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We provide in this article a refined functional analysis of the Radon operator restricted to axisymmetric functions, and show that it enjoys strong regularity properties in fractional order Hilbert spaces. This study is motivated by a problem of tomographic reconstruction of binary axially symmetric objects, for which we have available one single blurred and noised snapshot. We propose a variational approach to handle this problem, consisting in solving a minimization problem settled in adapted fractional order Hilbert spaces. We show the existence of solutions, and then derive first order necessary conditions for optimality in the form of optimality systems.

Introduction

Our study is motivated by a physical experiment led at the CEA 1 that consists in reconstructing a three-dimensional binary axially symmetric object from a single X-ray radiography which is moreover blurred and noised. The behavior of some heavy material is studied during an implosion process, and a single radiography is performed during the implosion. At some specific moment, a very brief flash of X-rays is fired from a punctual source through the object and arrives at a detector. Since the object is very dense, X-rays must be of high energy, and many drawbacks appear in practice, causing a high level of blur and noise on the radiograph.

We stress on the fact that we have available only one radiography and thus, in turn, classic methods of tomographic reconstruction used in medicine, optics, geophysics, etc, which are requiring the knowledge of many projections of the object (taken from different angles), do not apply to our context. Furthermore, the objects under consideration are composed of one homogeneous medium, and of some holes. In the mathematical modeling 1 of the problem, this feature turns into a binary constraint which is difficult to handle, and only few results exist in that direction.

It is assumed that, during the implosion, the shape of the object remains axially symmetric, so that, in theory, a single snapshot is enough to reconstruct the whole object. Moreover, since the source is quite far from the object, it is assumed that X-rays are parallel and orthogonal to the symmetry axis of the object. It follows that the Radon transform has a nice expression, derived hereafter. Recall that the aim of radiography is to measure the attenuation of X-rays through the object. Every point of the radiograph, determined by cartesian coordinates (y, z), corresponds to a measure of this attenuation, and the Radon transform of the object is defined by the projection operator

(H 0 ū)(y, z) = R ū(x, y, z)dx, (1) 
where the function ū (with compact support) denotes the density of the object, and x is a coordinate along the rays. Since the objects under consideration are bounded and axially symmetric, we make use of cylindrical coordinates (r, θ, z), where the z-axis corresponds to the symmetry axis. Then, setting ū(x, y, z) = u( x2 + y 2 , z) and H 0 u = H 0 ū, we arrive at

(H 0 u)(y, z) = 2 +∞ |y| u(r, z) r r 2 -y 2 dr, (2) 
for all y, z ∈ R. In the sequel we adopt the following notations and conventions. We assume that the set of density functions is the set of bounded variation functions on R + × R, having a compact support contained in the subset Ω = [0, a) × (-a, a) of R 2 , where a > 0 is fixed, and taking their values in the binary set {0, 1}. In particular, the upper bound of the integral in (2) can be set to a. Notice that, for every density function u, the function H 0 u is of compact support contained in Ω 1 = (-a, a) 2 . It has been shown in [START_REF] Abraham | A penalization approach for tomographic reconstruction of binary radially symmetric objects[END_REF] that H 0 extends to a linear continuous operator from L 2 (Ω) to L 2 (Ω 1 ). However, inverting the operator H 0 requires more differentiability, and it turns out that H -1 0 cannot be extended to a continuous operator from any space L p (Ω 1 ) to any space L q (Ω). 2 This property illustrates the fact that the problem is ill-posed, and the operator is bad-conditioned. Hence, applying the inverse operator to the radiography causes significant errors and leads to a bad reconstruction of the object.

Moreover, as mentioned formerly, due to many drawbacks in the physical experiment, the resulting radiography may be strongly blurred and noised, and actually what we observe on the radiography is

v d = BH 0 u + τ,
that is, the projection of the density of the object, which is moreover blurred and noised.

Here, B is a linear operator representing the effect of the blur. Usually, it is assumed in practice that B is the convolution with a positive symmetric kernel K with compact support and such that Kdµ = 1, and that τ is an additive Gaussian white noise of zero mean. In the sequel, we set H = BH 0 .

To deal with this ill-posed problem, we have proposed in [START_REF] Abraham | A penalization approach for tomographic reconstruction of binary radially symmetric objects[END_REF] a regularization process based on a variational approach. More specifically, let BV (Ω) denote the space of bounded variation functions, defined as the space of functions u ∈ L 1 (Ω) whose distributional gradient Du is a finite vector Radon measure, satisfying

Ω u div ϕ dx = -Du, ϕ = - Ω ϕ • d(Du) = - Ω ϕ • σ u d|Du|,
for every ϕ ∈ C 1 c (Ω, R 2 ), where C 1 c (Ω, R 2 ) denotes the space of continuously differentiable vector functions of compact support contained in Ω, and where σ u : Ω → R 2 is a |Du|measurable function satisfying |σ u | = 1 almost everywhere on Ω. The total variation of u ∈ BV (Ω) is then defined as the total variation of the Radon measure Du, that is, by

Φ(u) = sup Ω u(x) div ϕ(x) dx ϕ ∈ C 1 c (Ω, R 2 ), ϕ L ∞ 1 = Ω |Du| = |Du|(Ω).
Endowed with the norm u BV = u L 1 + Φ(u), the space BV (Ω) is a Banach space.

Since Ω = [0, a) × (-a, a) is bounded and ∂Ω is Lipschitz, functions of BV (Ω) have a trace of class L 1 on the subset

Γ = {a} × (-a, a) ∪ [0, a) × {-a} ∪ [0, a) × {a} (3) 
of ∂Ω, and the trace mapping T : BV (Ω) → L 1 (Γ) is linear and bounded (see [START_REF] Evans | Measure theory and fine properties of functions[END_REF]). The space BV 0 (Ω) is then defined as the kernel of T . It is the space of bounded variation functions on Ω vanishing on Γ, and since T is bounded, it is a Banach space, endowed with the induced norm. Let v d be the projected image (observed data), and let α > 0. Assume that v d ∈ L 2 (Ω 1 ). Since H = BH 0 is a linear continuous operator from L 2 (Ω) to L 2 (Ω 1 ), we have considered in [START_REF] Abraham | A penalization approach for tomographic reconstruction of binary radially symmetric objects[END_REF] the problem of minimizing the functional

u -→ 1 2 Hu -v d 2 L 2 (Ω 1 ) + αΦ(u)
over all functions u ∈ BV (Ω) satisfying u(x) ∈ {0, 1} almost everywhere on Ω. Solutions of that minimization problem can then be proposed as a tomographic reconstruction in our problem. Using a penalization procedure to tackle the nonconvex constraint, we have proposed some numerical methods that however do not provide very satisfactory results, due to the fact that we do not take into account the deep regularity properties of the projection operator.

The Radon transform and its regularity properties have been investigated in a large number of works (see e.g. [START_REF] Ambartsoumian | A range description for the planar circular Radon transform[END_REF][START_REF] Agranovsky | Range descriptions for the spherical mean Radon transform[END_REF][START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF][START_REF] Cuccagna | Sobolev estimates for fractional and singular Radon transforms[END_REF][START_REF] Gérard | A compactness result for generalized Radon transforms[END_REF][START_REF] Greenblatt | A method for proving L p boundedness of singular Radon transforms in codimension one for 1 < p < ∞[END_REF][START_REF] Greenblatt | Metrics and smoothing of translation-invariant Radon transforms along curves[END_REF][START_REF] Helgason | The Radon Transform[END_REF][START_REF] Helgason | Ranges of Radon transforms, Computed tomography[END_REF][START_REF] Hertle | Continuity of the Radon transform and its inverse on Euclidean space Math[END_REF][START_REF] Hertle | On the range of the Radon transform and its dual[END_REF][START_REF] Natterer | Exploiting the ranges of Radon transforms in tomography[END_REF][START_REF] Quinto | Null spaces and ranges for the classical and spherical Radon transforms[END_REF][START_REF] Seeger | Radon transforms and finite type conditions[END_REF] and the references therein), where range characterizations of the Radon transform and their potential applications to tomography are described. Regularity properties are in general derived in the spaces L p ; however, as mentioned above, in our tomography problem the use of Lebesgue spaces does not lead to satisfactory practical results, which incites to derive stronger regularity features, taking into account the specific expression of the Radon transform, so as to propose a minimization problem settled with a more adapted norm.

In the present article, we provide a refined functional analysis of the Radon projection operator H 0 defined by [START_REF] Abramowitz | Handbook of mathematical functions with tables[END_REF], and show that it enjoys strong regularity properties in fractional order Hilbert spaces (Section 2). In turn, we propose in Section 3 a modified minimization problem settled in adapted fractional order Hilbert spaces. We show the existence of solutions, and, using a penalization procedure to deal with the nonconvex binarity constraint, we derive first order necessary conditions for optimality in the form of optimality systems. Since many properties of fractional order Hilbert spaces are used throughout the article, and that not all of them are so standard, we provide in Section 4 an Appendix, gathering different equivalent definitions and characterizations of those spaces, defined on R n or on some bounded subset, in particular in terms of Fourier transform and fractional Laplacian. The development of algorithms based on the theoretical results of this article will be the subject of investigation of a next work.

2 Functional analysis of the projection operator

Preliminaries

Recall that the densities of the objects under consideration are represented by bounded variation functions defined on the set Ω = [0, a) × (-a, a), having a compact support contained in Ω, and taking their values in {0, 1}.

For every function u ∈ BV (Ω), the projection operator is defined by

(H 0 u)(y, z) = 2 a |y| u(r, z) r r 2 -y 2 dr,
for |y| < a and |z| < a. Note that (H 0 u)(y, z) = (H 0 u)(-y, z), for almost all y, z ∈ R.

Notice that, for every u ∈ BV (Ω) having a compact support contained in Ω, extending u by 0 outside Ω, the function H 0 u has a compact support as well, contained in Ω 1 = (-a, a) 2 .

In this section we investigate the regularity of H 0 u. First of all, observe that, for y fixed, the function z → (H 0 u)(y, z) is a bounded variation function on (-a, a), and a stronger regularity property cannot be expected for such functions u. However, since the function (y, z) → H 0 (y, z) is a kind of convolution of the function u with respect to the variable y, more regularity is expected with respect to this variable.

Before stating the main result, we first recall a definition of fractional order Hilbert spaces.

Let U be an open subset of R n . For k ∈ N, the Hilbert space H k (U ) is defined as the space of all functions of L 2 (U ), whose partial derivatives up to order k, in the sense of distributions, can be identified with functions of L 2 (U ). Endowed with the norm

f H k (U ) =   |β| k D β f 2 L p (U )   1/2 , H k (U ) is a Hilbert space. For k = 0, there holds H 0 (U ) = L 2 (U ).
For s ∈ (0, 1), the fractional order Hilbert space H s (U ) is defined as the space of all functions f ∈ L 2 (U ) such that

U ×U |f (x) -f (y)| 2
|x -y| n+2s dx dy < +∞.

Endowed with the norm

f H s (U ) = f 2 L 2 (U ) + U ×U |f (x) -f (y)| 2 |x -y| n+2s dx dy 1/2 , H s (U ) is a Hilbert space.
It is possible to define the Hilbert spaces H s (U ) in other equivalent ways. In particular, the relations with the Fourier transform or with the fractional Laplacian operator are surveyed in the Appendix (Section 4). These characterizations will be used repeatedly throughout the article.

Functional properties of the projection operator

The next theorem is our first main result.

Theorem 1. For every u ∈ BV (Ω), the function (z, y) → (H 0 u)(y, z) belongs to the Banach space BV (Ω 1 ) ∩ L 1 (-a, a; H s (-a, a)), for every s ∈ [0, 1). Moreover, for every s ∈ [0, 1), there exists C > 0 such that, for every u ∈ BV (Ω), there holds

H 0 u BV (Ω 1 ) + H 0 u L 1 (-a,a;H s (-a,a)) C u BV (Ω) ; ( 4 
)
in other words, the operator

H 0 : BV (Ω) -→ BV (Ω 1 ) ∩ L 1 (-a, a; H s (-a, a))
is linear and continuous. For every s ∈ [0, 1), the operator H 0 is linear and continuous as well for the following spaces:

• H 0 : BV 0 (Ω) -→ BV 0 (Ω 1 ) ∩ L 1 (-a, a; H s (-a, a)); • H 0 : L 1 (-a, a; BV (0, a)) -→ BV (Ω 1 ) ∩ L 1 (-a, a; H s (-a, a)); • H 0 : L 1 (-a, a; BV 0 (0, a)) -→ BV 0 (Ω 1 ) ∩ L 1 (-a, a; H s (-a, a)).
Moreover, for s = 1/2, the statements above can be strengthened by replacing H s (-a, a) by the Lions-Magenes space3 H 1/2 00 (-a, a).

In the above statement, the Banach space L 1 (-a, a; BV (0, a)) is endowed with the norm a -a u(•, z) BV (0,a) dz.

The Banach space L 1 (-a, a; BV 0 (0, a)) is a closed subspace of L 1 (-a, a; BV (0, a)) and thus is endowed with the induced norm. Recall that the space BV 0 (Ω) is the space of bounded variation functions of Ω vanishing on the subset Γ defined by [START_REF] Adams | Sobolev spaces[END_REF]. The space BV 0 (0, a) is defined similarly as the space of bounded variation functions on [0, a) vanishing at a.

The Banach space L 1 (-a, a; H s (-a, a)) is endowed with the norm a -a v(•, z) H s (-a,a) dz.

In the inequality (4), the function H 0 u is considered as a function of (z, y) instead of (y, z). The result means in particular that, for almost every z ∈ (-a, a), the function y → (H 0 u)(y, z) belongs to H s (-a, a) for every s ∈ [0, 1), and the resulting function of z is of class L 1 .

Similarly, every u ∈ L 1 (-a, a; BV (0, a)) is considered as a function of (z, r) instead of (r, z); this means that, for almost every z ∈ (-a, a), the function r → u(r, z) belongs to BV (0, a), and the resulting function of z is of class L 1 on (-a, a). Remark 1. It actually follows from the proof below (see Lemma 3 and Remark 3) that BV (Ω) (resp., BV 0 (Ω)) is continuously embedded in L 1 (-a, a; BV (0, a)) (resp., L 1 (-a, a; BV 0 (0, a))).

Remark 2. Theorem 1 and Remark 1 hold as well for the blurred projection operator

H = BH 0 = K ⋆ H 0 .
Proof of Theorem 1. Let us first prove that H 0 is linear and continuous from L 1 (Ω) into L 1 (Ω 1 ).

Lemma 1. For every u ∈ L 1 (Ω), there holds

H 0 u L 1 (Ω 1 ) 2πa u L 1 (Ω) .
Proof of Lemma 1. For every z ∈ (-a, a), one has Integrating with respect to z, the result follows.

We next prove that H 0 is linear and continuous from BV (Ω) into BV (Ω 1 ).

Lemma 2. There exists C 0 > 0 such that H 0 u BV (Ω 1 )

C 0 u BV (Ω) , for every u ∈ BV (Ω).

Proof of Lemma 2. Using Lemma 1, it suffices to prove the existence of a constant C 0 > 0 such that

Ω 1 (H 0 u)(y, z) div ξ(y, z) dy dz C 0 u BV (Ω) ξ L ∞ (Ω 1 ) ,
for every u ∈ BV (Ω) and every ξ = (ξ 1 , ξ 2 ) ∈ C 1 c (Ω 1 , R 2 ). Using Fubini's Theorem, one has An easy computation shows that

ϕ 1 (r, z) = 2 r -r y r 2 -y 2 ξ 1 (y, z) dy.
The function ϕ is of class C 1 , but is not of compact support contained in Ω. Hence, we must take into account the trace of u on ∂Ω. Recall that, since Ω is bounded and ∂Ω is Lipschitz, functions of BV (Ω) have a trace on ∂Ω of class L 1 , and we denote by T ∂Ω : BV (Ω) → L 1 (∂Ω) the corresponding bounded linear trace mapping (see [START_REF] Evans | Measure theory and fine properties of functions[END_REF]). Using Green's formula, one has

Ω u(r, z) div ϕ(r, z) dr dz = - Ω ϕ • d(Du) + ∂Ω (ϕ.ν) T ∂Ω u dλ,
where ν denotes the outer unit normal on ∂Ω, and λ denotes the standard one-dimensional Lebesgue measure (note that ∂Ω is made of four segments). The first integral is bounded by

Ω ϕ • d(Du) = Ω ϕ • σ u d|Du| ϕ L ∞ |Du|(Ω) ϕ L ∞ (Ω) u BV (Ω) ,
and the second integral is bounded by

∂Ω (ϕ.ν) T ∂Ω u dλ C T ϕ L ∞ (∂Ω) u BV (Ω) ,
where C T > 0 is the norm of the trace operator T ∂Ω . Clearly, there exists

C 1 > 0 such that ϕ L ∞ (Ω) + ϕ L ∞ (∂Ω) C 1 ξ L ∞ (Ω 1 )
.

The proof follows. Proof. The proof of this lemma is actually contained in [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] (see also [12, Theorem 2 page 220]), however since this result is used repeatedly in the proof of the theorem, we provide a proof for the convenience of the reader.

First of all, since g ∈ L 1 (O), it follows from Fubini's Theorem that [START_REF] Evans | Measure theory and fine properties of functions[END_REF]). Note that, since

g x ∈ L 1 (c, d) for almost every x ∈ (a, b). Recall that W 1,1 (O) is dense in BV (O) in the sense of the intermediate convergence, that is, there exists a sequence of functions g k ∈ W 1,1 (O) such that g k converges to g in L 1 (O) and |Dg k |(O) → |Dg|(O) (see e.g.
g k ∈ W 1,1 (O), there holds Dg k = ∇g k and |Dg k |(O) = O ∇g k (x, y) dx dy.
From this result, we deduce two properties. First, we infer that there exists a subsequence (g x ϕ(k) ) of the sequence of functions g x k : y → g k (x, y) that converges to g x : y → g(x, y) in L 1 (c, d), for almost every x ∈ (a, b) (with ϕ independent on x). Indeed, since g k converges to g in L 1 (O), denoting h k (x) = i.e., h k converges to 0 in L 1 (a, b). Therefore, there exists a subsequence of (h k ) converging almost everywhere to 0 on (a, b). In other words, a subsequence of (g x k ) converges to

g x in L 1 (c, d), for almost every x ∈ (a, b).
Second, we infer that lim inf In the sequel, we denote by F y v the Fourier transform of an integrable function v : R × R → R with respect to the first variable, that is,

(F y v)(ξ, z) = R v(y, z)e -2iπyξ dy, for all ξ, z ∈ R.
Recall, for every u ∈ L 1 (Ω), the function H 0 u is of compact support contained in Ω 1 . In the lemma below, and in the sequel, u (resp. H 0 u) denotes the extension by 0 to R 2 of the function u (resp. H 0 u). Similarly, we denote by H 0 the operator defined by H 0 u = H 0 u, for every u ∈ L 1 (Ω). Lemma 4. There holds

(F y H 0 u)(ξ, z) = 2π a 0 r u(r, z)J 0 (2πξr) dr, (6) 
for every u ∈ L 1 (Ω), every ξ ∈ R and almost every z ∈ R, where J 0 is the Bessel function of the first kind defined by

J 0 (x) = 2 π 1 0 cos(tx) √ 1 -t 2 dt. (7) 
The adjoint of F y H 0 (with L 2 as a pivot space) is given by

((F y H 0 ) * v)(r, z) = 2πr R v(ξ, z)J 0 (2πξr) dξ, (8) 
for every v ∈ L 1 (R 2 ), every r ∈ [0, a) and almost every z ∈ (-a, a).

Proof. Applying Fubini's Theorem, we compute, for every ξ ∈ R and almost every z ∈ (-a, a),

(F y H 0 u)(ξ, z) = a -a H 0 u(y, z)e -2iπyξ dy = 2 a -a a |y| u(r, z) r r 2 -y 2 e -2iπyξ dr dy = 2 a 0 r -r u(r, z) r r 2 -y 2 e -2iπyξ dy dr = 2 a 0 ru(r, z) 1 -1 1 √ 1 -t 2 e -2iπrtξ dt dr = 2 a 0 ru(r, z)ν(rξ)dr where ν(t) = 1 √ 1 -t 2 1 [-1,1] (t),
and ν is the Fourier transform of the function ν. The function ν can be computed using the Bessel function of the first kind J 0 defined by [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF] (see [START_REF] Abramowitz | Handbook of mathematical functions with tables[END_REF]). Since ν is even, its Fourier transform is

ν(ω) = 2 1 0 cos(2πωt) √ 1 -t 2 dt = πJ 0 (2πω),
and the formula (6) follows. Let us now compute the adjoint of F y H 0 , with L 2 as a pivot space. For every v ∈ L 1 (R 2 ) and every u ∈ L ∞ (Ω), we have

(F y H 0 ) * v, u = v, F y H 0 u = R R v(ξ, z)F y H 0 u(ξ, z) dξ dz = 2π R R a 0 r u(r, z)v(ξ, z)J 0 (2πξr) dr dξ dz = 2π a 0 R r u(r, z) R v(ξ, z)J 0 (2πξr) dξ dz dr and hence (F y H 0 ) * v(r, z) = 2πr R v(ξ, z)J 0 (2πξr) dξ.
To prove the theorem, we next make use of the asymptotic properties of the Bessel functions J 0 and J 1 , where the function J 1 is defined by

J 1 (x) = x √ πΓ(3/2) 1 0 cos(tx) 1 -t 2 dt. Recall that |J 0 (x)| 1, |J 1 (x)| 1 √ 2 , (9) 
J ′ 0 (x) = -J 1 (x), d dx (xJ 1 (x)) = xJ 0 (x), (10) 
for every x ∈ R, and

|J 1 (x)| 1 √ x (11) 
as x → +∞ (see e.g. [START_REF] Abramowitz | Handbook of mathematical functions with tables[END_REF]).

Lemma 5. There exists C 2 > 0 (only depending on a) such that, for every u ∈ L 1 (-a, a; BV (0, a)), there holds

(F y H 0 u)(ξ, z) C 2 (1 + ξ 2 ) 3/4 |u z (a)| + u z L 1 (0,a) + |Du z |(0, a) , (12) 
for every ξ ∈ R and almost every z ∈ (-a, a).

In the above statement, recall that u ∈ L 1 (-a, a; BV (0, a)) is seen as a function of (z, r); in particular, for almost every z ∈ (-a, a), the function r → u z (r) = u(r, z) is of bounded variations on [0, a), and its total variation is denoted |Du z |(0, a). Also, note that u z (a) exists for almost every z ∈ (-a, a).

Proof of Lemma 5. Using the formula ( 6) and the estimate [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF], it is first clear that

(F y H 0 u)(ξ, z) 2πa u z L 1 (0,a) , (13) 
for every ξ ∈ R and almost every z ∈ (-a, a). From ( 10), there holds

d dr (2πξrJ 1 (2πξr)) = (2πξ) 2 rJ 0 (2πξr),
and, using Green's formula (integration by parts), one gets, for every ξ = 0 and almost every z ∈ (-a, a) (such that u z (a) exists),

(F y H 0 u)(ξ, z) = 1 2πξ 2 a 0 u z (r)(2πξ) 2 rJ 0 (2πξr) dr = a ξ J 1 (2πξa)u z (a) - 1 ξ [0,a] rJ 1 (2πξr) d(Du z ) (14) 
and hence, using [START_REF] Engel | A short course on operator semigroups[END_REF], it follows that

(F y H 0 u)(ξ, z) 1 |ξ| 3/2 a 2π (|u z (a)| + |Du z |(0, a)) (15) 
as |ξ| → +∞. The estimate [START_REF] Evans | Measure theory and fine properties of functions[END_REF] finally follows from ( 13) and [START_REF] Greenblatt | Metrics and smoothing of translation-invariant Radon transforms along curves[END_REF].

We are now in a position to estimate H 0 u L 1 (-a,a;H s (-a,a)) . Using [START_REF] Evans | Measure theory and fine properties of functions[END_REF], it first follows that, for almost every z ∈ (-a, a), the H s norm of the function y → ( H 0 u)(y, z) is estimated by4 

( H 0 u)(•, z) H s (R) = R (1 + ξ 2 ) s |(F y H 0 u)(ξ, z)| 2 dξ 1/2 C 2 |u z (a)| + u z L 1 (0,a) + |Du z |(0, a) R (1 + ξ 2 ) s-3/2 dξ 1/2 . The integral R (1 + ξ 2 ) s-3/2 dξ converges if and only if 2s -3 < -1, that is, s < 1. It follows that, for almost every z ∈ (-a, a), the function y → ( H 0 u)(y, z) belongs to H s (R), for every s ∈ [0, 1).
Now, for almost every z ∈ (-a, a), the function y → (H 0 u)(y, z) is the restriction to (-a, a) of the function y → ( H 0 u)(y, z) (which is by definition equal to 0 outside (-a, a)). It then follows from the characterization of fractional Hilbert spaces on a subset by the quotient norm (see Appendix, Section 4.2.1) that this function belongs to H s (-a, a), for every s ∈ [0, 1), and that, up to some constant, (

H 0 u)(•, z) H s (-a,a) ( H 0 u)(•, z) H s (R)
, for almost every z ∈ (-a, a). Hence, for every s ∈ [0, 1), there exists C 3 > 0 such that, for every u ∈ L 1 (-a, a; BV (0, a)), there holds

H 0 u(•, z) H s (-a,a) C 3 |u z (a)| + u z L 1 (0,a) + |Du z |(0, a) , (16) 
for almost every z ∈ (-a, a). As a byproduct, note that the function y → H 0 u(y, z), defined on (-a, a), can be extended (by 0) to a function of H s (R), for every s ∈ [0, 1), for almost every z ∈ (-a, a). It follows from [START_REF] Tartar | An introduction to Sobolev spaces and interpolation spaces[END_REF]Lemma 37.1] (see results recalled in Appendix, Section 4.2.1) that the function y → ρ(y) -s H 0 u(y, z) belongs to L 2 (-a, a), where ρ denotes the distance to the boundary of (-a, a), that is, ρ(y) = a -|y| for every y ∈ (-a, a). In turn, for s = 1/2, the function y → H 0 u(y, z) belongs to the Lions-Magenes space H 1/2 00 (-a, a) (see Appendix, Section 4.2.2), for almost every z ∈ (-a, a).

Integrating [START_REF] Helgason | The Radon Transform[END_REF] with respect to z leads to

H 0 u L 1 (-a,a;H s (-a,a)) C 3 a -a |u(a, z)| dz + u L 1 (Ω) + a -a |Du z |(0, a) dz . ( 17 
)
This inequality implies the remaining items of the theorem. Indeed, let us first consider functions u ∈ BV (Ω). It has already been mentioned that the trace operator is continuous from

BV (Ω) into L 1 (∂Ω), hence it follows that a -a |u(a, z)| dz C 4 u BV (Ω) (18) 
for some constant C 4 > 0. Moreover, from Lemma 3, there holds

a -a |Du z |(0, a) dz |Du|(Ω). (19) 
The estimate (4) follows from ( 17), ( 18), [START_REF] Hertle | On the range of the Radon transform and its dual[END_REF], and Lemma 2.

The other items follow similarly. This ends the proof of the theorem.

Theorem 1 states a strong functional property of the projection operator, which is however not very suitable in view of a variational approach. In order to derive necessary conditions for optimality, it would be better to establish functional properties of H 0 in some Hilbert spaces. This is the object of the next section.

Hilbertian functional properties of the projection operator

We have already mentioned that we handle functions of bounded variation on Ω that take their values in {0, 1} almost everywhere. Denote by BV (Ω, {0, 1}) the set of such functions. First of all, notice that such functions belong to L 1 (-a, a; BV ([0, a), {0, 1})), as already mentioned in Remarks 1 and 3; they also share the following property. Lemma 6. For every u ∈ BV (Ω, {0, 1}), the function (z, r) → u(r, z) belongs to the Banach space L 1 (-a, a; H s (0, a)), for every s ∈ [0, 1/2).

Proof of Proposition 6. Let u ∈ BV (Ω, {0, 1}). As mentioned above, from Lemma 3, the function u z : r → u z (r) = u(r, z) is of bounded variation on [0, a), for almost every z ∈ (-a, a). Since u z takes its values in {0, 1}, its set of discontinuities is finite. It follows that, for almost every z ∈ (-a, a), there exist an integer n z and real numbers (α i )

1 i nz , (β i ) 1 i nz satisfying 0 α 1 < β 1 < α 2 < β 2 < • • • < α nz < β nz a, such that u z (r) = nz i=1 1 [α i ,β i ] (r), (20) 
for almost every r ∈ [0, a). Note that the total variation of the function

u z is [0,a) |Du z | = 2n z . From Lemma 3, there holds Ω |Du| 2 a -a n z dz,
and hence the function z → n z belongs to L 1 (-a, a).

The function u z is extended by 0 outside [0, a), into a function u z ∈ L 1 (R). Using [START_REF] Lions | Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs[END_REF], one easily computes, for almost every z ∈ (-a, a), the Fourier transform of u z as

(F u z )(ξ) = nz i=1 sin(π(β i -α i )ξ) πξ e -iπ(β i +α i )ξ ,
for every ξ ∈ R. In particular, there holds

|(F u z )(ξ)| nz i=1 |β i -α i | a, (21) 
for every ξ ∈ R, and

|(F u z )(ξ)| n z π|ξ| , (22) 
for every ξ ∈ R \ {0}. Using the definition of the H s norm in terms of Fourier transform (recalled in the Appendix, Section 4.1.1), and using ( 21) and ( 22), one has the estimate

u z 2 H s (R) = R (1 + ξ 2 ) s |F u z (ξ)| 2 dξ = |ξ| 1 (1 + ξ 2 ) s |F u z (ξ)| 2 dξ + |ξ| 1 (1 + ξ 2 ) s |F u z (ξ)| 2 dξ |ξ| 1 (1 + ξ 2 ) s n 2 z π 2 ξ 2 dξ + |ξ| 1 (1 + ξ 2 ) s a 2 dξ which is convergent if s < 1/2. Hence u z ∈ H s (R),
for almost every z ∈ (-a, a) and every s ∈ [0, 1/2). Since u z is the restriction of u z to (0, a), it follows, using the definition of H s (0, a) in terms of quotient norm (see Appendix, Section 4.2.1), that u z ∈ H s (0, a), for almost every z ∈ (-a, a) and every s ∈ [0, 1/2). Moreover, there exists a constant C > 0, depending only on s and a, such that u z H s (0,a) Cn z .

Since the function z → n z belongs to L 1 (-a, a), we infer that the function (z, r) → u(r, z) belongs to L 1 (-a, a; H s (0, a)), for s ∈ [0, 1/2).

To comply with the variational approach that we propose next, it would be better to deal with Hilbert spaces and, for instance, to replace L 1 with L 2 in the previous statements. Unfortunately, we have the following negative remark.

Remark 4. There exist some functions u ∈ BV (Ω, {0, 1}) such that the function (z, r) → u(r, z) does not belong to L 2 (-a, a; BV (0, a)).

Let us provide an example of such a function 5 . Consider in the plane, endowed with coordinates (x, y), the unit square [0, 1] × [0, 1]. We append to this square, on its right side, the two smaller squares

1, 1 + 1 4 × 1, 1 4 and 1, 1 + 1 4 × 3 4 , 1 .
Then, we apply a similar appending procedure to each of these latter squares, and so forth, iteratively. We obtain a fractal object (see Figure 1). Then, we claim that the function u Indeed, the L 1 norm of u is the sum of the areas of all squares, that is

+∞ k=0 2 k 1 4 k 2 = +∞ k=0 1 2 k < +∞.
To prove that u ∈ BV ([0, 2] × [0, 1], {0, 1}), it suffices to show that the marginal functions u x : y → u(x, y) and u y : x → u(x, y) are of bounded variation (see [12, Theorem 2 page 220]). This property is obvious, since for any y the marginal functions u y have at most one jump, and for every x the marginal functions u x have a finite number n x of jumps. More precisely,

n x =      2 k if 1 + k-1 i=1 1 4 i x 1 + k i=1 1 4 i , ∀k 1, 0 otherwise.
There holds

2 0 n x dx = +∞ k=1 2 k 4 k = +∞ k=1 1 2 k < +∞,
that is, the function x → n x belongs to L 1 (0, 2), as expected (see Proposition 6 and its proof), however it does not belong to L 2 (0, 2) since

2 0 n 2 x dx = +∞ k=1 (2 k ) 2 4 k = +∞ k=1 1 = +∞.
This example shows that the functions considered in our framework, belonging to BV (Ω, {0, 1}), do not necessarily belong to the Banach space L 2 (-a, a; BV (0, a)).

In what follows, we are however going to work within this latter space. More precisely, since our functions vanish on the set Γ defined by (3), we are going to work within the space L 2 (-a, a; BV 0 (0, a)). Indeed, this Banach space is better suited for our tomography problem, because we are able to prove that the projection operator H 0 is linear and continuous from L 2 (-a, a; BV 0 (0, a)) into the Hilbert space L 2 (-a, a; H s (-a, a)), for every s ∈ [0, a) (see Theorem 2 further). The Hilbert space L 2 (-a, a; H s (-a, a)) is then far more suitable for numerical purposes than the Banach space L 1 (-a, a; H s (-a, a)), and the use of a scalar product makes easier the derivation of an optimality system (first order necessary conditions for optimality).

Hence, although the space L 2 (-a, a; BV 0 (0, a)) differs from the usual space BV 0 (Ω), it happens to be relevant in our problem. Actually, in practice, the binary functions considered in our imaging process belong to the space L ∞ (-a, a; BV 0 (0, a)) (and thus, a fortiori, to L 2 (-a, a; BV 0 (0, a))). Indeed, in practice the functions z → n z are uniformly bounded with respect to z ∈ (-a, a). Concretely, this means that the number of jumps of our binary images is uniformly bounded in every direction.

The next theorem, which is our second main result, provides nice functional properties of the projection operator H 0 in this new framework. We first give some notations. Denote by

X = L 2 (-a, a; BV 0 (0, a)), (23) 
the set of all functions u ∈ L 2 (Ω) such that the function (z, r) → u(r, z) belongs to L 2 (-a, a; BV 0 (0, a)). Recall that BV 0 (0, a) is the closed subset of the set of functions f ∈ BV (0, a) vanishing at a; the total variation, which is a semi-norm, is a norm on BV 0 (0, a). It follows that the space X is a closed subspace of the Banach space L 2 (-a, a; BV (0, a)), and can be endowed with the norm

u X = a -a (|Du z |(0, a)) 2 dz 1/2 . ( 24 
)
Recall that, for s 0, H s 0 (-a, a) is defined as the closure in H s (-a, a) of the set of all smooth functions having a compact support contained in (-a, a). Note that, for s ∈ [0, 1/2], there holds H s 0 (-a, a) = H s (-a, a) (see Appendix, Section 4). For every s ∈ [0, 1), s = 1/2, denote by

Y s = L 2 (-a, a; H s 0 (-a, a)), (25) 
the set of all functions v ∈ L 2 (Ω 1 ) such that the function (z, y) → v(y, z) belongs to L 2 (-a, a; H s 0 (-a, a)). It is a closed subspace of L 2 (-a, a; H s (-a, a)), and, endowed with the norm

v Ys = a -a v(•, z) 2 H s (-a,a) dz 1/2 , ( 26 
)
Y s is a Hilbert space. For s = 1/2, define, similarly, the Hilbert space

Y 1/2 = L 2 (-a, a; H 1/2 00 (-a, a)). ( 27 
)
Theorem 2. For every s ∈ [0, 1), the operator H 0 is linear and continuous from X into Y s .

Remark 5. Theorem 2 holds as well for the blurred projection operator

H = BH 0 = K ⋆ H 0 .
Proof of Theorem 2. Using the reasoning of the proof of Theorem 1, the inequality [START_REF] Helgason | The Radon Transform[END_REF] implies that, for every u ∈ L 2 (-a, a; BV 0 (0, a)),

H 0 u(•, z) H s (-a,a) C 3 u z L 1 (0,a) + |Du z |(0, a) ,
for almost every z ∈ (-a, a). Integrating with respect to z the square of this inequality leads to the result.

3 Variational approach for tomographic reconstruction

Minimization problem in fractional Sobolev spaces

Let v d be the projected image (observed data), and let α > 0. As explained in Section 1, we have proposed in [START_REF] Abraham | A penalization approach for tomographic reconstruction of binary radially symmetric objects[END_REF] an approach for tomographic reconstruction based on the consideration of the minimization problem

     min F (u), with F (u) = 1 2 Hu -v d 2 L 2 (Ω 1 ) + αΦ(u), u ∈ BV (Ω), u(r, z) ∈ {0, 1} a.e. on Ω.
Note that the pointwise constraint, u(r, z) ∈ {0, 1} a.e. on Ω, is a very hard constraint. The constraint set is not convex and its interior is empty for most usual topologies.

Based on the functional analysis of Section 2, we propose here to define the functional to be minimized in another way, according to the regularity properties proved in Theorems 1 and 2. In view of deriving an optimality system and taking benefit of some Hilbertian structure, we use the results of Theorem 2 and Remark 5, according to which the blurred projection operator H is linear and continuous from X into Y s , for every s ∈ [0, 1). Assuming that v d ∈ Y s (observed data), we are led to consider the minimization problem

(P s 1 )          min F s 1 (u), with F s 1 (u) = 1 2 Hu -v d 2 Ys + αΦ(u), u ∈ BV (Ω) ∩ X, u X η, u(r, z) ∈ {0, 1} a.e. on Ω,
where s ∈ [0, 1) and α > 0 are fixed parameters, and η > 0 is a fixed (large) real number. The constraint u X η happens to be necessary in order to derive an existence theorem. For η large enough, this constraint is however not active 6 and does not change anything to the above minimization problem.

The parameter α > 0 is the weight of the total variation. This term is a usual regularization term in image processing. In our framework there is however another possibility, namely, we can replace this term with a regularization term involving the norm of X. In that case, we rather consider the minimization problem

(P s 2 )      min F s 2 (u), with F s 2 (u) = 1 2 Hu -v d 2 Ys + α 2 u 2 X , u ∈ X, u(r, z) ∈ {0, 1} a.e. on Ω.
Note that, in the latter minimization problem, the use of η > 0 is not needed. Theorem 3. For all s ∈ [0, 1), α > 0 and η > 0, the minimization problems (P s 1 ) and (P s

2 ) admit at least one solution. Proof. Let s ∈ [0, 1), α > 0 and η > 0 be fixed. Let (u n ) be a minimizing sequence in BV (Ω) ∩ X of the minimization problem (P s 1 ), satisfying u n X η and u n (x) ∈ {0, 1} almost everywhere on Ω. Then, the sequences ( Hu n -v d Ys ) n∈N , (Φ(u n )) n∈N and ( u n X ) n∈N are bounded, and we deduce three things.

First, the sequence (Hu n ) n∈N is bounded in the Hilbert space Y s , and therefore, up to a subsequence it converges weakly to some w ∈ Y s ; in particular, using the continuous embedding of BV (-a, a) in L 2 (-a, a), it converges as well to w, up to some subsequence, for the weak topology of L 2 (Ω 1 ).

Second, the sequence (u n ) n∈N is bounded in BV (Ω) ∩ L ∞ (Ω), and hence, up to a subsequence, it converges to some u ∈ BV (Ω) ∩ L ∞ (Ω) for the weak-star topology, i.e., up to a subsequence, (u n ) n∈N converges strongly to some u ∈ L 1 (Ω) and (Du n ) n∈N converges to Du in the space of Radon measures for the weak-star topology.

Third, the sequence (u n ) n∈N is bounded in X (by η). The space X inherits of the weak compactness properties of L 2 and BV ; hence, the sequence (u n ) n∈N converges, up to a subsequence, to some ū ∈ X for the weak-star topology, and the lower semi-continuity of the norm yields the inequality ū X η. In particular, (u n ) n∈N converges weakly to ū in L 2 (Ω), and thus ū = u.

From Theorem 2, the operator H is linear and continuous from X into Y s . Hence, up to a subsequence, (Hu n ) n∈N converges weakly to Hu in Y s . It follows that w = Hu.

Since Φ is lower semi-continuous with respect to the weak-star topology, there holds

Φ(u) lim inf n→∞ Φ(u n ).
Using the weak convergence, up to a subsequence, of (Hu n ) n∈N to Hu in Y s , we infer that

inf F s 1 = lim n→+∞ 1 2 Hu n -v d 2 Ys + αΦ(u n ) Hu -v d 2 Ys + αΦ(u) = F s 1 (u),
and hence F s 1 (u) = inf F s 1 . Finally, (u n ) converges to u in L 1 (Ω), and thus, converges almost everywhere (up to a subsequence) to u. Hence, the pointwise constraint u(x) ∈ {0, 1} is satisfied almost everywhere, and therefore u is a solution of (P s 1 ). For the minimization problem (P s 2 ), the proof is similar but simpler.

Penalization of the binarity constraint

Due to the binarity constraint, u(r, z) ∈ {0, 1} a.e. on Ω, which is not convex and is of empty interior for most usual topologies, the minimization problems (P s 1 ) and (P s 2 ) are not directly tractable for numerical purposes. To deal with the binarity constraint, we propose as in [START_REF] Abraham | A penalization approach for tomographic reconstruction of binary radially symmetric objects[END_REF] a penalization method. Let ε > 0, β 0, and let ūs i be a solution of (P s i ), for i = 1, 2. Define

F s i,ε (u) = F s i (u) + 1 2ε u -u 2 2 L 2 (Ω) + β 2 u -ūs i 2 L 2 (Ω) ,
for i = 1, 2, and consider the penalized minimization problems

(P s 1,ε )        min F s 1,ε (u) u ∈ BV (Ω) ∩ X, u X η, u L ∞ (Ω) η, and 
(P s 2,ε )    min F s 2,ε (u) u ∈ X, u L ∞ (Ω) η.
Actually in what follows η is chosen large enough, and the resulting constraint should not be active. This constraint is however necessary in order to derive existence results, but does not affect the numerical process. In the sequel we do not mention the dependence of the penalized problems (P s i,ε ), i = 1, 2 with respect to the parameter η that can be chosen as large as desired but is fixed. A contrario the penalization parameter ε will tend to 0. The term β 2 u -ūs i 2

L 2 (Ω) is an additional penalization term permitting to focus, from the theoretical point of view, on a particular solution ūs i of (P s i ). In practice, the solution ūs i is of course not known and we choose β = 0.

Theorem 4. The penalized minimization problem (P s i,ε ) has at least one solution u s i,ε , for i = 1, 2.

Proof. Let (u n ) n∈N be a minimizing sequence of the minimization problem (P s 1,ε ). First, in particular, the sequence (u n ) n∈N is bounded in BV (Ω) and in L ∞ (Ω), and thus, up to a subsequence, converges to some u s 1,ε ∈ BV (Ω) for the weak-star topology, and hence for the strong L 1 (Ω) topology. Since it is moreover bounded (by η) in L ∞ (Ω), it follows from the Lebesgue dominated convergence theorem that the convergence holds for the strong topology of L p (Ω), for every p ∈ [1, +∞). In addition, since every closed ball of L ∞ (Ω) is compact for the L ∞ weak star topology, we infer that u s 1,ε η. The rest of the proof is similar to the proof of Theorem 3. For the minimization problem (P s 2,ε ), the proof is similar but simpler.

Theorem 5. 1. Every cluster point u * 1 in BV (Ω) ∩ X of the family (u s 1,ε ) at ε = 0 is a solution of (P s 1 ), and every cluster point u * 2 in X of the family (u s 2,ε ) at ε = 0 is a solution of (P s 2 ). If moreover β > 0 then u * i = ūs i , for i = 1, 2.

2. There holds lim ε→0

F s i,ε (u i,ε ) = inf F s i , and lim ε→0 Ω |Du s 1,ε | = Ω |Du * 1 |.
Proof. Since ūs 1 ∈ BV (Ω) is a solution of (P s 1 ), one has

F s 1,ε (u s 1,ε ) F s 1,ε (ū s 1 ) = F s 1 (ū s 1 ) = inf F s
1 , for every ε > 0. Therefore, the family (u s 1,ε ) is bounded in BV (Ω), and u s 1,ε -(u s 1,ε ) 2 L 2 (Ω) tends to 0 as ε tends to 0. Let u * 1 be a (strong) cluster point of (u s 1,ε ) in BV (Ω) ∩ X of the family (u s 1,ε ) at ε = 0. Using the same reasoning as in the proof of Theorem 4, it follows that u * 1 is a (strong) cluster point of (u s 1,ε ) in L p (Ω), for every p ∈ [1, +∞). Then,

u * 1 -(u * 1 ) 2 L 2 (Ω) lim inf ε→0 u s 1,ε -(u s 1,ε ) 2 L 2 (Ω) = 0, so that u * 1 (1 -u * 1 )
= 0 almost everywhere on Ω, which is the binarity constraint. Since

F s 1 (u 1,ε ) + β u s 1,ε -ūs 1 2 2 F s 1,ε (u s 1,ε ) inf F s 1 , one gets F s 1 (u * 1 ) F s 1 (u * 1 ) + β u * 1 -ūs 1 2 2 inf F s 1 . Therefore u * 1 is a solution of (P s 1 ). In addition, if β > 0, then u * 1 = ūs 1 . Finally, since inf F s 1 = F s 1 (u * ) F s 1,ε (u * ) lim inf F s 1,ε (u s 1,ε ) inf F s 1 , (since F s 1,ε (u s 1,ε ) inf F s 1 ,) it follows that lim ε→0 F s 1,ε (u s 1,ε ) = inf F s 1 . Moreover, writing lim inf ε→0 F s 1 (u s 1,ε ) + lim sup ε→0 1 ε u s 1,ε -(u s 1,ε ) 2 2 2 lim ε→0 F s 1 (u s 1,ε ) + 1 ε u s 1,ε -(u s 1,ε ) 2 2 2 = F s 1 (u * 1 ) lim inf ε→0 F s 1 (u s 1,ε ), it follows that lim ε→0 1 ε u s 1,ε -(u s 1,ε ) 2 2
2 = 0, and then that lim

ε→0 F s 1 (u s 1,ε ) = F s 1 (u * 1 
). The conclusion follows then from the continuity properties of H.

The proof is similar for the family (u s 2,ε ).

Optimality system of the penalized minimization problems

This section is devoted to the derivation of first order necessary conditions for the penalized minimization problems (P s i,ε ), i = 1, 2. Throughout the section, let s ∈ [0, 1), α > 0, η > 0, ε > 0 and β 0 be fixed. Denote by

V i = BV (Ω) ∩ X if i = 1, X if i = 2, J i (u) = Φ(u) if i = 1, 1 2 u 2 X if i = 2,
and

B η = {u ∈ BV (Ω) ∩ X | u X η and u L ∞ (Ω) η} if i = 1, {u ∈ X | u L ∞ (Ω) η} if i = 2. For i = 1, 2, for every u ∈ V i ∩ B η , define G s (u) = 1 2 Hu -v d 2 Ys ,
and

G s i,ε (u) = G s (u) + 1 2ε u -u 2 2 L 2 (Ω) + β 2 u -ūs i 2 L 2 (Ω) .
With these notations, one has

F s i (u) = G s (u) + αJ i (u), F s i,ε (u) = G s i,ε (u) + αJ i (u)
, for i = 1, 2, and the penalized minimization problem (P s i,ε ) is the problem of minimizing the functional F s i,ε over all functions u ∈ B η ∩ V i . Denote by u s i,ε a solution of the minimization problem (P s i,ε ), for i = 1, 2. The functional F s i,ε is not differentiable, due to the term J i that involves a total variation. However the functional G s i,ε is differentiable, for i = 1, 2, and

∇G s i,ε (u) = ∇G s (u) + q ε (u) + β(u -ūs i ),
for the pivot space L 2 , where

q ε (u) = (u -u 2 )(1 -2u) ε , (28) 
for every u ∈ V i .
In what follows, we first provide an expression of the differential of G s in terms of Fourier transform (Section 3.3.1), and then using the fractional Laplacian operator or the fractional Dirichlet Laplacian operator (Section 3.3.2). Then, using results of nonsmooth analysis to deal with the nonsmooth character of the functional J i , we derive first order necessary conditions in terms of optimality systems for both penalized minimization problems (P s i,ε ), i = 1, 2 (Sections 3.3.3 and 3.3.4).

Computation of ∇G s in terms of Fourier transform

Recall that G s (u) = 1 2 Hu -v d 2 
Ys , with Y s defined by ( 25) and [START_REF] Triebel | Theory of function spaces[END_REF]. Using the results recalled in the Appendix (Sections 4.2.1 and 4.2.2), for every s ∈ [0, 1), for every u ∈ Y s , the function Hu -v d can be extended by 0 to a function of L 2 (-a, a; H s (R), and its norm can be computed in terms of Fourier transform, by

G s (u) = 1 2 a -a R |F y (Hu -v d )(ξ, z)| 2 (1 + ξ 2 ) s dξ dz = 1 2 F y (Hu -v d ) 2 L 2 (ωs) ,
where L 2 (ω s ) is the weighted Hilbertian space of all complex valued functions f defined on R × (-a, a) such that

R×(-a,a) |f (ξ, z)| 2 ω s (ξ) dξ dz < +∞,
where

ω s (ξ) = (1 + ξ 2 ) s . ( 29 
)
Setting

w d = H -1 (v d ), we get finally ∇G s (u) = (F y H) * ω s (F y H)(u -w d ), ( 30 
)
with L 2 as a pivot space.

To make this expression more explicit, we next compute the Fourier transform of the blurred projection operator H. Recall that ṽ denotes the extension by 0 to R 2 of any function v and that, from Lemma 4,

(F y H 0 u)(ξ, z) = 2π a 0 ru(r, z)J 0 (2πξr) dr,
for every u ∈ L 1 (Ω), every ξ ∈ R and almost every z ∈ (-a, a), where J 0 is the Bessel function of the first kind, and

((F y H 0 ) * v)(r, z) = 2πr R v(ξ, z)J 0 (2πξr) dξ,
for every v ∈ L 1 (R 2 ), every r ∈ [0, a) and almost every z ∈ (-a, a). As explained in the introduction, the radiography is blurred, and the blur is modeled by a linear operator B writing as a convolution with a positive symmetric kernel K (in practice, a Gaussian kernel) with compact support. Lemma 7. The Fourier transform of the blurred projection operator H = BH 0 with respect to the first variable is

(F y B H 0 u)(ξ, z) = (F y K)(ξ, •) ⋆ 2 (F y H 0 u)(ξ, •)(z), (31) 
for every u ∈ L 1 (Ω), every ξ ∈ R and almost every z ∈ (-a, a), where the notation ⋆ 2 stands for the convolution product with respect to the second variable. Its adjoint (with L 2 as a pivot space) is

((F y B H 0 * v)(r, z) = (F y H 0 ) * (F y g ⋆ 2 v)(r, z), (32) 
for every v ∈ L 1 (R 2 ), every r ∈ [0, a) and almost every z ∈ (-a, a).

Proof. Since B H 0 u = K ⋆ ( H 0 u), one computes (F y B H 0 u)(ξ, z) = R 3 K(y -x, z -s)( H 0 u)(x, s)e -2iπξy dy dx ds = R 2 ( H 0 u)(x, s) e -2iπξx R K(y -x, z -s)e -2iπξ(y-x) dy dx ds = R 2 (F y K)(ξ, z -s)( H 0 u)(x, s) e -2iπξx dx ds = R (F y K)(ξ, z -s)(F y H 0 u)(ξ, s) ds = (F y K)(ξ, •) ⋆ 2 (F y H 0 u)(ξ, •)(z),
for every u ∈ L 1 (Ω), every ξ ∈ R and almost every z ∈ (-a, a). Let us now compute the adjoint. For every v ∈ L 1 (R 2 ) and every u ∈ L ∞ (Ω), we have

(F y B H 0 ) * v, u = v, F y B H 0 u = R 2 v(ξ, z)(F y B H 0 u)(ξ, z) dξ dz = R 3 v(ξ, z)(F y K)(ξ, z -s)(F y H 0 u)(ξ, s) ds dξ dz = 2π R R a -a a 0 v(ξ, z)(F y K)(ξ, z -s)ru(r, s)J 0 (2πξr) dr ds dξ dz = a 0 a -a 2πru(r, s) R 2 v(ξ, z)(F y K)(ξ, z -s)J 0 (2πξr) dξ dz ds dr,
and hence, we infer that

(F y B H 0 ) * v(r, s) = 2πr R J 0 (2πξr) R (F y K)(ξ, z -s) v(ξ, z) dz dξ.
Since the kernel K of B is symmetric, it follows that

(F y B H 0 ) * v(r, s) = 2πr R J 0 (2πξr) ((F y K)(ξ, •) ⋆ 2 v(ξ, •)) (s) dξ.
The formula (32) then follows from (8).

Computation of ∇G s in terms of fractional Laplacian

By definition, there holds

G s (u) = 1 2 a -a (Hu -v d )(•, z) 2 H s 0 (-a,a) dz,
for every u ∈ Y s , and every s ∈ [0, 1), s = 1/2. For s = 1/2, H s 0 (-a, a) is replaced with H 1/2 00 (-a, a). Using the results of the Appendix, Section 4.2.3, it follows that, for every

f ∈ H s 0 (-a, a) whenever s ∈ [0, 1), s = 1/2, or f ∈ H 1/2
00 (-a, a) whenever s = 1/2, the norm of f within these spaces is equivalent to

f 2 L 2 (U ) + (-∆) s/2 f 2 L 2 (R n ) 1/2
, where f is extended by 0 outside (-a, a) (notice that (-∆) s/2 f is not of compact support). Here, (-∆) α is the fractional Laplacian operator on R n , defined, using the Fourier transform Ff of f , by (-∆)

α f = F -1 (|ξ| 2α Ff ) (see Appendix, Section 4.1.2). It follows easily that ∇G s (u) = R Ω 1 (id + (-∆) s )( Hu -v d ), (33) 
with L 2 as a pivot space, where Hu -v d is the extension of Hu -v d by 0 outside (-a, a), and R Ω 1 is the restriction to Ω 1 .

Another possibility is to express the differential of G s using the fractional Dirichlet Laplacian operator A defined in Section 4.2.4. We get, similarly,

∇G s (u) = (id + A s )(Hu -v d ), (34) 
with L 2 as a pivot space.

3.3.3 Optimality system of (P s 1,ε ) In this case the regularization term is the total variation semi-norm. First of all, recall the next result of [8] that will be used to tackle the nonsmooth character of the total variation, and then to derive optimality conditions for the penalized problem P s 1,ε .

Theorem 6 ([8, Theorem 2.3]). Let A be a Borelian subset of R n . Let ū ∈ K ∩ BV (A) be the solution of    min J (u) + α A |Du|, u ∈ K ∩ BV (A),
where K is a closed convex subset of L p (A) and J is continuous and Gâteaux differentiable from L p (A) to R (1 p < +∞), and either K is bounded or J is coercive. Then, there exists λ ∈ (M(A) n ) ′ (the dual space of Radon measures) such that

J ′ (ū) -α div λ, u -ū 0, (35) 
for every u ∈ K ∩ BV (A), and

λ, µ -Dū + Ω |Dū| Ω |µ|, (36) 
for every µ ∈ (M(A)) n , where D :

BV (A) → (M(A)) n and div λ, u = -λ, Du , (37) 
for every u ∈ BV (A).

This result cannot be applied to the original problem (P s 1 ) since the set of constraints is not convex, but can be used to handle the penalized problem (P s 1,ε ). The proof is similar to the one of [8], and yields the existence of λ ε ∈ (M(Ω) 2 ) ′ such that

∇G s 1,ε (u ε ) -α div λ ε , u -u ε 0, (38) 
for every u ∈ B η , and

λ ε , µ -Du ε + Ω |Du ε | Ω |µ|, (39) 
for every µ ∈ (M(Ω)) 2 . Considering µ = Dv with v ∈ BV (Ω) in (39) leads to

λ ε , D(v -u ε ) + Ω |Du ε | Ω |Dv|, for every v ∈ BV (Ω), that is, Φ(v) Φ(u ε ) -divλ ε , v -u ε ,
which is equivalent to µ ε ∈ ∂Φ(u ε ), where µ ε = -div λ ε . We thus get the following result.

Theorem 7. Let u s 1,ε be a solution of (P s 1,ε ). Then there exist

λ ε ∈ (M(Ω) 2 ) ′ , q ε = q ε (u s 1,ε ) ∈ L ∞ (Ω)
defined by (28), and µ ε = -div λ ε such that

∇G s (u s 1,ε ) + q ε + αµ ε , u -u s 1,ε 0, (40) 
for every u ∈ B η , and

µ ε ∈ ∂Φ(u s 1,ε ). ( 41 
)
3.3.4 Optimality system of (P s 2,ε ) In this case,

J 2 (u) = 1 2 u 2 X = 1 2 a -a (|Du z |(0, a)) 2 dz = 1 2 a -a (ϕ(u z )) 2 dz,
for every u ∈ X = L 2 (-a, a; BV 0 (0, a)). Here and in the sequel, the notation ϕ(f ) is used to denote the total variation of a function f ∈ BV (0, a). There holds X ′ = L 2 (-a, a; (BV 0 (0, a)) ′ ). For every λ ∈ X ′ , viewed as function of z ∈ (-a, a) of class L 2 with values in (BV 0 (0, a)) ′ , denote λ z = λ(z) ∈ (BV 0 (0, a)) ′ , for almost every z ∈ (-a, a).

The duality product between X and X ′ is defined by

λ, v X ′ ,X = a -a λ z , v z BV ′ 0 ,BV 0 dz,
for every λ ∈ X ′ and every v ∈ X.

Lemma 8. The functional J 2 is convex and locally Lipschitzian on X.

Proof. The convexity is obvious. To establish the local Lipschitzian property, we use the fact that the total variation ϕ is Lipschitzian and the Cauchy-Schwarz inequality, getting the estimate

|J 2 (v) -J 2 (u)| 1 2 a -a ϕ(u z ) + ϕ(v z ) ϕ(u z ) -ϕ(v z ) dz ( u X + v X ) u -v X (2 u X + ρ) u -v X , for all u, v ∈ X such that u -v X ρ.
It follows from this lemma that J 2 is subdifferentiable and that the classical subdifferential and the generalized Clarke subdifferential of J 2 coincide (see [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]). Moreover, the Clarke generalized directional derivative and the classical directional derivative coincide as well.

Recall that the penalization problem (P s 2,ε ) consists in minimizing G s 2,ε (u) + α 2 J 2 (u) over all functions u ∈ B η . This problem is equivalent to the minimization problem

min u∈X G s 2,ε (u) + α 2 J 2 (u) + χ Bη (u),
where χ Bη is defined by χ Bη (u) = 0 whenever u ∈ B η , and χ Bη (u) = +∞ else.

A necessary condition for u s 2,ε to be an optimal solution to (P s 2,ε ) is

0 ∈ ∂ G s 2,ε + αJ 2 + χ Bη (u s 2,ε ),
and hence, using the standard rules of the subdifferential calculus,

0 ∈ ∇G s 2,ε (u s 2,ε ) + α∂J 2 (u s 2,ε ) + ∂χ Bη (u s 2,ε ), (42) 
since the considered functions are convex and locally Lipschitzian (see [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]).

Lemma 9. Let λ ∈ X ′ . Then, for every u ∈ X, λ ∈ ∂J 2 (u) if and only if λ z ∈ ϕ(u z )∂ϕ(u z ), for almost every z ∈ (-a, a).

Proof. The statement of this lemma is natural, and the proof is quite easy, however it is not possible to apply directly results of [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]. We next provide a proof for the convenience of the reader. Since J 2 is a proper convex locally Lipschitzian function, ∂J 2 (u) is nonempty for every u ∈ X, and

∂J 2 (u) = {λ ∈ X ′ | J ′ 2 (u; v) λ, v X ′ ,X ∀v ∈ X},
where J ′ 2 (u; v) denotes the directional derivative at u in the direction v. In addition,

J ′ 2 (u; v) = sup{ λ, v X ′ ,X | λ ∈ ∂J 2 (u)}.
We next compute J ′ 2 (u; v), for all u, v ∈ X. One has

J 2 (u + tv) -J 2 (u) t = 1 2 a -a ϕ(u z + tv z ) 2 -ϕ(u z ) 2 t dz = 1 2 a -a (ϕ(u z + tv z ) + ϕ(u z )) ϕ(u z + tv z ) -ϕ(u z ) t dz. (43) 
By definition of the subdifferential, there holds

ϕ(u z + tv z ) -ϕ(u z ) t µ, v z BV ′ 0 ,BV 0 ,
for every µ ∈ ∂ϕ(u z ), every v z ∈ BV 0 (0, a), and almost every z ∈ (-a, a). Since

ϕ(u z + tv z ) -ϕ(u z ) |t|ϕ(v z ), we get ϕ(u z + tv z ) -ϕ(u z ) t max ϕ(v z ), λ z , v z BV ′ 0 ,BV 0 ,
for every t ∈ (0, 1] and almost every z ∈ (-a, a). Note that

µ, v z BV ′ 0 ,BV 0 µ BV ′ 0 ϕ(v z ),
and

µ BV ′ 0 = sup v BV 0 1 µ, v BV ′ 0 ,BV 0 ,
for almost every z ∈ (-a, a). Since µ ∈ ∂ϕ(u z ), it follows that

µ, v BV ′ 0 ,BV 0 ϕ(u z + v) -ϕ(u z ) ϕ(v),
for every v ∈ BV 0 (0, a). Hence, µ BV ′ 0 1 and µ, v z BV ′ 0 ,BV 0 ϕ(v z ). Therefore,

ϕ(u z + tv z ) -ϕ(u z ) t ϕ(v z ), (44) 
for every t ∈ (0, 1] and almost every z ∈ (-a, a), and we infer that

|ϕ ′ (u z ; v z )| ϕ(v z ). (45) 
Moreover, 0 ϕ(u z + tv z ) + ϕ(u z ) 2ϕ(u z ) + tϕ(v z ), hence, using (44),

(ϕ(u z + tv z ) + ϕ(u z )) ϕ(u z + tv z ) -ϕ(u z ) t (2ϕ(u z ) + ϕ(v z )) ϕ(v z ).
The function z → (2ϕ(u z ) + ϕ(v z ))ϕ(v z ) is integrable on (-a, a), since the functions z → ϕ(u z ) 2 , z → ϕ(v z ) 2 and z → ϕ(u z )ϕ(v z ) are integrable (indeed, u, v ∈ X). Using (45), we infer that the function

z → ϕ(u z )ϕ ′ (u z ; v z ) (46) 
is integrable on (-a, a), for every v ∈ X. Therefore, applying the Lebesgue theorem to (43), we get

lim t→0 J 2 (u + tv) -J 2 (u) t = a -a ϕ(u z )ϕ ′ (u z ; v z ) dz.
Finally

J ′ 2 (u; v) = a -a ϕ(u z )ϕ ′ (u z ; v z ) dz a -a ϕ(u z )λ z , v z BV ′ 0 ,BV 0 dz, (47) 
for every λ z ∈ ∂ϕ(u z ), since λ z , v z BV ′ 0 ,BV 0 ϕ ′ (u z ; v z ). For every u ∈ X, define

E(u) = {µ ∈ X ′ | µ : z → ϕ(u z )λ z with λ z ∈ ∂ϕ(u z ) for a.e. z ∈ (-a, a)}.
We claim that E(u) = ∂J(u). Indeed, let us first prove that E(u) ⊂ ∂J(u). For every µ ∈ E(u), there holds

µ, v X ′ ,X = a -a µ z , v z BV ′ 0 ,BV 0 dz = a -a ϕ(u z ) λ z , v z BV ′ 0 ,BV 0 dz,
for every v ∈ X. Since λ z ∈ ∂ϕ(u z ), using (47) we get that µ, v X ′ ,X J ′ (u; v), for every v ∈ X. This implies that µ ∈ ∂J(u) (see [START_REF] Clarke | Optimization and Nonsmooth Analysis[END_REF]), and the inclusion follows. The proof of the converse inclusion readily follows the one of [9, page 77], and is thus skipped.

The key point is the measurability of the function z → ϕ(u z )ϕ ′ (u z ; v z ), for every v ∈ X, which follows in particular from (46). We have thus proved that every µ ∈ ∂J(u) is such that µ : z → ϕ(u z )λ z , with λ z ∈ ∂ϕ(u z ). The lemma follows.

We are now in a position to derive the optimality system of (P s 2,ε ).

Theorem 8. Let u s 2,ε be a solution of (P s 2,ε ). Then, there exist

µ ε ∈ X ′ , q ε = q ε (u s 2,ε ) ∈ L ∞ (Ω) defined by (28), such that ∇G s (u s 2,ε ) + q ε + αµ ε , u -u s 2,ε X ′ ,X 0, ( 48 
)
for every u ∈ B η , and

µ ε z ∈ ϕ((u s 2,ε ) z ) ∂ϕ((u s 2,ε ) z ), (49) 
for almost every z ∈ (-a, a).

Appendix: fractional order Hilbert spaces

In this appendix we gather different definitions and characterizations of fractional order Hilbert spaces, on R n and on bounded subsets, not all of them being so standard. The main references are [START_REF] Adams | Sobolev spaces[END_REF][START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF][START_REF] Engel | A short course on operator semigroups[END_REF][START_REF] Lions | Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs[END_REF][START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF][START_REF] Tartar | An introduction to Sobolev spaces and interpolation spaces[END_REF][START_REF] Triebel | Theory of function spaces[END_REF].

Let U be an open bounded subset of R n . For k ∈ N, the Hilbert space H k (U ) is defined as the space of all functions of L 2 (U ), whose partial derivatives up to order k, in the sense of distributions, can be identified with functions of L 2 (U ). Endowed with the norm

f H k (U ) =   |β| k D β f 2 L p (U )   1/2 H k (U ) is a Hilbert space. For k = 0, there holds H 0 (U ) = L 2 (U ).
For s ∈ (0, 1), the fractional order Hilbert space H s (U ) is defined as the space of all functions f ∈ L 2 (U ) such that

U ×U |f (x) -f (y)| 2
|x -y| n+2s dx dy < +∞.

Endowed with the norm

f H s (U ) = f 2 L 2 (U ) + U ×U |f (x) -f (y)| 2 |x -y| n+2s dx dy 1/2 , H s (U ) is a Hilbert space.
For a positive noninteger real number s > 0, denote by [s] the floor of s, and let α ∈ (0, 1) such that s = [s] + α. The fractional order Hilbert space H s (U ) is defined as the space of all functions f ∈ L 2 (U ), whose partial derivatives of order [s], in the sense of distributions, can be identified with functions of H α (U ). Endowed with the norm

f H s (U ) =   f 2 H [s] (U ) + |β|=[s] U ×U |D β f (x) -D β f (y)| 2 |x -y| n+2α dx dy   1/2 , H s (U ) is a Hilbert space.
Let D(U ) denote the space of C ∞ functions on U , having a compact support contained in U . For every s 0, define H s 0 (U ) as the closure of D(U ) in H s (U ). The space H s 0 (U ) is a closed subspace of H s (U ) and thus inherits of its Hilbertian structure. There holds H s 0 (U ) = H s (U ) if and only if 0 s 1/2 (see [START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF]Theorem 11.1]), or whenever U = R n . The space H -s (U ) is defined as the dual of H s 0 (U ). It is possible to define the fractional order Hilbert spaces H s (U ) in other equivalent ways, in particular, using the Fourier transform or using the fractional Laplacian operator. The situation is quite simple for U = R n but is more intricate for a bounded domain U .

Other characterizations for

U = R n

Fourier transform

Another possible definition of H s (R n ) goes by using the Fourier transform F, as follows. For every s > 0, define

H s (R n ) = {f ∈ L 2 (R n ) | (1 + |ξ| 2 ) s/2 Ff ∈ L 2 (R n )}, endowed with the norm f H s (R n ) = R n (1 + |ξ| 2 ) s |F(f )(ξ)| 2 dξ 1/2 . Note that f ∈ H s (R n ) if and only if (id -∆) s/2 f ∈ L 2 (R n ),
where the operator (id -∆) s/2 is defined by its symbol (1 + |ξ| 2 ) s/2 , or, in other words, is defined using the Fourier transform by (id -∆) s/2 f = F -1 ((1 + |ξ| 2 ) s/2 Ff ).

Note that, for s < 0, one has

H s (R n ) = {f ∈ S ′ (R n ) | (1 + |ξ| 2 ) s/2 Ff ∈ L 2 (R n )},
where S(R n ) denotes the Schwartz space of rapidly decreasing C ∞ functions on R n .

Fractional Laplacian operator

Define the fractional Laplacian operator (-∆) α , using the Fourier transform Ff of f , by (-∆) α f = F -1 (|ξ| 2α Ff ). This definition actually makes sense for α ∈ (-n/2, 1] and f ∈ S(R n ). Note that (-∆) α f / ∈ S since |ξ| 2α introduces a singularity at the origin in its Fourier transform; however, (-∆) α f is of class C ∞ (see e.g. [START_REF] Caffarelli | An extension problem related to the fractional Laplacian[END_REF]). Clearly, (-∆) 1 = -∆, (-∆) 0 = id, and (-∆) α 1 • (-∆) α 2 = (-∆) α 1 +α 2 . Moreover, the operator (-∆) α is selfadjoint on L 2 (R n ).

An easy computation shows that, for every α ∈ (0, 1), there exists a constant C n,α such that, for every f ∈ S(R n ), (-∆) α f (x) coincides with the principal value of the singular integral

C n,α R n f (x) -f (y) |x -y| n+2α dy. Actually, C n,α is a positive constant such that R n 1 -cos(ξ.y) |y| n+2α dy = |ξ| 2α C n,α , 
for every ξ ∈ R n . Note that the above singular integral is well defined whenever 0 < α < 1/2, and in that case it is not necessary to consider the principal value; for 1/2 α < 1, the singularity is near x = y. To avoid the use of principal values, one has the other equivalent expression (obvious to obtain with a change of variable)

(-∆) α f (x) = - 1 2 C n,α R n f (x + y) + f (x -y) -2f (x) |y| n+2α dy.
Then, for every s ∈ (0, 1) and every f ∈ H s (R n ), one easily gets

f 2 H s (R n ) = f 2 L 2 (R n ) + R n ×R n |f (x) -f (y)| 2 |x -y| n+2s dx dy = f 2 L 2 (R n ) + 2 C n,s (-∆) s/2 f 2 L 2 (R n ) ,
and therefore H s (R n ) can be equivalently defined as the space of all functions of L 2 (R n ) such that the distribution (-∆) s/2 f can be identified with a function of L 2 (R n ).

The relation of the Hilbert spaces H s with the domains of the fractional Laplacian operator is the following. The operator -∆, defined by Fourier transform, is a selfadjoint positive operator on L 2 (R n ), of domain D(-∆) = H 2 (R n ). The fractional operator (-∆) s has been defined above by Fourier transform, for s > 0. Using the interpolation theory and results from [START_REF] Lions | Espaces d'interpolation et domaines de puissances fractionnaires d'opérateurs[END_REF][START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF], one can establish that

D((-∆) s ) = H 2s (R n ), for every s ∈ [0, 1].

Other characterizations on a bounded domain

The situation on a bounded subset U of R n is more delicate.

Quotient norm and extensions

The space H s (U ) can be as well defined as the set of restrictions of functions of H s (R n ) to U , with the quotient norm

f H s (U ) = inf{ f H s (R n ) | f ∈ H s (R n ), f|U = f }.
If U is bounded with a smooth boundary, then, for every f ∈ L 2 (U ) such that

U ×U |f (x) -f (y)| 2
|x -y| n+2s dx dy < +∞, there exists an extension f ∈ L 2 (R n ) of f (defined by symmetry, locally at the boundary of the domain) for which

R n ×R n | f (x) -f (y)| 2
|x -y| n+2s dx dy < +∞ (see [START_REF] Tartar | An introduction to Sobolev spaces and interpolation spaces[END_REF]Lemma 36.1]. This extension by symmetry is a specific one. Concerning extensions outside U , note that, for U bounded with smooth boundary, for every s ∈ R (H s with s < 0 is defined further), there exists a continuous linear extension mapping P U ∈ L(H s (U ), H s (R n )), satisfying P U f |U = f a.e. for every f ∈ H s (U ), and a continuous restriction mapping R U ∈ L(H s (R n ), H s (U )), such that R U P U = id H s (U ) . Hence, H s (U ) can be as well defined using the equivalent norm

f 2 L 2 (U ) + R n ×R n |P U f (x) -P U f (y)| 2 |x -y| n+2s dx dy 1/2 .
It would be more interesting (in view of using the fractional Laplacian, see further) to extend f by 0 outside U and to use the above double integral on R n × R n . The extension by 0 is however more delicate. Denoting f the extension of f by 0 outside U , the linear mapping f ∈ H s (U ) → f ∈ H s (R n ) is well defined and continuous if and only if 0 s < 1/2. This means that, for 0 s < 1/2, the space H s (U ) can be as well defined using the equivalent norm

f 2 L 2 (U ) + R n ×R n |f (x) -f (y)| 2 |x -y| n+2s dx dy 1/2
, where f is extended by 0 outside U (but this fact is not true for s 1/2 because of phenomena on the boundary).

Actually, the following result holds true ([26, Lemma 37.1]). Denoting f the extension of f by 0 outside U , for U bounded with Lipschitz boundary, for 0 < s < 1, f ∈ H s (R n ) if and only if f ∈ H s (U ) and ρ -s f ∈ L 2 (U ), where ρ denotes the distance to the boundary of U .

The following extension result holds for the space H s 0 (U ). Denoting f the extension of f by 0 outside U , for s 0, the linear mapping f ∈ H s 0 (U ) → f ∈ H s (R n ) is well defined and continuous if and only if s / ∈ N + 1/2. 7 It follows that, for instance, for every s ∈ (0, 1), s = 1/2, the space H s 0 (U ) can be as well defined using the equivalent norm , where f is extended by 0 outside U (but this fact is not true for s = 1/2). Actually, for s = 1/2, the extension by 0 is linear and continuous for a subspace of H 1/2 (U ), which is next defined as H 1/2 00 (U ).

The Lions-Magenes space H

1/2 00 (U )

The Lions-Magenes space H 1/2 00 (U ) is defined as the set of functions f ∈ H 1/2 (U ) such that ρ -1/2 f ∈ L 2 (U ), where ρ denotes the distance to the boundary of U (see [21, Theorem 7 For instance, 1 ∈ H 1/2 0 (U ) = H 1/2 (U ) and the extension by 0 is piecewise smooth and discontinuous, hence is not in H 1/2 (R). Indeed, although functions of H 1/2 are not continuous in general, piecewise smooth functions that are discontinuous at one point do not belong to H 1/2 . For example, consider f , a Heaviside function that is multiplied by some smooth plateau function; then, f ′ = δ0 + ψ with ψ smooth, hence iξ(Fu)(ξ) = 1 + (F ψ)(ξ), so that |F f | behaves like 1/|ξ| at infinity, and hence (1 + |ξ| 2 ) .

Equivalently, H

1/2 00 (U ) is the subspace of functions f ∈ H 1/2 (U ) such that their extension f by 0 outside U belongs to H 1/2 (R n ), and the space H 1/2 00 (U ) can be endowed with the equivalent norm f H 1/2 (R n ) (see [START_REF] Tartar | An introduction to Sobolev spaces and interpolation spaces[END_REF]Chapter 33]); for instance this latter norm can be computed by Fourier transform.

Fractional Laplacian operator

For U bounded with a smooth boundary, the relation between f H s (U ) and (-∆) α/2 f 2 L 2 (R n ) is more intricate than in the case U = R n . First, for 0 s < 1/2, every f ∈ H s (U ) can be extended by 0 outside U into a function of H s (R n ), and hence for such values of s the space H s (U ) can be as well defined using the equivalent norm

f H s (U ) = f 2 L 2 (U ) + (-∆) s/2 f 2 L 2 (R n ) 1/2
, where f is extended by 0 outside U . Note however that, although f has a compact support, the function (-∆) s/2 f is not of compact support. The same fact holds for the spaces H s 0 (U ), for s 0, s / ∈ N + 1/2, and for the space H 1/2 00 (U ), since functions of these spaces can be extended by 0 to functions of H s (R n ).

For other values of s (and actually, for every s ∈ R), the existence of a continuous linear extension mapping P U , previously mentioned, permits to endow H s (U ), for instance, with the equivalent norm

f H s (U ) = f 2 L 2 (U ) + (-∆) s/2 P U f 2 L 2 (R n ) 1/2 .

Relation with the domain of the fractional Dirichlet Laplacian operator

Let A denote the opposite of the Dirichlet Laplacian on L 2 (U ), of domain D(A) = H 1 0 (U )∩ H 2 (U ). It must not be confused with the previous Laplacian operator. The operator A is positive, selfadjoint, and has a discrete spectrum. The domains of its real powers define a scale of Hilbert spaces D(A α ) (see [START_REF] Engel | A short course on operator semigroups[END_REF]), which can be characterized as follows.

Let (e n ) n∈N denote an orthonormal basis of eigenvectors of A, and let (λ n ) n∈N be the associated eigenvalues. Then, 

D(A α ) = {f ∈ L 2 (U ) |

r 2 -y 2

 22 dy = rπ, one arrives at a

Ω 1 (y 2 ξ 2

 12 H 0 u)(y, z) div ξ(y, z) dy dz , z) div ϕ(r, z) dr dz= Ω u(r, z) div ϕ(r, z) dr dzwhere the function ϕ = (ϕ 1 , ϕ 2 ) is defined on [0, a] × [-a, a] by ϕ 1 (r, z) (y, z) dy.
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 3 Let a < b and c < d be real numbers, let O = (a, b)×(c, d), and let g ∈ BV (O). For almost every x ∈ (a, b), the marginal function g x : y → g(x, y) is of bounded variation on (c, d). Moreover, |Dg|(O) b a |Dg x |(c, d) dx. Remark 3. It follows from this lemma that BV (O) is continuously embedded in the space L 1 (a, b; BV (c, d)). This fact justifies the end of Remark 1.
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  |g k (x, y) -g(x, y)|dy, it follows from Fubini's Theorem that b a h k (x)dx = b a d c |g k (x, y) -g(x, y)| dy dx → 0,

  c, d) < +∞, for almost every x ∈ (a, b). Indeed, we have |Dg k |(O) → |Dg|(O), and |Dg k |(O) = O ∇g k (x, y) dx dy c, d) dx. Note that the latter equality holds because, since g k ∈ W 1,1 (O), it follows from Fubini's Theorem that, for almost every x ∈ (a, b), the function g x k belongs to W 1,1 (c, d), and thus in particular its total variation is |Dg x k |(c, d) = d c ∂g k ∂y (x, y) dy. From Fatou's Lemma, the function x → lim inf k→+∞ |Dg x k |(c, d) is measurable on (a, b), and c, d) < +∞ for almost every x ∈ (a, b). From these two points, we can achieve the proof of the lemma, as follows. Let ψ ∈ C 1 c ((c, d), R) such that ψ L ∞ 1. Then, for almost every x ∈ (a, b), d c g x (y)ψ ′ (y) dy = lim k→+∞ d c g x ϕ(k) (y)ψ ′ (y) dy lim inf k→+∞ |Dg x k |(c, d) < +∞ and therefore g x ∈ BV (c, d). Moreover, integrating this inequality on [a, b] and using (5) leads to b a |Dg x |(c, d) dx |Dg|(O).
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 2 +∞}, for every α ∈ R. Using the interpolation theory of[START_REF] Lions | Problèmes aux limites non homogènes et applications[END_REF], one can establish that∀s ∈ [0, 1) D(A s ) = H 2s 0 (U ) if s = 1/4, H 1/2 00 (U ) if s = 1/4,

  1/4 |F f | / ∈ L 2 (R), i.e., f / ∈ H 1/2 (R) (see[START_REF] Tartar | An introduction to Sobolev spaces and interpolation spaces[END_REF] Chapter 33].11.7]). It is a strict subspace of H 1/2 (U ) = H

		1/2 0 (U ), equipped with the Hilbertian norm
	  f 2 H 1/2 (U ) +	d(•, ∂U ) f	L 2 (U ) 2	  1/2

It can however be extended to a continuous linear operator from the Sobolev space W 1,2 (Ω1) to L 2 (Ω).

The Lions-Magenes space H1/2 00 (-a, a) is the subset of functions f ∈ H 1/2 (-a, a) such that ρ -1/2 f ∈ L 2 (-a, a), where the function ρ is defined on (-a, a) by ρ(y) = a -|y|. General definitions and properties of the Lions-Magenes space are recalled in the Appendix, Section

4.2.2.

Here, we use the definition of the H s norm in terms of Fourier transform, recalled in the Appendix, Section 4.1.1.

This example has been indicated to us by Simon Masnou.

As explained formerly, the slices of the binary images treated in practice have a finite number of connected components, uniformly with respect to the slice; this means that there exists R > 0 such that u L ∞ (-a,a;BV 0 (0,a))η, for every u in the set under consideration, and this implies the constraint considered here.

where the Lions-Magenes space H 1/2 00 (U ) has been defined previously (note that, for s = 1,

Note that A s f must be distinguished from (-∆) s f , when both functions can be given a sense. For instance, for every f ∈ H s 0 (U ) with s ∈ (0, 1), s = 1/2 (and f ∈ H 1/2 00 (U ) for s = 1/2), one has f ∈ D(A s/2 ) and thus A s/2 f ∈ L 2 (U ) by definition, whereas (-∆) s f ∈ L 2 (R n ) (where f is extended 8 by 0 outside U ) is not even of compact support.

The space D(A s/2 ) is a Hilbert space, when equipped with the graph norm (

It follows that H s 0 (U ), for s ∈ (0, 1), s = 1/2, can be equivalently defined with this graph norm, and similarly the space H 1/2 00 (U ) can be endowed with the equivalent norm (