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A variational method using fractional order Hilbert spaces for

tomographic reconstruction of blurred and noised binary

images

M. Bergounioux E. Trélat ∗

Abstract

We provide in this article a refined functional analysis of the Radon operator
restricted to axisymmetric functions, and show that it enjoys strong regularity prop-
erties in fractional order Hilbert spaces. This study is motivated by a problem of
tomographic reconstruction of binary axially symmetric objects, for which we have
available one single blurred and noised snapshot. We propose a variational approach
to handle this problem, consisting in solving a minimization problem settled in adapted
fractional order Hilbert spaces. We show the existence of solutions, and then derive
first order necessary conditions for optimality in the form of optimality systems.

Keywords: Radon operator, fractional order Hilbert spaces, minimization.

1 Introduction

Our study is motivated by a physical experiment led at the CEA1 that consists in re-
constructing a three-dimensional binary axially symmetric object from a single X-ray
radiography which is moreover blurred and noised. The behavior of some heavy material
is studied during an implosion process, and a single radiography is performed during the
implosion. At some specific moment, a very brief flash of X-rays is fired from a punctual
source through the object and arrives at a detector. Since the object is very dense, X-rays
must be of high energy, and many drawbacks appear in practice, causing a high level of
blur and noise on the radiograph.

We stress on the fact that we have available only one radiography and thus, in turn,
classic methods of tomographic reconstruction used in medicine, optics, geophysics, etc,
which are requiring the knowledge of many projections of the object (taken from different
angles), do not apply to our context. Furthermore, the objects under consideration are
composed of one homogeneous medium, and of some holes. In the mathematical modeling
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1Commissariat à l’Energie Atomique, Bruyères-le-Châtel, France

1



of the problem, this feature turns into a binary constraint which is difficult to handle, and
only few results exist in that direction.

It is assumed that, during the implosion, the shape of the object remains axially
symmetric, so that, in theory, a single snapshot is enough to reconstruct the whole object.
Moreover, since the source is quite far from the object, it is assumed that X-rays are
parallel and orthogonal to the symmetry axis of the object. It follows that the Radon
transform has a nice expression, derived hereafter. Recall that the aim of radiography is
to measure the attenuation of X-rays through the object. Every point of the radiograph,
determined by cartesian coordinates (y, z), corresponds to a measure of this attenuation,
and the Radon transform of the object is defined by the projection operator

(H0ū)(y, z) =

∫

R

ū(x, y, z)dx, (1)

where the function ū (with compact support) denotes the density of the object, and x is a
coordinate along the rays. Since the objects under consideration are bounded and axially
symmetric, we make use of cylindrical coordinates (r, θ, z), where the z-axis corresponds to
the symmetry axis. Then, setting ū(x, y, z) = u(

√
x2 + y2, z) and H0u = H0ū, we arrive

at

(H0u)(y, z) = 2

∫ +∞

|y|
u(r, z)

r√
r2 − y2

dr, (2)

for all y, z ∈ R. In the sequel we adopt the following notations and conventions. We
assume that the set of density functions is the set of bounded variation functions on
R

+ × R, having a compact support contained in the subset Ω = [0, a) × (−a, a) of R
2,

where a > 0 is fixed, and taking their values in the binary set {0, 1}. In particular, the
upper bound of the integral in (2) can be set to a. Notice that, for every density function
u, the function H0u is of compact support contained in Ω1 = (−a, a)2.

It has been shown in [1] that H0 extends to a linear continuous operator from L2(Ω)
to L2(Ω1). However, inverting the operator H0 requires more differentiability, and it turns
out that H−1

0 cannot be extended to a continuous operator from any space Lp(Ω1) to
any space Lq(Ω).2 This property illustrates the fact that the problem is ill-posed, and
the operator is bad-conditioned. Hence, applying the inverse operator to the radiography
causes significant errors and leads to a bad reconstruction of the object.

Moreover, as mentioned formerly, due to many drawbacks in the physical experiment,
the resulting radiography may be strongly blurred and noised, and actually what we
observe on the radiography is

vd = BH0u+ τ,

that is, the projection of the density of the object, which is moreover blurred and noised.
Here, B is a linear operator representing the effect of the blur. Usually, it is assumed
in practice that B is the convolution with a positive symmetric kernel K with compact
support and such that

∫
Kdµ = 1, and that τ is an additive Gaussian white noise of zero

mean. In the sequel, we set H = BH0.

2It can however be extended to a continuous linear operator from the Sobolev space W 1,2(Ω1) to L2(Ω).
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To deal with this ill-posed problem, we have proposed in [1] a regularization process
based on a variational approach. More specifically, let BV (Ω) denote the space of bounded
variation functions, defined as the space of functions u ∈ L1(Ω) whose distributional
gradient Du is a finite vector Radon measure, satisfying

∫

Ω
u divϕdx = −〈Du,ϕ〉 = −

∫

Ω
ϕ · d(Du) = −

∫

Ω
ϕ · σu d|Du|,

for every ϕ ∈ C1
c (Ω,R2), where C1

c (Ω,R2) denotes the space of continuously differentiable
vector functions of compact support contained in Ω, and where σu : Ω → R

2 is a |Du|-
measurable function satisfying |σu| = 1 almost everywhere on Ω. The total variation of
u ∈ BV (Ω) is then defined as the total variation of the Radon measure Du, that is, by

Φ(u) = sup

{∫

Ω
u(x) divϕ(x) dx

∣∣∣ ϕ ∈ C1
c (Ω,R2), ‖ϕ‖L∞ 6 1

}
=

∫

Ω
|Du| = |Du|(Ω).

Endowed with the norm ‖u‖BV = ‖u‖L1 + Φ(u), the space BV (Ω) is a Banach space.
Since Ω = [0, a) × (−a, a) is bounded and ∂Ω is Lipschitz, functions of BV (Ω) have a

trace of class L1 on the subset

Γ = {a} × (−a, a) ∪ [0, a) × {−a} ∪ [0, a) × {a} (3)

of ∂Ω, and the trace mapping T : BV (Ω) → L1(Γ) is linear and bounded (see [12]). The
space BV0(Ω) is then defined as the kernel of T . It is the space of bounded variation
functions on Ω vanishing on Γ, and since T is bounded, it is a Banach space, endowed
with the induced norm.

Let vd be the projected image (observed data), and let α > 0. Assume that vd ∈
L2(Ω1). Since H = BH0 is a linear continuous operator from L2(Ω) to L2(Ω1), we have
considered in [1] the problem of minimizing the functional

u 7−→ 1

2
‖Hu− vd‖2

L2(Ω1) + αΦ(u)

over all functions u ∈ BV (Ω) satisfying u(x) ∈ {0, 1} almost everywhere on Ω. Solutions
of that minimization problem can then be proposed as a tomographic reconstruction in
our problem. Using a penalization procedure to tackle the nonconvex constraint, we have
proposed some numerical methods that however do not provide very satisfactory results,
due to the fact that we do not take into account the deep regularity properties of the
projection operator.

The Radon transform and its regularity properties have been investigated in a large
number of works (see e.g. [4, 5, 6, 10, 13, 14, 15, 16, 17, 18, 19, 22, 24, 25] and the references
therein), where range characterizations of the Radon transform and their potential appli-
cations to tomography are described. Regularity properties are in general derived in the
spaces Lp; however, as mentioned above, in our tomography problem the use of Lebesgue
spaces does not lead to satisfactory practical results, which incites to derive stronger reg-
ularity features, taking into account the specific expression of the Radon transform, so as
to propose a minimization problem settled with a more adapted norm.
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In the present article, we provide a refined functional analysis of the Radon projec-
tion operator H0 defined by (2), and show that it enjoys strong regularity properties in
fractional order Hilbert spaces (Section 2). In turn, we propose in Section 3 a modified
minimization problem settled in adapted fractional order Hilbert spaces. We show the
existence of solutions, and, using a penalization procedure to deal with the nonconvex
binarity constraint, we derive first order necessary conditions for optimality in the form
of optimality systems. Since many properties of fractional order Hilbert spaces are used
throughout the article, and that not all of them are so standard, we provide in Section 4 an
Appendix, gathering different equivalent definitions and characterizations of those spaces,
defined on R

n or on some bounded subset, in particular in terms of Fourier transform and
fractional Laplacian. The development of algorithms based on the theoretical results of
this article will be the subject of investigation of a next work.

2 Functional analysis of the projection operator

2.1 Preliminaries

Recall that the densities of the objects under consideration are represented by bounded
variation functions defined on the set Ω = [0, a) × (−a, a), having a compact support
contained in Ω, and taking their values in {0, 1}.

For every function u ∈ BV (Ω), the projection operator is defined by

(H0u)(y, z) = 2

∫ a

|y|
u(r, z)

r√
r2 − y2

dr,

for |y| < a and |z| < a. Note that (H0u)(y, z) = (H0u)(−y, z), for almost all y, z ∈ R.
Notice that, for every u ∈ BV (Ω) having a compact support contained in Ω, extending u by
0 outside Ω, the function H0u has a compact support as well, contained in Ω1 = (−a, a)2.
In this section we investigate the regularity of H0u.

First of all, observe that, for y fixed, the function z 7→ (H0u)(y, z) is a bounded
variation function on (−a, a), and a stronger regularity property cannot be expected for
such functions u. However, since the function (y, z) 7→ H0(y, z) is a kind of convolution of
the function u with respect to the variable y, more regularity is expected with respect to
this variable.

Before stating the main result, we first recall a definition of fractional order Hilbert
spaces.

Let U be an open subset of R
n. For k ∈ N, the Hilbert space Hk(U) is defined as the

space of all functions of L2(U), whose partial derivatives up to order k, in the sense of
distributions, can be identified with functions of L2(U). Endowed with the norm

‖f‖Hk(U) =


 ∑

|β|6k

‖Dβf‖2
Lp(U)




1/2

,

Hk(U) is a Hilbert space. For k = 0, there holds H0(U) = L2(U).
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For s ∈ (0, 1), the fractional order Hilbert space Hs(U) is defined as the space of all
functions f ∈ L2(U) such that

∫∫

U×U

|f(x) − f(y)|2
|x− y|n+2s

dx dy < +∞.

Endowed with the norm

‖f‖Hs(U) =

(
‖f‖2

L2(U) +

∫∫

U×U

|f(x) − f(y)|2
|x− y|n+2s

dx dy

)1/2

,

Hs(U) is a Hilbert space.
It is possible to define the Hilbert spaces Hs(U) in other equivalent ways. In particular,

the relations with the Fourier transform or with the fractional Laplacian operator are
surveyed in the Appendix (Section 4). These characterizations will be used repeatedly
throughout the article.

2.2 Functional properties of the projection operator

The next theorem is our first main result.

Theorem 1. For every u ∈ BV (Ω), the function (z, y) 7→ (H0u)(y, z) belongs to the
Banach space BV (Ω1) ∩ L1(−a, a;Hs(−a, a)), for every s ∈ [0, 1). Moreover, for every
s ∈ [0, 1), there exists C > 0 such that, for every u ∈ BV (Ω), there holds

‖H0u‖BV (Ω1) + ‖H0u‖L1(−a,a;Hs(−a,a)) 6 C‖u‖BV (Ω); (4)

in other words, the operator

H0 : BV (Ω) −→ BV (Ω1) ∩ L1(−a, a;Hs(−a, a))

is linear and continuous. For every s ∈ [0, 1), the operator H0 is linear and continuous as
well for the following spaces:

• H0 : BV0(Ω) −→ BV0(Ω1) ∩ L1(−a, a;Hs(−a, a));

• H0 : L1(−a, a;BV (0, a)) −→ BV (Ω1) ∩ L1(−a, a;Hs(−a, a));

• H0 : L1(−a, a;BV0(0, a)) −→ BV0(Ω1) ∩ L1(−a, a;Hs(−a, a)).

Moreover, for s = 1/2, the statements above can be strengthened by replacing Hs(−a, a)
by the Lions-Magenes space3 H

1/2
00 (−a, a).

3The Lions-Magenes space H
1/2
00 (−a, a) is the subset of functions f ∈ H1/2(−a, a) such that ρ−1/2f ∈

L2(−a, a), where the function ρ is defined on (−a, a) by ρ(y) = a− |y|. General definitions and properties
of the Lions-Magenes space are recalled in the Appendix, Section 4.2.2.
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In the above statement, the Banach space L1(−a, a;BV (0, a)) is endowed with the
norm ∫ a

−a
‖u(·, z)‖BV (0,a) dz.

The Banach space L1(−a, a;BV0(0, a)) is a closed subspace of L1(−a, a;BV (0, a)) and thus
is endowed with the induced norm. Recall that the space BV0(Ω) is the space of bounded
variation functions of Ω vanishing on the subset Γ defined by (3). The space BV0(0, a) is
defined similarly as the space of bounded variation functions on [0, a) vanishing at a.

The Banach space L1(−a, a;Hs(−a, a)) is endowed with the norm

∫ a

−a
‖v(·, z)‖Hs(−a,a) dz.

In the inequality (4), the function H0u is considered as a function of (z, y) instead
of (y, z). The result means in particular that, for almost every z ∈ (−a, a), the function
y 7→ (H0u)(y, z) belongs to Hs(−a, a) for every s ∈ [0, 1), and the resulting function of z
is of class L1.

Similarly, every u ∈ L1(−a, a;BV (0, a)) is considered as a function of (z, r) instead of
(r, z); this means that, for almost every z ∈ (−a, a), the function r 7→ u(r, z) belongs to
BV (0, a), and the resulting function of z is of class L1 on (−a, a).

Remark 1. It actually follows from the proof below (see Lemma 3 and Remark 3) that
BV (Ω) (resp., BV0(Ω)) is continuously embedded in L1(−a, a;BV (0, a))
(resp., L1(−a, a;BV0(0, a))).

Remark 2. Theorem 1 and Remark 1 hold as well for the blurred projection operator
H = BH0 = K ⋆H0.

Proof of Theorem 1. Let us first prove that H0 is linear and continuous from L1(Ω) into
L1(Ω1).

Lemma 1. For every u ∈ L1(Ω), there holds ‖H0u‖L1(Ω1) 6 2πa‖u‖L1(Ω).

Proof of Lemma 1. For every z ∈ (−a, a), one has

∫ a

−a
|(H0u)(y, z)| dy 6 2

∫ a

−a

∫ a

|y|
|u(r, z)| r√

r2 − y2
dr dy,

and, using Fubini’s Theorem and the fact that
∫ r
−r

r√
r2−y2

dy = rπ, one arrives at

∫ a

−a
|(H0u)(y, z)| dy 6 2πa

∫ a

0
|u(r, z)| dr.

Integrating with respect to z, the result follows.

We next prove that H0 is linear and continuous from BV (Ω) into BV (Ω1).
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Lemma 2. There exists C0 > 0 such that ‖H0u‖BV (Ω1) 6 C0‖u‖BV (Ω), for every u ∈
BV (Ω).

Proof of Lemma 2. Using Lemma 1, it suffices to prove the existence of a constant C0 > 0
such that ∫

Ω1

(H0u)(y, z) div ξ(y, z) dy dz 6 C0‖u‖BV (Ω)‖ξ‖L∞(Ω1),

for every u ∈ BV (Ω) and every ξ = (ξ1, ξ2) ∈ C1
c (Ω1,R

2). Using Fubini’s Theorem, one
has

∫

Ω1

(H0u)(y, z) div ξ(y, z) dy dz

= 2

∫ a

−a

∫ a

−a

∫ a

|y|
u(r, z)

r√
r2 − y2

(
∂ξ1
∂y

(y, z) +
∂ξ2
∂z

(y, z)

)
dr dy dz

= 2

∫ a

−a

∫ a

0
u(r, z)

∫ r

−r

r√
r2 − y2

(
∂ξ1
∂y

(y, z) +
∂ξ2
∂z

(y, z)

)
dy dr dz

=

∫ a

−a

∫ a

0
u(r, z) divϕ(r, z) dr dz

=

∫

Ω
u(r, z) divϕ(r, z) dr dz

where the function ϕ = (ϕ1, ϕ2) is defined on [0, a] × [−a, a] by

ϕ1(r, z) = 2

∫ r

0

∫ τ

−τ

τ√
τ2 − y2

∂ξ1
∂y

(y, z) dy dτ,

ϕ2(r, z) = 2

∫ r

−r

r√
r2 − y2

ξ2(y, z) dy.

An easy computation shows that

ϕ1(r, z) = 2

∫ r

−r

y√
r2 − y2

ξ1(y, z) dy.

The function ϕ is of class C1, but is not of compact support contained in Ω. Hence,
we must take into account the trace of u on ∂Ω. Recall that, since Ω is bounded and
∂Ω is Lipschitz, functions of BV (Ω) have a trace on ∂Ω of class L1, and we denote by
T∂Ω : BV (Ω) → L1(∂Ω) the corresponding bounded linear trace mapping (see [12]). Using
Green’s formula, one has

∫

Ω
u(r, z) divϕ(r, z) dr dz = −

∫

Ω
ϕ · d(Du) +

∫

∂Ω
(ϕ.ν)T∂Ωu dλ,

where ν denotes the outer unit normal on ∂Ω, and λ denotes the standard one-dimensional
Lebesgue measure (note that ∂Ω is made of four segments). The first integral is bounded
by ∣∣∣∣

∫

Ω
ϕ · d(Du)

∣∣∣∣ =

∣∣∣∣
∫

Ω
ϕ · σu d|Du|

∣∣∣∣ 6 ‖ϕ‖L∞ |Du|(Ω) 6 ‖ϕ‖L∞(Ω)‖u‖BV (Ω),
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and the second integral is bounded by
∣∣∣∣
∫

∂Ω
(ϕ.ν)T∂Ωu dλ

∣∣∣∣ 6 CT ‖ϕ‖L∞(∂Ω)‖u‖BV (Ω),

where CT > 0 is the norm of the trace operator T∂Ω. Clearly, there exists C1 > 0 such
that

‖ϕ‖L∞(Ω) + ‖ϕ‖L∞(∂Ω) 6 C1‖ξ‖L∞(Ω1).

The proof follows.

Lemma 3. Let a < b and c < d be real numbers, let O = (a, b)×(c, d), and let g ∈ BV (O).
For almost every x ∈ (a, b), the marginal function gx : y 7→ g(x, y) is of bounded variation

on (c, d). Moreover, |Dg|(O) >
∫ b
a |Dgx|(c, d) dx.

Remark 3. It follows from this lemma that BV (O) is continuously embedded in the space
L1(a, b;BV (c, d)). This fact justifies the end of Remark 1.

Proof. The proof of this lemma is actually contained in [6] (see also [12, Theorem 2 page
220]), however since this result is used repeatedly in the proof of the theorem, we provide
a proof for the convenience of the reader.

First of all, since g ∈ L1(O), it follows from Fubini’s Theorem that gx ∈ L1(c, d)
for almost every x ∈ (a, b). Recall that W 1,1(O) is dense in BV (O) in the sense of the
intermediate convergence, that is, there exists a sequence of functions gk ∈W 1,1(O) such
that gk converges to g in L1(O) and |Dgk|(O) → |Dg|(O) (see e.g. [12]). Note that, since
gk ∈W 1,1(O), there holds Dgk = ∇gk and |Dgk|(O) =

∫
O ‖∇gk(x, y)‖ dx dy.

From this result, we deduce two properties.
First, we infer that there exists a subsequence (gx

ϕ(k)) of the sequence of functions

gx
k : y 7→ gk(x, y) that converges to gx : y 7→ g(x, y) in L1(c, d), for almost every x ∈ (a, b)

(with ϕ independent on x). Indeed, since gk converges to g in L1(O), denoting hk(x) =∫ d
c |gk(x, y) − g(x, y)|dy, it follows from Fubini’s Theorem that

∫ b

a
hk(x)dx =

∫ b

a

∫ d

c
|gk(x, y) − g(x, y)| dy dx→ 0,

i.e., hk converges to 0 in L1(a, b). Therefore, there exists a subsequence of (hk) converging
almost everywhere to 0 on (a, b). In other words, a subsequence of (gx

k) converges to gx in
L1(c, d), for almost every x ∈ (a, b).

Second, we infer that
lim inf
k→+∞

|Dgx
k |(c, d) < +∞,

for almost every x ∈ (a, b). Indeed, we have |Dgk|(O) → |Dg|(O), and

|Dgk|(O) =

∫

O
‖∇gk(x, y)‖ dx dy >

∫ b

a

∫ d

c

∣∣∣∣
∂gk

∂y
(x, y)

∣∣∣∣ dy dx =

∫ b

a
|Dgx

k |(c, d) dx.

Note that the latter equality holds because, since gk ∈ W 1,1(O), it follows from Fubini’s
Theorem that, for almost every x ∈ (a, b), the function gx

k belongs to W 1,1(c, d), and thus
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in particular its total variation is |Dgx
k |(c, d) =

∫ d
c

∣∣∣∂gk
∂y (x, y)

∣∣∣ dy. From Fatou’s Lemma,

the function x 7→ lim inf
k→+∞

|Dgx
k |(c, d) is measurable on (a, b), and

∫ b

a
lim inf
k→+∞

|Dgx
k |(c, d) dx 6 lim inf

k→+∞

∫ b

a
|Dgx

k |(c, d) dx 6 |Dg|(O). (5)

It follows that lim inf
k→+∞

|Dgx
k |(c, d) < +∞ for almost every x ∈ (a, b).

From these two points, we can achieve the proof of the lemma, as follows. Let ψ ∈
C1

c ((c, d),R) such that ‖ψ‖L∞ 6 1. Then, for almost every x ∈ (a, b),

∫ d

c
gx(y)ψ′(y) dy = lim

k→+∞

∫ d

c
gx
ϕ(k)(y)ψ

′(y) dy 6 lim inf
k→+∞

|Dgx
k |(c, d) < +∞

and therefore gx ∈ BV (c, d). Moreover, integrating this inequality on [a, b] and using (5)

leads to
∫ b
a |Dgx|(c, d) dx 6 |Dg|(O).

In the sequel, we denote by Fyv the Fourier transform of an integrable function v :
R × R → R with respect to the first variable, that is,

(Fyv)(ξ, z) =

∫

R

v(y, z)e−2iπyξ dy,

for all ξ, z ∈ R.
Recall, for every u ∈ L1(Ω), the function H0u is of compact support contained in

Ω1. In the lemma below, and in the sequel, ũ (resp. H̃0u) denotes the extension by 0 to

R
2 of the function u (resp. H0u). Similarly, we denote by H̃0 the operator defined by

H̃0u = H̃0u, for every u ∈ L1(Ω).

Lemma 4. There holds

(FyH̃0u)(ξ, z) = 2π

∫ a

0
rũ(r, z)J0(2πξr) dr, (6)

for every u ∈ L1(Ω), every ξ ∈ R and almost every z ∈ R, where J0 is the Bessel function
of the first kind defined by

J0(x) =
2

π

∫ 1

0

cos(tx)√
1 − t2

dt. (7)

The adjoint of FyH̃0 (with L2 as a pivot space) is given by

((FyH̃0)
∗v)(r, z) = 2πr

∫

R

v(ξ, z)J0(2πξr) dξ, (8)

for every v ∈ L1(R2), every r ∈ [0, a) and almost every z ∈ (−a, a).
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Proof. Applying Fubini’s Theorem, we compute, for every ξ ∈ R and almost every z ∈
(−a, a),

(FyH̃0u)(ξ, z) =

∫ a

−a
H0u(y, z)e

−2iπyξdy

= 2

∫ a

−a

∫ a

|y|
u(r, z)

r√
r2 − y2

e−2iπyξdr dy

= 2

∫ a

0

∫ r

−r
u(r, z)

r√
r2 − y2

e−2iπyξdy dr

= 2

∫ a

0
ru(r, z)

(∫ 1

−1

1√
1 − t2

e−2iπrtξdt

)
dr

= 2

∫ a

0
ru(r, z)ν̂(rξ)dr

where

ν(t) =
1√

1 − t2
1[−1,1](t),

and ν̂ is the Fourier transform of the function ν. The function ν̂ can be computed using
the Bessel function of the first kind J0 defined by (7) (see [2]). Since ν is even, its Fourier
transform is

ν̂(ω) = 2

∫ 1

0

cos(2πωt)√
1 − t2

dt = πJ0(2πω),

and the formula (6) follows. Let us now compute the adjoint of FyH̃0, with L2 as a pivot
space. For every v ∈ L1(R2) and every u ∈ L∞(Ω), we have

〈(FyH̃0)
∗v, u〉 = 〈v,FyH̃0u〉 =

∫

R

∫

R

v(ξ, z)FyH̃0u(ξ, z) dξ dz

= 2π

∫

R

∫

R

∫ a

0
rũ(r, z)v(ξ, z)J0(2πξr) dr dξ dz

= 2π

∫ a

0

∫

R

rũ(r, z)

∫

R

v(ξ, z)J0(2πξr) dξ dz dr

and hence (FyH̃0)
∗v(r, z) = 2πr

∫
R
v(ξ, z)J0(2πξr) dξ.

To prove the theorem, we next make use of the asymptotic properties of the Bessel
functions J0 and J1, where the function J1 is defined by

J1(x) =
x√

πΓ(3/2)

∫ 1

0
cos(tx)

√
1 − t2 dt.

Recall that

|J0(x)| 6 1, |J1(x)| 6
1√
2
, (9)

J ′
0(x) = −J1(x),

d

dx
(xJ1(x)) = xJ0(x), (10)
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for every x ∈ R, and

|J1(x)| 6
1√
x

(11)

as x→ +∞ (see e.g. [2]).

Lemma 5. There exists C2 > 0 (only depending on a) such that, for every
u ∈ L1(−a, a;BV (0, a)), there holds

∣∣∣(FyH̃0u)(ξ, z)
∣∣∣ 6

C2

(1 + ξ2)3/4

(
|uz(a)| + ‖uz‖L1(0,a) + |Duz|(0, a)

)
, (12)

for every ξ ∈ R and almost every z ∈ (−a, a).
In the above statement, recall that u ∈ L1(−a, a;BV (0, a)) is seen as a function of

(z, r); in particular, for almost every z ∈ (−a, a), the function r 7→ uz(r) = u(r, z) is of
bounded variations on [0, a), and its total variation is denoted |Duz|(0, a). Also, note that
uz(a) exists for almost every z ∈ (−a, a).

Proof of Lemma 5. Using the formula (6) and the estimate (9), it is first clear that

∣∣∣(FyH̃0u)(ξ, z)
∣∣∣ 6 2πa‖uz‖L1(0,a), (13)

for every ξ ∈ R and almost every z ∈ (−a, a).
From (10), there holds

d

dr
(2πξrJ1(2πξr)) = (2πξ)2rJ0(2πξr),

and, using Green’s formula (integration by parts), one gets, for every ξ 6= 0 and almost
every z ∈ (−a, a) (such that uz(a) exists),

(FyH̃0u)(ξ, z) =
1

2πξ2

∫ a

0
uz(r)(2πξ)

2rJ0(2πξr) dr

=
a

ξ
J1(2πξa)uz(a) −

1

ξ

∫

[0,a]
rJ1(2πξr) d(Duz)

(14)

and hence, using (11), it follows that

∣∣∣(FyH̃0u)(ξ, z)
∣∣∣ 6

1

|ξ|3/2

√
a

2π
(|uz(a)| + |Duz|(0, a)) (15)

as |ξ| → +∞.
The estimate (12) finally follows from (13) and (15).
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We are now in a position to estimate ‖H0u‖L1(−a,a;Hs(−a,a)). Using (12), it first follows

that, for almost every z ∈ (−a, a), the Hs norm of the function y 7→ (H̃0u)(y, z) is
estimated by4

‖(H̃0u)(·, z)‖Hs(R) =

(∫

R

(1 + ξ2)s |(FyH0u)(ξ, z)|2 dξ
)1/2

6 C2

(
|uz(a)| + ‖uz‖L1(0,a) + |Duz|(0, a)

) (∫

R

(1 + ξ2)s−3/2dξ

)1/2

.

The integral
∫

R
(1 + ξ2)s−3/2dξ converges if and only if 2s − 3 < −1, that is, s < 1. It

follows that, for almost every z ∈ (−a, a), the function y 7→ (H̃0u)(y, z) belongs to Hs(R),
for every s ∈ [0, 1).

Now, for almost every z ∈ (−a, a), the function y 7→ (H0u)(y, z) is the restriction to

(−a, a) of the function y 7→ (H̃0u)(y, z) (which is by definition equal to 0 outside (−a, a)).
It then follows from the characterization of fractional Hilbert spaces on a subset by the
quotient norm (see Appendix, Section 4.2.1) that this function belongs to Hs(−a, a), for

every s ∈ [0, 1), and that, up to some constant, ‖(H0u)(·, z)‖Hs(−a,a) 6 ‖(H̃0u)(·, z)‖Hs(R),
for almost every z ∈ (−a, a). Hence, for every s ∈ [0, 1), there exists C3 > 0 such that, for
every u ∈ L1(−a, a;BV (0, a)), there holds

‖H0u(·, z)‖Hs(−a,a) 6 C3

(
|uz(a)| + ‖uz‖L1(0,a) + |Duz|(0, a)

)
, (16)

for almost every z ∈ (−a, a).
As a byproduct, note that the function y 7→ H0u(y, z), defined on (−a, a), can be

extended (by 0) to a function of Hs(R), for every s ∈ [0, 1), for almost every z ∈ (−a, a).
It follows from [26, Lemma 37.1] (see results recalled in Appendix, Section 4.2.1) that the
function y 7→ ρ(y)−sH0u(y, z) belongs to L2(−a, a), where ρ denotes the distance to the
boundary of (−a, a), that is, ρ(y) = a− |y| for every y ∈ (−a, a). In turn, for s = 1/2, the

function y 7→ H0u(y, z) belongs to the Lions-Magenes space H
1/2
00 (−a, a) (see Appendix,

Section 4.2.2), for almost every z ∈ (−a, a).
Integrating (16) with respect to z leads to

‖H0u‖L1(−a,a;Hs(−a,a)) 6 C3

(∫ a

−a
|u(a, z)| dz + ‖u‖L1(Ω) +

∫ a

−a
|Duz|(0, a) dz

)
. (17)

This inequality implies the remaining items of the theorem.
Indeed, let us first consider functions u ∈ BV (Ω). It has already been mentioned that

the trace operator is continuous from BV (Ω) into L1(∂Ω), hence it follows that

∫ a

−a
|u(a, z)| dz 6 C4‖u‖BV (Ω) (18)

4Here, we use the definition of the Hs norm in terms of Fourier transform, recalled in the Appendix,
Section 4.1.1.
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for some constant C4 > 0. Moreover, from Lemma 3, there holds

∫ a

−a
|Duz|(0, a) dz 6 |Du|(Ω). (19)

The estimate (4) follows from (17), (18), (19), and Lemma 2.
The other items follow similarly. This ends the proof of the theorem.

Theorem 1 states a strong functional property of the projection operator, which is
however not very suitable in view of a variational approach. In order to derive necessary
conditions for optimality, it would be better to establish functional properties of H0 in
some Hilbert spaces. This is the object of the next section.

2.3 Hilbertian functional properties of the projection operator

We have already mentioned that we handle functions of bounded variation on Ω that
take their values in {0, 1} almost everywhere. Denote by BV (Ω, {0, 1}) the set of such
functions. First of all, notice that such functions belong to L1(−a, a;BV ([0, a), {0, 1})),
as already mentioned in Remarks 1 and 3; they also share the following property.

Lemma 6. For every u ∈ BV (Ω, {0, 1}), the function (z, r) 7→ u(r, z) belongs to the
Banach space L1(−a, a;Hs(0, a)), for every s ∈ [0, 1/2).

Proof of Proposition 6. Let u ∈ BV (Ω, {0, 1}). As mentioned above, from Lemma 3, the
function uz : r 7→ uz(r) = u(r, z) is of bounded variation on [0, a), for almost every
z ∈ (−a, a). Since uz takes its values in {0, 1}, its set of discontinuities is finite. It follows
that, for almost every z ∈ (−a, a), there exist an integer nz and real numbers (αi)16i6nz ,
(βi)16i6nz satisfying

0 6 α1 < β1 < α2 < β2 < · · · < αnz < βnz 6 a,

such that

uz(r) =

nz∑

i=1

1[αi,βi](r), (20)

for almost every r ∈ [0, a). Note that the total variation of the function uz is
∫
[0,a) |Duz| =

2nz. From Lemma 3, there holds

∫

Ω
|Du| > 2

∫ a

−a
nz dz,

and hence the function z 7→ nz belongs to L1(−a, a).
The function uz is extended by 0 outside [0, a), into a function ũz ∈ L1(R). Using

(20), one easily computes, for almost every z ∈ (−a, a), the Fourier transform of ũz as

(F ũz)(ξ) =

nz∑

i=1

sin(π(βi − αi)ξ)

πξ
e−iπ(βi+αi)ξ,
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for every ξ ∈ R. In particular, there holds

|(F ũz)(ξ)| 6

nz∑

i=1

|βi − αi| 6 a, (21)

for every ξ ∈ R, and

|(F ũz)(ξ)| 6
nz

π|ξ| , (22)

for every ξ ∈ R \ {0}. Using the definition of the Hs norm in terms of Fourier transform
(recalled in the Appendix, Section 4.1.1), and using (21) and (22), one has the estimate

‖ũz‖2
Hs(R) =

∫

R

(1 + ξ2)s|F ũz(ξ)|2dξ

=

∫

|ξ|>1
(1 + ξ2)s|F ũz(ξ)|2dξ +

∫

|ξ|61
(1 + ξ2)s|F ũz(ξ)|2dξ

6

∫

|ξ|>1
(1 + ξ2)s n2

z

π2ξ2
dξ +

∫

|ξ|61
(1 + ξ2)sa2dξ

which is convergent if s < 1/2. Hence ũz ∈ Hs(R), for almost every z ∈ (−a, a) and every
s ∈ [0, 1/2). Since uz is the restriction of ũz to (0, a), it follows, using the definition of
Hs(0, a) in terms of quotient norm (see Appendix, Section 4.2.1), that uz ∈ Hs(0, a), for
almost every z ∈ (−a, a) and every s ∈ [0, 1/2). Moreover, there exists a constant C > 0,
depending only on s and a, such that

‖uz‖Hs(0,a) 6 Cnz.

Since the function z 7→ nz belongs to L1(−a, a), we infer that the function (z, r) 7→ u(r, z)
belongs to L1(−a, a;Hs(0, a)), for s ∈ [0, 1/2).

To comply with the variational approach that we propose next, it would be better to
deal with Hilbert spaces and, for instance, to replace L1 with L2 in the previous statements.
Unfortunately, we have the following negative remark.

Remark 4. There exist some functions u ∈ BV (Ω, {0, 1}) such that the function (z, r) 7→
u(r, z) does not belong to L2(−a, a;BV (0, a)).

Let us provide an example of such a function5. Consider in the plane, endowed with
coordinates (x, y), the unit square [0, 1] × [0, 1]. We append to this square, on its right
side, the two smaller squares

[
1, 1 +

1

4

]
×

[
1,

1

4

]
and

[
1, 1 +

1

4

]
×

[
3

4
, 1

]
.

Then, we apply a similar appending procedure to each of these latter squares, and so forth,
iteratively. We obtain a fractal object (see Figure 1). Then, we claim that the function u
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Figure 1: Fractal object

defined on [0, 2] × [0, 1] as the characteristic function of this fractal domain is of bounded
variation.

Indeed, the L1 norm of u is the sum of the areas of all squares, that is

+∞∑

k=0

2k

(
1

4k

)2

=

+∞∑

k=0

1

2k
< +∞.

To prove that u ∈ BV ([0, 2]× [0, 1], {0, 1}), it suffices to show that the marginal functions
ux : y 7→ u(x, y) and uy : x 7→ u(x, y) are of bounded variation (see [12, Theorem 2 page
220]). This property is obvious, since for any y the marginal functions uy have at most
one jump, and for every x the marginal functions ux have a finite number nx of jumps.
More precisely,

nx =





2k if 1 +

k−1∑

i=1

1

4i
6 x 6 1 +

k∑

i=1

1

4i
, ∀k > 1,

0 otherwise.

There holds ∫ 2

0
nx dx =

+∞∑

k=1

2k

4k
=

+∞∑

k=1

1

2k
< +∞,

that is, the function x 7→ nx belongs to L1(0, 2), as expected (see Proposition 6 and its
proof), however it does not belong to L2(0, 2) since

∫ 2

0
n2

x dx =
+∞∑

k=1

(2k)2

4k
=

+∞∑

k=1

1 = +∞.

5This example has been indicated to us by Simon Masnou.
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This example shows that the functions considered in our framework, belonging to
BV (Ω, {0, 1}), do not necessarily belong to the Banach space L2(−a, a;BV (0, a)).

In what follows, we are however going to work within this latter space. More precisely,
since our functions vanish on the set Γ defined by (3), we are going to work within the
space L2(−a, a;BV0(0, a)). Indeed, this Banach space is better suited for our tomography
problem, because we are able to prove that the projection operator H0 is linear and
continuous from L2(−a, a;BV0(0, a)) into the Hilbert space L2(−a, a;Hs(−a, a)), for every
s ∈ [0, a) (see Theorem 2 further). The Hilbert space L2(−a, a;Hs(−a, a)) is then far more
suitable for numerical purposes than the Banach space L1(−a, a;Hs(−a, a)), and the use of
a scalar product makes easier the derivation of an optimality system (first order necessary
conditions for optimality).

Hence, although the space L2(−a, a;BV0(0, a)) differs from the usual space BV0(Ω),
it happens to be relevant in our problem. Actually, in practice, the binary functions
considered in our imaging process belong to the space L∞(−a, a;BV0(0, a)) (and thus, a
fortiori, to L2(−a, a;BV0(0, a))). Indeed, in practice the functions z 7→ nz are uniformly
bounded with respect to z ∈ (−a, a). Concretely, this means that the number of jumps of
our binary images is uniformly bounded in every direction.

The next theorem, which is our second main result, provides nice functional properties
of the projection operator H0 in this new framework. We first give some notations. Denote
by

X = L2(−a, a;BV0(0, a)), (23)

the set of all functions u ∈ L2(Ω) such that the function (z, r) 7→ u(r, z) belongs to
L2(−a, a;BV0(0, a)). Recall that BV0(0, a) is the closed subset of the set of functions f ∈
BV (0, a) vanishing at a; the total variation, which is a semi-norm, is a norm on BV0(0, a).
It follows that the space X is a closed subspace of the Banach space L2(−a, a;BV (0, a)),
and can be endowed with the norm

‖u‖X =

(∫ a

−a
(|Duz|(0, a))2 dz

)1/2

. (24)

Recall that, for s > 0, Hs
0(−a, a) is defined as the closure in Hs(−a, a) of the set

of all smooth functions having a compact support contained in (−a, a). Note that, for
s ∈ [0, 1/2], there holds Hs

0(−a, a) = Hs(−a, a) (see Appendix, Section 4). For every
s ∈ [0, 1), s 6= 1/2, denote by

Ys = L2(−a, a;Hs
0(−a, a)), (25)

the set of all functions v ∈ L2(Ω1) such that the function (z, y) 7→ v(y, z) belongs to
L2(−a, a;Hs

0(−a, a)). It is a closed subspace of L2(−a, a;Hs(−a, a)), and, endowed with
the norm

‖v‖Ys =

(∫ a

−a
‖v(·, z)‖2

Hs(−a,a) dz

)1/2

, (26)

Ys is a Hilbert space. For s = 1/2, define, similarly, the Hilbert space

Y1/2 = L2(−a, a;H1/2
00 (−a, a)). (27)
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Theorem 2. For every s ∈ [0, 1), the operator H0 is linear and continuous from X into Ys.

Remark 5. Theorem 2 holds as well for the blurred projection operator H = BH0 =
K ⋆H0.

Proof of Theorem 2. Using the reasoning of the proof of Theorem 1, the inequality (16)
implies that, for every u ∈ L2(−a, a;BV0(0, a)),

‖H0u(·, z)‖Hs(−a,a) 6 C3

(
‖uz‖L1(0,a) + |Duz|(0, a)

)
,

for almost every z ∈ (−a, a). Integrating with respect to z the square of this inequality
leads to the result.

3 Variational approach for tomographic reconstruction

3.1 Minimization problem in fractional Sobolev spaces

Let vd be the projected image (observed data), and let α > 0. As explained in Section
1, we have proposed in [1] an approach for tomographic reconstruction based on the
consideration of the minimization problem





minF (u), with F (u) =
1

2
‖Hu− vd‖2

L2(Ω1) + αΦ(u),

u ∈ BV (Ω),
u(r, z) ∈ {0, 1} a.e. on Ω.

Note that the pointwise constraint, u(r, z) ∈ {0, 1} a.e. on Ω, is a very hard constraint.
The constraint set is not convex and its interior is empty for most usual topologies.

Based on the functional analysis of Section 2, we propose here to define the functional
to be minimized in another way, according to the regularity properties proved in Theorems
1 and 2. In view of deriving an optimality system and taking benefit of some Hilbertian
structure, we use the results of Theorem 2 and Remark 5, according to which the blurred
projection operator H is linear and continuous from X into Ys, for every s ∈ [0, 1).
Assuming that vd ∈ Ys (observed data), we are led to consider the minimization problem

(Ps
1)





minF s
1 (u), with F s

1 (u) =
1

2
‖Hu− vd‖2

Ys
+ αΦ(u),

u ∈ BV (Ω) ∩X,
‖u‖X 6 η,
u(r, z) ∈ {0, 1} a.e. on Ω,

where s ∈ [0, 1) and α > 0 are fixed parameters, and η > 0 is a fixed (large) real number.
The constraint ‖u‖X 6 η happens to be necessary in order to derive an existence theorem.
For η large enough, this constraint is however not active6 and does not change anything
to the above minimization problem.

6As explained formerly, the slices of the binary images treated in practice have a finite number of
connected components, uniformly with respect to the slice; this means that there exists R > 0 such
that ‖u‖L∞(−a,a;BV0(0,a)) 6 η, for every u in the set under consideration, and this implies the constraint
considered here.
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The parameter α > 0 is the weight of the total variation. This term is a usual regular-
ization term in image processing. In our framework there is however another possibility,
namely, we can replace this term with a regularization term involving the norm of X. In
that case, we rather consider the minimization problem

(Ps
2)





minF s
2 (u), with F s

2 (u) =
1

2
‖Hu− vd‖2

Ys
+
α

2
‖u‖2

X ,

u ∈ X,
u(r, z) ∈ {0, 1} a.e. on Ω.

Note that, in the latter minimization problem, the use of η > 0 is not needed.

Theorem 3. For all s ∈ [0, 1), α > 0 and η > 0, the minimization problems (Ps
1) and

(Ps
2) admit at least one solution.

Proof. Let s ∈ [0, 1), α > 0 and η > 0 be fixed. Let (un) be a minimizing sequence
in BV (Ω) ∩ X of the minimization problem (Ps

1), satisfying ‖un‖X 6 η and un(x) ∈
{0, 1} almost everywhere on Ω. Then, the sequences (‖Hun − vd‖Ys)n∈N, (Φ(un))n∈N and
(‖un‖X)n∈N are bounded, and we deduce three things.

First, the sequence (Hun)n∈N is bounded in the Hilbert space Ys, and therefore, up
to a subsequence it converges weakly to some w ∈ Ys; in particular, using the continuous
embedding of BV (−a, a) in L2(−a, a), it converges as well to w, up to some subsequence,
for the weak topology of L2(Ω1).

Second, the sequence (un)n∈N is bounded in BV (Ω) ∩ L∞(Ω), and hence, up to a
subsequence, it converges to some u ∈ BV (Ω)∩L∞(Ω) for the weak-star topology, i.e., up
to a subsequence, (un)n∈N converges strongly to some u ∈ L1(Ω) and (Dun)n∈N converges
to Du in the space of Radon measures for the weak-star topology.

Third, the sequence (un)n∈N is bounded in X (by η). The space X inherits of the weak
compactness properties of L2 and BV ; hence, the sequence (un)n∈N converges, up to a
subsequence, to some ū ∈ X for the weak-star topology, and the lower semi-continuity of
the norm yields the inequality ‖ū‖X 6 η. In particular, (un)n∈N converges weakly to ū in
L2(Ω), and thus ū = u.

From Theorem 2, the operator H is linear and continuous from X into Ys. Hence, up
to a subsequence, (Hun)n∈N converges weakly to Hu in Ys. It follows that w = Hu.

Since Φ is lower semi-continuous with respect to the weak-star topology, there holds

Φ(u) 6 lim inf
n→∞

Φ(un).

Using the weak convergence, up to a subsequence, of (Hun)n∈N to Hu in Ys, we infer that

inf F s
1 = lim

n→+∞

(
1

2
‖Hun − vd‖2

Ys
+ αΦ(un)

)
> ‖Hu− vd‖2

Ys
+ αΦ(u) = F s

1 (u),

and hence F s
1 (u) = inf F s

1 . Finally, (un) converges to u in L1(Ω), and thus, converges
almost everywhere (up to a subsequence) to u. Hence, the pointwise constraint u(x) ∈
{0, 1} is satisfied almost everywhere, and therefore u is a solution of (Ps

1).
For the minimization problem (Ps

2), the proof is similar but simpler.
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3.2 Penalization of the binarity constraint

Due to the binarity constraint, u(r, z) ∈ {0, 1} a.e. on Ω, which is not convex and is of
empty interior for most usual topologies, the minimization problems (Ps

1) and (Ps
2) are

not directly tractable for numerical purposes. To deal with the binarity constraint, we
propose as in [1] a penalization method. Let ε > 0, β > 0, and let ūs

i be a solution of
(Ps

i ), for i = 1, 2. Define

F s
i,ε(u) = F s

i (u) +
1

2ε
‖u− u2‖2

L2(Ω) +
β

2
‖u− ūs

i‖2
L2(Ω),

for i = 1, 2, and consider the penalized minimization problems

(Ps
1,ε)





minF s
1,ε(u)

u ∈ BV (Ω) ∩X,
‖u‖X 6 η,
‖u‖L∞(Ω) 6 η,

and

(Ps
2,ε)





minF s
2,ε(u)

u ∈ X,
‖u‖L∞(Ω) 6 η.

Actually in what follows η is chosen large enough, and the resulting constraint should not
be active. This constraint is however necessary in order to derive existence results, but
does not affect the numerical process. In the sequel we do not mention the dependence of
the penalized problems (Ps

i,ε), i = 1, 2 with respect to the parameter η that can be chosen
as large as desired but is fixed. A contrario the penalization parameter ε will tend to 0.
The term β

2 ‖u− ūs
i‖2

L2(Ω) is an additional penalization term permitting to focus, from the

theoretical point of view, on a particular solution ūs
i of (Ps

i ). In practice, the solution ūs
i

is of course not known and we choose β = 0.

Theorem 4. The penalized minimization problem (Ps
i,ε) has at least one solution us

i,ε, for
i = 1, 2.

Proof. Let (un)n∈N be a minimizing sequence of the minimization problem (Ps
1,ε). First,

in particular, the sequence (un)n∈N is bounded in BV (Ω) and in L∞(Ω), and thus, up to
a subsequence, converges to some us

1,ε ∈ BV (Ω) for the weak-star topology, and hence for

the strong L1(Ω) topology. Since it is moreover bounded (by η) in L∞(Ω), it follows from
the Lebesgue dominated convergence theorem that the convergence holds for the strong
topology of Lp(Ω), for every p ∈ [1,+∞). In addition, since every closed ball of L∞(Ω) is
compact for the L∞ weak star topology, we infer that ‖us

1,ε‖ 6 η.
The rest of the proof is similar to the proof of Theorem 3.
For the minimization problem (Ps

2,ε), the proof is similar but simpler.

Theorem 5. 1. Every cluster point u∗1 in BV (Ω) ∩X of the family (us
1,ε) at ε = 0 is

a solution of (Ps
1), and every cluster point u∗2 in X of the family (us

2,ε) at ε = 0 is a
solution of (Ps

2). If moreover β > 0 then u∗i = ūs
i , for i = 1, 2.
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2. There holds lim
ε→0

F s
i,ε(ui,ε) = inf F s

i , and lim
ε→0

∫

Ω
|Dus

1,ε| =

∫

Ω
|Du∗1|.

Proof. Since ūs
1 ∈ BV (Ω) is a solution of (Ps

1), one has F s
1,ε(u

s
1,ε) 6 F s

1,ε(ū
s
1) = F s

1 (ūs
1) =

inf F s
1 , for every ε > 0. Therefore, the family (us

1,ε) is bounded in BV (Ω), and ‖us
1,ε −

(us
1,ε)

2‖L2(Ω) tends to 0 as ε tends to 0. Let u∗1 be a (strong) cluster point of (us
1,ε) in

BV (Ω) ∩ X of the family (us
1,ε) at ε = 0. Using the same reasoning as in the proof

of Theorem 4, it follows that u∗1 is a (strong) cluster point of (us
1,ε) in Lp(Ω), for every

p ∈ [1,+∞). Then,

‖u∗1 − (u∗1)
2‖L2(Ω) 6 lim inf

ε→0
‖us

1,ε − (us
1,ε)

2‖L2(Ω) = 0,

so that u∗1(1 − u∗1) = 0 almost everywhere on Ω, which is the binarity constraint. Since
F s

1 (u1,ε) + β‖us
1,ε − ūs

1‖2
2 6 F s

1,ε(u
s
1,ε) 6 inf F s

1 , one gets F s
1 (u∗1) 6 F s

1 (u∗1) + β‖u∗1 − ūs
1‖2

2 6

inf F s
1 . Therefore u∗1 is a solution of (Ps

1). In addition, if β > 0, then u∗1 = ūs
1. Finally,

since inf F s
1 = F s

1 (u∗) 6 F s
1,ε(u

∗) 6 lim inf F s
1,ε(u

s
1,ε) 6 inf F s

1 , (since F s
1,ε(u

s
1,ε) 6 inf F s

1 ,)
it follows that lim

ε→0
F s

1,ε(u
s
1,ε) = inf F s

1 . Moreover, writing

lim inf
ε→0

F s
1 (us

1,ε) + lim sup
ε→0

1

ε
‖us

1,ε − (us
1,ε)

2‖2
2

6 lim
ε→0

(
F s

1 (us
1,ε) +

1

ε
‖us

1,ε − (us
1,ε)

2‖2
2

)
= F s

1 (u∗1)

6 lim inf
ε→0

F s
1 (us

1,ε),

it follows that lim
ε→0

1

ε
‖us

1,ε − (us
1,ε)

2‖2
2 = 0, and then that lim

ε→0
F s

1 (us
1,ε) = F s

1 (u∗1). The con-

clusion follows then from the continuity properties of H.
The proof is similar for the family (us

2,ε).

3.3 Optimality system of the penalized minimization problems

This section is devoted to the derivation of first order necessary conditions for the penalized
minimization problems (Ps

i,ε), i = 1, 2. Throughout the section, let s ∈ [0, 1), α > 0, η > 0,
ε > 0 and β > 0 be fixed. Denote by

Vi =

{
BV (Ω) ∩X if i = 1,
X if i = 2,

Ji(u) =

{
Φ(u) if i = 1,
1

2
‖u‖2

X if i = 2,

and

Bη =

{
{u ∈ BV (Ω) ∩X | ‖u‖X 6 η and ‖u‖L∞(Ω) 6 η} if i = 1,

{u ∈ X | ‖u‖L∞(Ω) 6 η} if i = 2.
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For i = 1, 2, for every u ∈ Vi ∩ Bη, define

Gs(u) =
1

2
‖Hu− vd‖2

Ys
,

and

Gs
i,ε(u) = Gs(u) +

1

2ε
‖u− u2‖2

L2(Ω) +
β

2
‖u− ūs

i‖2
L2(Ω).

With these notations, one has

F s
i (u) = Gs(u) + αJi(u),

F s
i,ε(u) = Gs

i,ε(u) + αJi(u),

for i = 1, 2, and the penalized minimization problem (Ps
i,ε) is the problem of minimizing the

functional F s
i,ε over all functions u ∈ Bη ∩Vi. Denote by us

i,ε a solution of the minimization
problem (Ps

i,ε), for i = 1, 2.
The functional F s

i,ε is not differentiable, due to the term Ji that involves a total vari-
ation. However the functional Gs

i,ε is differentiable, for i = 1, 2, and

∇Gs
i,ε(u) = ∇Gs(u) + qε(u) + β(u− ūs

i ),

for the pivot space L2, where

qε(u) =
(u− u2)(1 − 2u)

ε
, (28)

for every u ∈ Vi.
In what follows, we first provide an expression of the differential of Gs in terms of

Fourier transform (Section 3.3.1), and then using the fractional Laplacian operator or the
fractional Dirichlet Laplacian operator (Section 3.3.2). Then, using results of nonsmooth
analysis to deal with the nonsmooth character of the functional Ji, we derive first or-
der necessary conditions in terms of optimality systems for both penalized minimization
problems (Ps

i,ε), i = 1, 2 (Sections 3.3.3 and 3.3.4).

3.3.1 Computation of ∇Gs in terms of Fourier transform

Recall that Gs(u) =
1

2
‖Hu− vd‖2

Ys
, with Ys defined by (25) and (27). Using the results

recalled in the Appendix (Sections 4.2.1 and 4.2.2), for every s ∈ [0, 1), for every u ∈ Ys,
the function Hu− vd can be extended by 0 to a function of L2(−a, a;Hs(R), and its norm
can be computed in terms of Fourier transform, by

Gs(u) =
1

2

∫ a

−a

∫

R

|Fy(Hu− vd)(ξ, z)|2(1 + ξ2)s dξ dz

=
1

2
‖Fy(Hu− vd)‖2

L2(ωs)
,
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where L2(ωs) is the weighted Hilbertian space of all complex valued functions f defined
on R × (−a, a) such that

∫

R×(−a,a)
|f(ξ, z)|2ωs(ξ) dξ dz < +∞,

where
ωs(ξ) = (1 + ξ2)s. (29)

Setting wd = H−1(vd), we get finally

∇Gs(u) = (FyH)∗ωs(FyH)(u− wd), (30)

with L2 as a pivot space.
To make this expression more explicit, we next compute the Fourier transform of the

blurred projection operator H. Recall that ṽ denotes the extension by 0 to R
2 of any

function v and that, from Lemma 4,

(FyH̃0u)(ξ, z) = 2π

∫ a

0
ru(r, z)J0(2πξr) dr,

for every u ∈ L1(Ω), every ξ ∈ R and almost every z ∈ (−a, a), where J0 is the Bessel
function of the first kind, and

((FyH̃0)
∗v)(r, z) = 2πr

∫

R

v(ξ, z)J0(2πξr) dξ,

for every v ∈ L1(R2), every r ∈ [0, a) and almost every z ∈ (−a, a). As explained in
the introduction, the radiography is blurred, and the blur is modeled by a linear operator
B writing as a convolution with a positive symmetric kernel K (in practice, a Gaussian
kernel) with compact support.

Lemma 7. The Fourier transform of the blurred projection operator H = BH0 with
respect to the first variable is

(FyBH̃0u)(ξ, z) = (FyK)(ξ, ·) ⋆2 (FyH̃0u)(ξ, ·)(z), (31)

for every u ∈ L1(Ω), every ξ ∈ R and almost every z ∈ (−a, a), where the notation ⋆2

stands for the convolution product with respect to the second variable. Its adjoint (with L2

as a pivot space) is

((FyBH̃0
∗
v)(r, z) = (FyH̃0)

∗(Fyg ⋆2 v)(r, z), (32)

for every v ∈ L1(R2), every r ∈ [0, a) and almost every z ∈ (−a, a).
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Proof. Since BH̃0u = K ⋆ (H̃0u), one computes

(FyBH̃0u)(ξ, z) =

∫∫∫

R3

K(y − x, z − s)(H̃0u)(x, s)e
−2iπξydy dx ds

=

∫∫

R2

(H̃0u)(x, s) e
−2iπξx

(∫

R

K(y − x, z − s)e−2iπξ(y−x)dy

)
dx ds

=

∫∫

R2

(FyK)(ξ, z − s)(H̃0u)(x, s) e
−2iπξx dx ds

=

∫

R

(FyK)(ξ, z − s)(FyH0u)(ξ, s) ds

= (FyK)(ξ, ·) ⋆2 (FyH0u)(ξ, ·)(z),

for every u ∈ L1(Ω), every ξ ∈ R and almost every z ∈ (−a, a). Let us now compute the
adjoint. For every v ∈ L1(R2) and every u ∈ L∞(Ω), we have

〈(FyBH̃0)
∗v, u〉 = 〈v,FyBH̃0u〉

=

∫∫

R2

v(ξ, z)(FyBH̃0u)(ξ, z) dξ dz

=

∫∫∫

R3

v(ξ, z)(FyK)(ξ, z − s)(FyH̃0u)(ξ, s) ds dξ dz

= 2π

∫

R

∫

R

∫ a

−a

∫ a

0
v(ξ, z)(FyK)(ξ, z − s)ru(r, s)J0(2πξr) dr ds dξ dz

=

∫ a

0

∫ a

−a
2πru(r, s)

(∫∫

R2

v(ξ, z)(FyK)(ξ, z − s)J0(2πξr) dξ dz

)
ds dr,

and hence, we infer that

(FyBH̃0)
∗v(r, s) = 2πr

∫

R

J0(2πξr)

(∫

R

(FyK)(ξ, z − s) v(ξ, z) dz

)
dξ.

Since the kernel K of B is symmetric, it follows that

(FyBH̃0)
∗v(r, s) = 2πr

∫

R

J0(2πξr) ((FyK)(ξ, ·) ⋆2 v(ξ, ·)) (s) dξ.

The formula (32) then follows from (8).

3.3.2 Computation of ∇Gs in terms of fractional Laplacian

By definition, there holds

Gs(u) =
1

2

∫ a

−a
‖(Hu− vd)(·, z)‖2

Hs
0(−a,a)dz,

for every u ∈ Ys, and every s ∈ [0, 1), s 6= 1/2. For s = 1/2, Hs
0(−a, a) is replaced with

H
1/2
00 (−a, a). Using the results of the Appendix, Section 4.2.3, it follows that, for every
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f ∈ Hs
0(−a, a) whenever s ∈ [0, 1), s 6= 1/2, or f ∈ H

1/2
00 (−a, a) whenever s = 1/2, the

norm of f within these spaces is equivalent to

(
‖f‖2

L2(U) + ‖(−∆)s/2f‖2
L2(Rn)

)1/2
,

where f is extended by 0 outside (−a, a) (notice that (−∆)s/2f is not of compact sup-
port). Here, (−∆)α is the fractional Laplacian operator on R

n, defined, using the Fourier
transform Ff of f , by (−∆)αf = F−1(|ξ|2αFf) (see Appendix, Section 4.1.2). It follows
easily that

∇Gs(u) = RΩ1(id + (−∆)s)(H̃u− ṽd), (33)

with L2 as a pivot space, where H̃u− ṽd is the extension of Hu− vd by 0 outside (−a, a),
and RΩ1 is the restriction to Ω1.

Another possibility is to express the differential of Gs using the fractional Dirichlet
Laplacian operator A defined in Section 4.2.4. We get, similarly,

∇Gs(u) = (id +As)(Hu− vd), (34)

with L2 as a pivot space.

3.3.3 Optimality system of (Ps
1,ε)

In this case the regularization term is the total variation semi-norm. First of all, recall the
next result of [8] that will be used to tackle the nonsmooth character of the total variation,
and then to derive optimality conditions for the penalized problem Ps

1,ε.

Theorem 6 ([8, Theorem 2.3]). Let A be a Borelian subset of R
n. Let ū ∈ K ∩ BV (A)

be the solution of 



minJ (u) + α

∫

A
|Du|,

u ∈ K ∩BV (A),

where K is a closed convex subset of Lp(A) and J is continuous and Gâteaux differentiable
from Lp(A) to R (1 6 p < +∞), and either K is bounded or J is coercive. Then, there
exists λ̄ ∈ (M(A)n)′ (the dual space of Radon measures) such that

〈
J ′(ū) − α div λ̄, u− ū

〉
> 0, (35)

for every u ∈ K ∩BV (A), and

〈
λ̄, µ−Dū

〉
+

∫

Ω
|Dū| 6

∫

Ω
|µ|, (36)

for every µ ∈ (M(A))n, where D : BV (A) → (M(A))n and

〈
div λ̄, u

〉
= −

〈
λ̄, Du

〉
, (37)

for every u ∈ BV (A).
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This result cannot be applied to the original problem (Ps
1) since the set of constraints

is not convex, but can be used to handle the penalized problem (Ps
1,ε). The proof is similar

to the one of [8], and yields the existence of λε ∈ (M(Ω)2)′ such that

〈
∇Gs

1,ε(u
ε) − α div λε, u− uε

〉
> 0, (38)

for every u ∈ Bη, and

〈λε, µ−Duε〉 +

∫

Ω
|Duε| 6

∫

Ω
|µ|, (39)

for every µ ∈ (M(Ω))2. Considering µ = Dv with v ∈ BV (Ω) in (39) leads to

〈λε, D(v − uε)〉 +

∫

Ω
|Duε| 6

∫

Ω
|Dv|,

for every v ∈ BV (Ω), that is,

Φ(v) > Φ(uε) − 〈divλε, v − uε〉 ,

which is equivalent to µε ∈ ∂Φ(uε), where µε = −div λε. We thus get the following result.

Theorem 7. Let us
1,ε be a solution of (Ps

1,ε). Then there exist λε ∈ (M(Ω)2)′, qε =
qε(us

1,ε) ∈ L∞(Ω) defined by (28), and µε = −div λε such that

〈
∇Gs(us

1,ε) + qε + αµε, u− us
1,ε

〉
> 0, (40)

for every u ∈ Bη, and
µε ∈ ∂Φ(us

1,ε). (41)

3.3.4 Optimality system of (Ps
2,ε)

In this case,

J2(u) =
1

2
‖u‖2

X =
1

2

∫ a

−a
(|Duz|(0, a))2 dz =

1

2

∫ a

−a
(ϕ(uz))

2 dz,

for every u ∈ X = L2(−a, a;BV0(0, a)). Here and in the sequel, the notation ϕ(f)
is used to denote the total variation of a function f ∈ BV (0, a). There holds X ′ =
L2(−a, a; (BV0(0, a))

′). For every λ ∈ X ′, viewed as function of z ∈ (−a, a) of class L2

with values in (BV0(0, a))
′, denote λz = λ(z) ∈ (BV0(0, a))

′, for almost every z ∈ (−a, a).
The duality product between X and X ′ is defined by

〈λ, v〉X′,X =

∫ a

−a
〈λz, vz〉BV ′

0 ,BV0
dz,

for every λ ∈ X ′ and every v ∈ X.

Lemma 8. The functional J2 is convex and locally Lipschitzian on X.

25



Proof. The convexity is obvious. To establish the local Lipschitzian property, we use the
fact that the total variation ϕ is Lipschitzian and the Cauchy-Schwarz inequality, getting
the estimate

|J2(v) − J2(u)| 6
1

2

∫ a

−a

(
ϕ(uz) + ϕ(vz)

)∣∣ϕ(uz) − ϕ(vz)
∣∣ dz

6 (‖u‖X + ‖v‖X) ‖u− v‖X

6 (2‖u‖X + ρ) ‖u− v‖X ,

for all u, v ∈ X such that ‖u− v‖X 6 ρ.

It follows from this lemma that J2 is subdifferentiable and that the classical subdif-
ferential and the generalized Clarke subdifferential of J2 coincide (see [9]). Moreover, the
Clarke generalized directional derivative and the classical directional derivative coincide
as well.

Recall that the penalization problem (Ps
2,ε) consists in minimizing Gs

2,ε(u) + α
2J2(u)

over all functions u ∈ Bη. This problem is equivalent to the minimization problem

min
u∈X

Gs
2,ε(u) +

α

2
J2(u) + χBη(u),

where χBη is defined by χBη(u) = 0 whenever u ∈ Bη, and χBη(u) = +∞ else.
A necessary condition for us

2,ε to be an optimal solution to (Ps
2,ε) is

0 ∈ ∂
(
Gs

2,ε + αJ2 + χBη

)
(us

2,ε),

and hence, using the standard rules of the subdifferential calculus,

0 ∈ ∇Gs
2,ε(u

s
2,ε) + α∂J2(u

s
2,ε) + ∂χBη(us

2,ε), (42)

since the considered functions are convex and locally Lipschitzian (see [9]).

Lemma 9. Let λ ∈ X ′. Then, for every u ∈ X, λ ∈ ∂J2(u) if and only if λz ∈
ϕ(uz)∂ϕ(uz), for almost every z ∈ (−a, a).

Proof. The statement of this lemma is natural, and the proof is quite easy, however it is
not possible to apply directly results of [9]. We next provide a proof for the convenience
of the reader.

Since J2 is a proper convex locally Lipschitzian function, ∂J2(u) is nonempty for every
u ∈ X, and

∂J2(u) = {λ ∈ X ′ | J ′
2(u; v) > 〈λ, v〉X′,X ∀v ∈ X},

where J ′
2(u; v) denotes the directional derivative at u in the direction v. In addition,

J ′
2(u; v) = sup{〈λ, v〉X′,X | λ ∈ ∂J2(u)}.
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We next compute J ′
2(u; v), for all u, v ∈ X. One has

J2(u+ tv) − J2(u)

t
=

1

2

∫ a

−a

ϕ(uz + tvz)
2 − ϕ(uz)

2

t
dz

=
1

2

∫ a

−a
(ϕ(uz + tvz) + ϕ(uz))

(
ϕ(uz + tvz) − ϕ(uz)

t

)
dz.

(43)

By definition of the subdifferential, there holds

ϕ(uz + tvz) − ϕ(uz)

t
> 〈µ, vz〉BV ′

0 ,BV0
,

for every µ ∈ ∂ϕ(uz), every vz ∈ BV0(0, a), and almost every z ∈ (−a, a). Since

ϕ(uz + tvz) − ϕ(uz) 6 |t|ϕ(vz),

we get ∣∣∣∣
ϕ(uz + tvz) − ϕ(uz)

t

∣∣∣∣ 6 max
(
ϕ(vz),

∣∣∣〈λz, vz〉BV ′

0 ,BV0

∣∣∣
)
,

for every t ∈ (0, 1] and almost every z ∈ (−a, a). Note that

∣∣∣〈µ, vz〉BV ′

0 ,BV0

∣∣∣ 6 ‖µ‖BV ′

0
ϕ(vz),

and
‖µ‖BV ′

0
= sup

‖v‖BV0
61

〈µ, v〉BV ′

0 ,BV0
,

for almost every z ∈ (−a, a). Since µ ∈ ∂ϕ(uz), it follows that

〈µ, v〉BV ′

0 ,BV0
6 ϕ(uz + v) − ϕ(uz) 6 ϕ(v),

for every v ∈ BV0(0, a). Hence, ‖µ‖BV ′

0
6 1 and

∣∣∣〈µ, vz〉BV ′

0 ,BV0

∣∣∣ 6 ϕ(vz). Therefore,

∣∣∣∣
ϕ(uz + tvz) − ϕ(uz)

t

∣∣∣∣ 6 ϕ(vz), (44)

for every t ∈ (0, 1] and almost every z ∈ (−a, a), and we infer that

|ϕ′(uz; vz)| 6 ϕ(vz). (45)

Moreover,
0 6 ϕ(uz + tvz) + ϕ(uz) 6 2ϕ(uz) + tϕ(vz),

hence, using (44),

∣∣∣∣(ϕ(uz + tvz) + ϕ(uz))

(
ϕ(uz + tvz) − ϕ(uz)

t

)∣∣∣∣ 6 (2ϕ(uz) + ϕ(vz))ϕ(vz).
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The function z 7→ (2ϕ(uz) + ϕ(vz))ϕ(vz) is integrable on (−a, a), since the functions
z 7→ ϕ(uz)

2, z 7→ ϕ(vz)
2 and z 7→ ϕ(uz)ϕ(vz) are integrable (indeed, u, v ∈ X). Using

(45), we infer that the function

z 7→ ϕ(uz)ϕ
′(uz; vz) (46)

is integrable on (−a, a), for every v ∈ X. Therefore, applying the Lebesgue theorem to
(43), we get

lim
t→0

J2(u+ tv) − J2(u)

t
=

∫ a

−a
ϕ(uz)ϕ

′(uz; vz) dz.

Finally

J ′
2(u; v) =

∫ a

−a
ϕ(uz)ϕ

′(uz; vz) dz >

∫ a

−a
〈ϕ(uz)λz, vz〉BV ′

0 ,BV0
dz, (47)

for every λz ∈ ∂ϕ(uz), since 〈λz, vz〉BV ′

0 ,BV0
6 ϕ′(uz; vz).

For every u ∈ X, define

E(u) = {µ ∈ X ′ | µ : z 7→ ϕ(uz)λz with λz ∈ ∂ϕ(uz) for a.e. z ∈ (−a, a)}.

We claim that E(u) = ∂J(u). Indeed, let us first prove that E(u) ⊂ ∂J(u). For every
µ ∈ E(u), there holds

〈µ, v〉X′,X =

∫ a

−a
〈µz, vz〉BV ′

0 ,BV0
dz =

∫ a

−a
ϕ(uz) 〈λz, vz〉BV ′

0 ,BV0
dz,

for every v ∈ X. Since λz ∈ ∂ϕ(uz), using (47) we get that

〈µ, v〉X′,X 6 J ′(u; v),

for every v ∈ X. This implies that µ ∈ ∂J(u) (see [9]), and the inclusion follows. The
proof of the converse inclusion readily follows the one of [9, page 77], and is thus skipped.
The key point is the measurability of the function z 7→ ϕ(uz)ϕ

′(uz; vz), for every v ∈ X,
which follows in particular from (46).

We have thus proved that every µ ∈ ∂J(u) is such that µ : z 7→ ϕ(uz)λz, with
λz ∈ ∂ϕ(uz). The lemma follows.

We are now in a position to derive the optimality system of (Ps
2,ε).

Theorem 8. Let us
2,ε be a solution of (Ps

2,ε). Then, there exist µε ∈ X ′, qε = qε(us
2,ε) ∈

L∞(Ω) defined by (28), such that

〈
∇Gs(us

2,ε) + qε + αµε, u− us
2,ε

〉
X′,X

> 0, (48)

for every u ∈ Bη, and
µε

z ∈ ϕ((us
2,ε)z

) ∂ϕ((us
2,ε)z

), (49)

for almost every z ∈ (−a, a).
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4 Appendix: fractional order Hilbert spaces

In this appendix we gather different definitions and characterizations of fractional order
Hilbert spaces, on R

n and on bounded subsets, not all of them being so standard. The
main references are [3, 7, 11, 20, 21, 26, 27].

Let U be an open bounded subset of R
n. For k ∈ N, the Hilbert space Hk(U) is defined

as the space of all functions of L2(U), whose partial derivatives up to order k, in the sense
of distributions, can be identified with functions of L2(U). Endowed with the norm

‖f‖Hk(U) =


 ∑

|β|6k

‖Dβf‖2
Lp(U)




1/2

Hk(U) is a Hilbert space. For k = 0, there holds H0(U) = L2(U).
For s ∈ (0, 1), the fractional order Hilbert space Hs(U) is defined as the space of all

functions f ∈ L2(U) such that

∫∫

U×U

|f(x) − f(y)|2
|x− y|n+2s

dx dy < +∞.

Endowed with the norm

‖f‖Hs(U) =

(
‖f‖2

L2(U) +

∫∫

U×U

|f(x) − f(y)|2
|x− y|n+2s

dx dy

)1/2

,

Hs(U) is a Hilbert space.
For a positive noninteger real number s > 0, denote by [s] the floor of s, and let

α ∈ (0, 1) such that s = [s] + α. The fractional order Hilbert space Hs(U) is defined as
the space of all functions f ∈ L2(U), whose partial derivatives of order [s], in the sense of
distributions, can be identified with functions of Hα(U). Endowed with the norm

‖f‖Hs(U) =


‖f‖2

H[s](U)
+

∑

|β|=[s]

∫∫

U×U

|Dβf(x) −Dβf(y)|2
|x− y|n+2α

dx dy




1/2

,

Hs(U) is a Hilbert space.
Let D(U) denote the space of C∞ functions on U , having a compact support contained

in U . For every s > 0, define Hs
0(U) as the closure of D(U) in Hs(U). The space Hs

0(U)
is a closed subspace of Hs(U) and thus inherits of its Hilbertian structure. There holds
Hs

0(U) = Hs(U) if and only if 0 6 s 6 1/2 (see [21, Theorem 11.1]), or whenever U = R
n.

The space H−s(U) is defined as the dual of Hs
0(U).

It is possible to define the fractional order Hilbert spaces Hs(U) in other equivalent
ways, in particular, using the Fourier transform or using the fractional Laplacian operator.
The situation is quite simple for U = R

n but is more intricate for a bounded domain U .
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4.1 Other characterizations for U = R
n

4.1.1 Fourier transform

Another possible definition of Hs(Rn) goes by using the Fourier transform F , as follows.
For every s > 0, define

Hs(Rn) = {f ∈ L2(Rn) | (1 + |ξ|2)s/2Ff ∈ L2(Rn)},

endowed with the norm

‖f‖Hs(Rn) =

(∫

Rn

(1 + |ξ|2)s |F(f)(ξ)|2 dξ
)1/2

.

Note that f ∈ Hs(Rn) if and only if (id−∆)s/2f ∈ L2(Rn), where the operator (id−∆)s/2

is defined by its symbol (1 + |ξ|2)s/2, or, in other words, is defined using the Fourier
transform by (id − ∆)s/2f = F−1((1 + |ξ|2)s/2Ff).

Note that, for s < 0, one has

Hs(Rn) = {f ∈ S ′(Rn) | (1 + |ξ|2)s/2Ff ∈ L2(Rn)},

where S(Rn) denotes the Schwartz space of rapidly decreasing C∞ functions on R
n.

4.1.2 Fractional Laplacian operator

Define the fractional Laplacian operator (−∆)α, using the Fourier transform Ff of f ,
by (−∆)αf = F−1(|ξ|2αFf). This definition actually makes sense for α ∈ (−n/2, 1] and
f ∈ S(Rn). Note that (−∆)αf /∈ S since |ξ|2α introduces a singularity at the origin in its
Fourier transform; however, (−∆)αf is of class C∞ (see e.g. [7]). Clearly, (−∆)1 = −∆,
(−∆)0 = id, and (−∆)α1 ◦ (−∆)α2 = (−∆)α1+α2 . Moreover, the operator (−∆)α is
selfadjoint on L2(Rn).

An easy computation shows that, for every α ∈ (0, 1), there exists a constant Cn,α such
that, for every f ∈ S(Rn), (−∆)αf(x) coincides with the principal value of the singular
integral

Cn,α

∫

Rn

f(x) − f(y)

|x− y|n+2α
dy.

Actually, Cn,α is a positive constant such that

∫

Rn

1 − cos(ξ.y)

|y|n+2α
dy =

|ξ|2α

Cn,α
,

for every ξ ∈ R
n.

Note that the above singular integral is well defined whenever 0 < α < 1/2, and in that
case it is not necessary to consider the principal value; for 1/2 6 α < 1, the singularity is
near x = y. To avoid the use of principal values, one has the other equivalent expression
(obvious to obtain with a change of variable)

(−∆)αf(x) = −1

2
Cn,α

∫

Rn

f(x+ y) + f(x− y) − 2f(x)

|y|n+2α
dy.
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Then, for every s ∈ (0, 1) and every f ∈ Hs(Rn), one easily gets

‖f‖2
Hs(Rn) = ‖f‖2

L2(Rn) +

∫∫

Rn×Rn

|f(x) − f(y)|2
|x− y|n+2s

dx dy

= ‖f‖2
L2(Rn) +

2

Cn,s
‖(−∆)s/2f‖2

L2(Rn),

and therefore Hs(Rn) can be equivalently defined as the space of all functions of L2(Rn)
such that the distribution (−∆)s/2f can be identified with a function of L2(Rn).

The relation of the Hilbert spaces Hs with the domains of the fractional Laplacian
operator is the following. The operator −∆, defined by Fourier transform, is a selfadjoint
positive operator on L2(Rn), of domain D(−∆) = H2(Rn). The fractional operator (−∆)s

has been defined above by Fourier transform, for s > 0. Using the interpolation theory
and results from [20, 21], one can establish that

D((−∆)s) = H2s(Rn),

for every s ∈ [0, 1].

4.2 Other characterizations on a bounded domain

The situation on a bounded subset U of R
n is more delicate.

4.2.1 Quotient norm and extensions

The space Hs(U) can be as well defined as the set of restrictions of functions of Hs(Rn)
to U , with the quotient norm

‖f‖Hs(U) = inf{‖f̃‖Hs(Rn) | f̃ ∈ Hs(Rn), f̃|U = f}.

If U is bounded with a smooth boundary, then, for every f ∈ L2(U) such that

∫∫

U×U

|f(x) − f(y)|2
|x− y|n+2s

dx dy < +∞,

there exists an extension f̃ ∈ L2(Rn) of f (defined by symmetry, locally at the boundary
of the domain) for which

∫∫

Rn×Rn

|f̃(x) − f̃(y)|2
|x− y|n+2s

dx dy < +∞

(see [26, Lemma 36.1]. This extension by symmetry is a specific one. Concerning ex-
tensions outside U , note that, for U bounded with smooth boundary, for every s ∈ R

(Hs with s < 0 is defined further), there exists a continuous linear extension mapping
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PU ∈ L(Hs(U), Hs(Rn)), satisfying PUf|U = f a.e. for every f ∈ Hs(U), and a contin-
uous restriction mapping RU ∈ L(Hs(Rn), Hs(U)), such that RUPU = idHs(U). Hence,
Hs(U) can be as well defined using the equivalent norm

(
‖f‖2

L2(U) +

∫∫

Rn×Rn

|PUf(x) − PUf(y)|2
|x− y|n+2s

dx dy

)1/2

.

It would be more interesting (in view of using the fractional Laplacian, see further) to
extend f by 0 outside U and to use the above double integral on R

n ×R
n. The extension

by 0 is however more delicate. Denoting f̃ the extension of f by 0 outside U , the linear
mapping f ∈ Hs(U) 7→ f̃ ∈ Hs(Rn) is well defined and continuous if and only if 0 6 s <
1/2. This means that, for 0 6 s < 1/2, the space Hs(U) can be as well defined using the
equivalent norm (

‖f‖2
L2(U) +

∫∫

Rn×Rn

|f(x) − f(y)|2
|x− y|n+2s

dx dy

)1/2

,

where f is extended by 0 outside U (but this fact is not true for s > 1/2 because of
phenomena on the boundary).

Actually, the following result holds true ([26, Lemma 37.1]). Denoting f̃ the extension
of f by 0 outside U , for U bounded with Lipschitz boundary, for 0 < s < 1, f̃ ∈ Hs(Rn) if
and only if f ∈ Hs(U) and ρ−sf ∈ L2(U), where ρ denotes the distance to the boundary
of U .

The following extension result holds for the space Hs
0(U). Denoting f̃ the extension of

f by 0 outside U , for s > 0, the linear mapping f ∈ Hs
0(U) 7→ f̃ ∈ Hs(Rn) is well defined

and continuous if and only if s /∈ N + 1/2.7

It follows that, for instance, for every s ∈ (0, 1), s 6= 1/2, the space Hs
0(U) can be as

well defined using the equivalent norm

(
‖f‖2

L2(U) +

∫∫

Rn×Rn

|f(x) − f(y)|2
|x− y|n+2s

dx dy

)1/2

,

where f is extended by 0 outside U (but this fact is not true for s = 1/2). Actually, for
s = 1/2, the extension by 0 is linear and continuous for a subspace of H1/2(U), which is

next defined as H
1/2
00 (U).

4.2.2 The Lions-Magenes space H
1/2
00 (U)

The Lions-Magenes space H
1/2
00 (U) is defined as the set of functions f ∈ H1/2(U) such that

ρ−1/2f ∈ L2(U), where ρ denotes the distance to the boundary of U (see [21, Theorem

7For instance, 1 ∈ H
1/2
0 (U) = H1/2(U) and the extension by 0 is piecewise smooth and discontinuous,

hence is not inH1/2(R). Indeed, although functions ofH1/2 are not continuous in general, piecewise smooth
functions that are discontinuous at one point do not belong to H1/2. For example, consider f , a Heaviside
function that is multiplied by some smooth plateau function; then, f ′ = δ0 + ψ with ψ smooth, hence
iξ(Fu)(ξ) = 1 + (Fψ)(ξ), so that |Ff | behaves like 1/|ξ| at infinity, and hence (1 + |ξ|2)1/4|Ff | /∈ L2(R),
i.e., f /∈ H1/2(R) (see [26, Chapter 33].
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11.7]). It is a strict subspace of H1/2(U) = H
1/2
0 (U), equipped with the Hilbertian norm


‖f‖2

H1/2(U)
+

∥∥∥∥∥
f√

d(·, ∂U)

∥∥∥∥∥

2

L2(U)




1/2

.

Equivalently, H
1/2
00 (U) is the subspace of functions f ∈ H1/2(U) such that their extension

f̃ by 0 outside U belongs to H1/2(Rn), and the space H
1/2
00 (U) can be endowed with the

equivalent norm ‖f̃‖H1/2(Rn) (see [26, Chapter 33]); for instance this latter norm can be
computed by Fourier transform.

4.2.3 Fractional Laplacian operator

For U bounded with a smooth boundary, the relation between ‖f‖Hs(U) and

‖(−∆)α/2f‖2
L2(Rn) is more intricate than in the case U = R

n. First, for 0 6 s < 1/2,

every f ∈ Hs(U) can be extended by 0 outside U into a function of Hs(Rn), and hence
for such values of s the space Hs(U) can be as well defined using the equivalent norm

‖f‖Hs(U) =
(
‖f‖2

L2(U) + ‖(−∆)s/2f‖2
L2(Rn)

)1/2
,

where f is extended by 0 outside U . Note however that, although f has a compact support,
the function (−∆)s/2f is not of compact support.

The same fact holds for the spaces Hs
0(U), for s > 0, s /∈ N + 1/2, and for the space

H
1/2
00 (U), since functions of these spaces can be extended by 0 to functions of Hs(Rn).

For other values of s (and actually, for every s ∈ R), the existence of a continuous linear
extension mapping PU , previously mentioned, permits to endow Hs(U), for instance, with
the equivalent norm

‖f‖Hs(U) =
(
‖f‖2

L2(U) + ‖(−∆)s/2PUf‖2
L2(Rn)

)1/2
.

4.2.4 Relation with the domain of the fractional Dirichlet Laplacian operator

Let A denote the opposite of the Dirichlet Laplacian on L2(U), of domainD(A) = H1
0 (U)∩

H2(U). It must not be confused with the previous Laplacian operator. The operator A
is positive, selfadjoint, and has a discrete spectrum. The domains of its real powers
define a scale of Hilbert spaces D(Aα) (see [11]), which can be characterized as follows.
Let (en)n∈N denote an orthonormal basis of eigenvectors of A, and let (λn)n∈N be the
associated eigenvalues. Then,

D(Aα) = {f ∈ L2(U) |
∑

k∈N

λ2α
k 〈f, ek〉2 < +∞},

for every α ∈ R. Using the interpolation theory of [21], one can establish that

∀s ∈ [0, 1) D(As) =

{
H2s

0 (U) if s 6= 1/4,

H
1/2
00 (U) if s = 1/4,
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where the Lions-Magenes space H
1/2
00 (U) has been defined previously (note that, for s = 1,

D(A) = H1
0 (U) ∩H2(U)). In particular, for every s ∈ [0, 1],

{f ∈ L2(U) |
∑

k∈N

λs
k〈f, ek〉2 < +∞} =

{
Hs

0(U) if s 6= 1/2,

H
1/2
00 (U) if s = 1/2.

Note that Asf must be distinguished from (−∆)sf , when both functions can be given

a sense. For instance, for every f ∈ Hs
0(U) with s ∈ (0, 1), s 6= 1/2 (and f ∈ H

1/2
00 (U)

for s = 1/2), one has f ∈ D(As/2) and thus As/2f ∈ L2(U) by definition, whereas
(−∆)sf ∈ L2(Rn) (where f is extended8 by 0 outside U) is not even of compact support.

The space D(As/2) is a Hilbert space, when equipped with the graph norm (‖f‖2
L2(U)+

‖As/2f‖2
L2(U))

1/2. It follows thatHs
0(U), for s ∈ (0, 1), s 6= 1/2, can be equivalently defined

with this graph norm, and similarly the space H
1/2
00 (U) can be endowed with the equivalent

norm (‖f‖2
L2(U) + ‖A1/4f‖2

L2(U))
1/2.
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