is ;0.9 (dashed line), the local

values showing minima less than 1021 around 11-km

altitude. For such a bulk tnr, one cannot expect to detect

overturns smaller than n ; 6 bins, that is, thinner than

30 m (Fig. 5). Furthermore, the test power reaches 0.95

for n ; 10 (54 m). Within the low stability region, the

threshold size is ;70 bins (414 m). The bulk tnr of the

HR measurements is z
HR

; 0.14, so detectable size is

n ; 50 bins (5 m), with test power reaching 0.95 for

such a size. As shown later in the study, a denoising pro-

cedure can provide better performances.

b. LR data analysis

Figure 8 shows the Thorpe displacements (Fig. 8c)

and the cumulative sum of displacements (Fig. 8b) for

the LR data. The Thorpe displacements range from

about 10 to 300–400 m. For this particular profile, the

(real and artificial) inversions extend over 60% of the

upper troposphere.

By applying the selection test with a 1% significance

level, about 91% of the inversions are not selected as

overturns. The turbulent fraction, that is, the fraction of

the profile which is selected as overturns, falls down to

27%. The four selected turbulent patches are shown in

Fig. 8d (thick lines); here the Thorpe lengths for the

detected inversions with the selected (presumably tur-

bulent) overturns are highlighted. The sorted potential

temperature profile is superimposed on the figure. A

thick turbulent region is observed from altitudes 10.1–

11.2 km, with a Thorpe length of about 140 m. Thinner

layers are also observed below 6.5 km, with Thorpe

lengths ranging from 25 to 50 m. It is worth noting that

most of the inversions are not selected as overturns: for

their given tnr and sizes, their ranges cannot be distin-

guished from the range of random noise samples. Of

course, a less restrictive confidence level can be used, at

the expense of a larger rate of (accepted) errors. For a 5

25%, the ratio of selected overturn is 21%, and for a 5

25%, it reaches 40%.

FIG. 8. LR data: (a) tnr, the dashed line showing the bulk tnr; (b) absolute value of the cumulative sum of displacements; (c) Thorpe

displacements, with the selected overturns highlighted; and (d) Thorpe lengths for the detected inversions (gray), with selected overturns

highlighted. The sorted potential temperature profile is superimposed (dashed).
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c. Denoised HR data analysis

As mentioned previously, z
HR

; 0.14, the detectable

size for an overturn with 1% significance level being n ’

50 bins (5 m). Also, for such a low tnr the vertical extent

of turbulent overturns is likely poorly resolved. A denois-

ing procedure aimed to increase z is required. One diffi-

culty lies in the need to preserve the independence of the

data bins to compare the signal range with the range of

an iid noise sample (we do not know how to estimate

the range of correlated noise). A crude and sufficient

method would consist of reducing the data resolution; to

subsample by a factor m, increases z by the same factor.

Because the data bins remain independent after un-

dersampling, the range test can still be applied on un-

dersampled data. Second, smoothing out the data with a

running window of length m reduces the standard de-

viation of noise by a factor ;m21/2, thus increasing z

by a factor m1/2. Consequently, a simple way to increase

the tnr by a factor m3/2, while keeping the noise uncor-

related, consists of 1) smoothing out the profile with

a running filter of size m and 2) undersampling the

smoothed profile by the same factor m.

The size of the running window (undersampling factor)

must be chosen to optimize the procedure. It is expected

that, above a certain tnr value, the minimum detectable

size of overturn reaches 2 bins. A further downsampling

is useless because a degradation of the vertical resolution

will only lead to an increase of the smallest size of the

detectable overturn. Figure 9 shows the size of the de-

tectable overturn (m) versus the tnr z of the subsampled

data for various initial (raw data) tnr values. An opti-

mum is found for 3 # z # 5.

Based on this empirical result, the HR potential tem-

perature profile has been smoothed out with a 9-point

Hamming window and resampled at a vertical step of

nine bins (0.9 m). This procedure increased z
HR

by a

factor ;93/2 5 27, that is, z
HR

’ 4 (Fig. 10a).

The selected turbulent overturns from the degraded

HR data are shown in Fig. 10d. The contrast with the

results obtained from the LR data (Fig. 8) is striking:

the turbulent fraction is now 47% (27% from the LR

data). A large fraction of small size overturns are se-

lected from the HR data and Thorpe lengths are also

much smaller, ranging from ;5 to 140 m. Although not

surprising in regions where inversions are not detected

from the LR profile (because the resolution of the de-

graded HR data is about 6 times better), overturn sizes

and Thorpe lengths are also observed to be smaller in

the 5–6.5-km altitude domain, where overturns are

detected from both datasets. One also observes that the

thick turbulent patch selected from LR data (from 10.1

to 11.2 km) is now split into several patches, the thicker

one having about 300-m depth. However, the Thorpe

lengths for this large overturn are similar from both

datasets.

FIG. 9. Minimum size of detectable overturn LI (m) vs tnr of filtered and undersampled data

for various initial (raw data) tnr values (indicated by crosses). Here, LI depends upon the initial

vertical resolution dz [LI 5 (n 2 1)dz].
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The large differences in the size of the selected over-

turns are very likely a consequence of the poor precision

in the evaluation of their vertical extent for low tnr data.

The tnr of LR data is so small within the 10–11-km al-

titude domain, zLR ; 1021, that a widening effect due to

the large probability of noise-induced permutations is

likely to occur (see appendix A and Fig. A2). For in-

stance, with z 5 0.1 the probability for a permutation

due to noise between adjacent bins is 0.46 and remains as

large as 0.3 for two bins five steps apart (Fig. A2).

5. Summary and conclusions

The present work was motivated by the need for a

robust procedure applicable to Thorpe analyses aimed

to distinguish real overturns from inversions produced

by instrumental noise. For this purpose, we build a hy-

pothesis test based on the statistics of the data range. The

theory of order statistics was presented by David (1981),

and the fundamentals of the range statistics are recalled

in appendix B.

The procedure for selecting overturns consists of three

steps:

1) We first estimate the bulk tnr [Eqs. (1) and (2)],

which gives an indication on the minimum size (in bin

numbers) for the detectable overturns [Eq. (6) and

Fig. 5]. If this size is too large, a preliminary denoising

procedure is required (section 4c).

2) The Thorpe displacement profile is constructed. The

noise-induced and real inversions are detected within

the profile from the cumulative sum of the Thorpe

displacements.

3) An inversion is selected as an overturn if its range

exceeds a large prescribed percentile of a noise sam-

ple of the same size [(Eq. (7)]. For practical purposes,

we tabulated the moments, as well as various per-

centiles, of the range for normally distributed vari-

ables as a function of the sample size [Table 2 and an

ASCII file (available online at ftp://ftp.aero.jussieu.fr/

pub/os/WN.txt)].

The statistical test was validated through Monte Carlo

simulations for various tnr values and inversion sizes and

by assuming stirred and nonstirred inversions. The prob-

ability for an erroneous selection (type I error) is limited

by a prescribed significance level a, usually 0.05 or 0.01.

The power of the test, that is, the percentage of correctly

detected overturns, is found to be an increasing function

of both the tnr and the size of the inversions (Fig. 5).

The denoising procedure is based on the degradation

of the vertical resolution of the original data. It aims at

FIG. 10. As in Fig. 8, but for the undersampled and filtered HR data.
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increasing the tnr although preserving the independence

of the noise between data bins. The tnr of the degraded

data increases by a factor m3/2, where m is the under-

sampling factor (i.e., the number of bins of the running

filter). The parameter m is constrained by a trade-off

between the desired detectable size of overturns and the

reliability of the selection test (quantified through its

power).

To illustrate our purpose, the selection procedure was

applied to two datasets obtained simultaneously during

a single balloon flight: 1) a low-resolution (LR) profile

with vertical resolution dz 5 6 m and a bulk tnr zLR ; 0.9,

and 2) a high-resolution (HR) profile with dz 5 0.1 m

and zHR ; 0.14. From the LR dataset, the size of de-

tectable overturns with a significance level a 5 0.01 is

n ; 6 bins, that is, 30 m (Fig. 5). For such a size, the

probability of overturn detection, that is, the power of

the test, is about 0.5. A power of 0.95 can be obtained by

increasing the detectable size up to 10 bins (54 m). For

the HR profile, with the same significant level and 0.95

power, the detectable overturns size is n ; 50 (5 m).

Clearly, overturns of a smaller size can be detected

from the HR profile if a denoising procedure is applied.

By degrading the vertical resolution to 0.9 m (m 5 9),

the bulk tnr is increased to z ; 4, which is an optimal

value (Fig. 9). For such a tnr, one can theoretically de-

tect two bins’ overturns (0.9 m) with a high confidence

(Fig. 5).

Major differences in the distribution of sizes of the

selected overturns are observed from these two datasets

(Figs. 8 and 10). Not surprisingly, smaller overturns are

selected from the HR profile, the selected turbulent frac-

tion are almost twice as large (45% versus 27%), with

most of the HR selected overturns being thinner than

100 m. The results demonstrate the importance of HR

measurements with high tnr for determining the turbu-

lent fraction of the atmosphere. The difference in the

size of the overturns selected within the same altitude

domain from both datasets is likely a consequence of the

poor determination of the boundaries of the overturns

(defined as isolated layers) for low tnr conditions (zLR� 1

where overturns are detected). This effect is also visi-

ble from the Monte Carlo simulations; see, for instance,

the relative widening of the detected overturns for low

tnr conditions (Table 1). Consequently, the size distri-

bution of the selected overturns appears to be very sen-

sitive to the tnr of the observations.

The previously described selection procedure provides,

at least theoretically, a way to analyze large datasets to

describe the turbulence climatology in the atmosphere

or in the ocean, as suggested by Clayson and Kantha

(2008). However, the data resolution, as well as the noise

level, both combined in the tnr, are key issues when

applying a Thorpe analysis. A major conclusion of this

work is that the data tnr determines the minimum sizes

of the detectable overturns by a Thorpe analysis. Clearly,

the detected turbulent fraction, as well as the size distri-

bution of the selected overturns, depend heavily on this

parameter.
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APPENDIX A

Probability for a Noise-Induced Permutation

Let us consider a sample fX1, X2, . . . , Xng consisting

of a random noise superimposed to a linear trend. The

ith bin can be expressed as

X
i
5 s

i
1 B

i
5 it 1 B

i
, (A1)

where t is the trend (t 5 si11 2 si), si is the deterministic

signal, and Bi is the noise for the ith bin. We assume

a normally distributed noise (Bi ; N(0, sN)) and t $ 0.

The random variables Xi are independent Xi ; N(it, sN),

with cumulative distribution function (cdf) Fi.

An inversion between consecutive bins (i.e., permu-

tation) occurs if Xi11 , Xi. Let p1 be the probability of

such an inversion, that is, p1 5 Pr[Xi11 , Xi]. Starting

from the conditional probability Pr[Xi11 , xjXi 5 x], p1

reads

p
1

5

ð
x

Pr[X
i11

, xjX
i
5 x] d Pr[X

i
5 x]. (A2)

As Xi 5 it 1 Bi, d Pr[Xi 5 x] 5 d Pr[Bi 5 b] 5 f(b) db, f

is the probability density function (pdf) of noise (Fig. A1).

It then follows that

p
1

5

ð
b

Pr[B
i11

1 t , bjB
i
5 b] d Pr[B

i
5 b]. (A3)

The Bi are independent. Consequently,

Pr[B
i11

1 t , bjB
i
5 b] 5 Pr[B

i11
, (b� t)] 5 F(b� t),

(A4)

where F is the cdf of the noise. Finally, we get
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p
1

5

ð‘

�‘

F(b� t) f (b) db. (A5)

Here, F(b 2 t) is the conditional probability for an in-

version of bins i and i 1 1, given Bi 5 b.

One needs to specify a noise distribution to integrate

(A5). For a normally distributed noise, the cdf F reads

F(b) 5
1

2
1 1 erf

bffiffiffi
2
p

s
N

 !" #
. (A6)

The integration (A5) gives

p
1

5
1

2
1� erf

t

2s
N

� �� �
5

1

2
1� erf

z

2

� �� �
, (A7)

where z 5 t/sN is the trend-to-noise ratio (tnr) (Fig. A2).

The probability p1 thus depends on the tnr z only. The

probability for a permutation between two bins, with

distant k steps apart reads

p
k

5
1

2
1� erf

kz

2

� �� �
. (A8)

For z 5 0, pk 5 ½, and "k, the probability for a per-

mutation with any bin, is ½. If z 6¼ 0, the probability is

a simple function of tnr z and of the distance between

bins expressed in the steps number k. As the probability

for two data bins to permute is a decreasing function of tnr,

the run lengths due to noise must also decrease with tnr.

APPENDIX B

Order Statistics

In this appendix, we recall the basic results of the sta-

tistics of range, as described by David (1981). Sorting the

sample fX1, X2, . . . , Xng gives fX1:n, X2:n, . . . , Xn:ng, Xi:n

defined as the ith order statistics (i 5 1, 2, . . . , n).

a. Independent identically distributed (iid) variables

First, let us consider the case where the n variables are

iid (i.e., t 5 0). Let f and F be the pdf and the cdf of the

sample, respectively. The cdf of the rth sorted variable

Fr:n is obtained by noting that Fr:n(x) is the probability

that at least r of the Xi is less than or equal to x, that is

F
r:n

(x) 5 Pr[X
r:n

# x] 5�
n

i5r

n

i

� �
Fi(x)[1� F(x)]n�i.

(B1)

The pdf is deduced by differentiation:

f
r:n

(x) 5
n!

(r � 1)!(n� r)!
f (x)F(x)r�1[1� F(x)]n�r.

(B2)

FIG. A1. Probability distributions for two consecutive data bins within a linear trend t 5 1. The

conditional probability Pr[Xi11 , xjXi 5 x] is the area of the shaded domain.
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The functions fr:n and Fr:n can easily be numerically

calculated if one specifies the probability distribution of

the sample.

The n range W(n) is defined as the difference between

the maximum and minimum of the values in the n sam-

ple, that is, W(n) 5 Xn:n 2 X1:n. The cdf of the range of

n iid variables is derived by noting that (David 1981)

nf (x) dx[F(x 1 w)� F(x)]n�1 (B3)

is the probability given x that one of the Xi falls into the

interval (x, x 1 dx) and all of the n 2 1 remaining Xi fall

into (x, x 1 w). The resulting cdf FW(w) is obtained by

integrating over x:

F
W

(w) 5 n

ð‘

�‘

f (x)[F(x 1 w)� F(x)]n�1 dx. (B4)

The following pdf fW is deduced:

f
W

(w) 5 n(n� 1)

ð‘

�‘

f (x) f (x 1 w) 3 [F(x 1 w)� F(x)]n�2 dx. (B5)

Figure 3 shows the pdf of the n range for a normally

distributed parent population for n 5 10, 20, and 50. We

used this last expression to numerically compute the var-

ious percentiles of the range for a normally distributed

parent population (Table 2).

b. Non-iid variables

If we now assume that the ith variable has cdf Fi, the

cdf of the rth sorted element reads (e.g., David 1981)

F
r:n

(x) 5 �
n

i5r
�
S

i

P
i

l51
F

j
l
(x) P

n

l5i11
(1� F

j
l
(x)), (B6)

where the summation Si extends over all permutations

j1, j2, . . . , jn of (1, 2, . . . , n), for which j1 , j2 , � � �, ji and

ji11 , � � � , jn. The ensuing complications are consid-

erable. However, this cdf, and the moments, can be

numerically evaluated for a limited number of variables

(say, n # 20) without great difficulties if one assumes

a linear trend (e.g., Robinson-Cox 1992). The moments

of the n range are even functions of the trend t. For any

trend (positive or negative), the n-range expectation is

larger than in case of iid variables (i.e., null-trend case).
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