Mathematical algorithms in Sanskrit prosody and music treatises

François Patte

Université Paris Descartes

Kyoto University

$1,2,3,6,10,19,33,60,106,191,340,610, \ldots$

Śārṅgadeva: Saṃgītaratnākara (13th century) Chapter five: Tālādhyaya

Śārṅgadeva: Saṃgītaratnākara (13th century) Chapter five: Tālādhyaya

Com.: Kalānidhi by Kallinātha (15th century) (ed. Ānandāśrama - 1896 and Adyar - 1951)
Sudhākara by Siṃhabhūpāla (14th century)
(ed. Adyar - 1951)

druta $\mathbf{0}$	unit of measure	semi-short
laghu $\mathbf{I}=2$ druta	short	
guru $\mathbf{S}=2$ laghu $=4$ druta	long	
pluta	s̀ $=3$ laghu $=6$ druta	d.
protracted		

Prastāra

How to build exhaustively all variations (bheda) for one musical measure of a given length.

Prastāra

How to build exhaustively all variations (bheda) for one musical measure of a given length.

Example:

Four variations for a five druta $(\mathbf{0}, \boldsymbol{\delta})$ measure

```
nyasyālpam ādyān mahato
    'dhastāc cheșam yathoparil
prāg ūne vāmasaṃsthāṃs tu
    sambhave mahato likhet |
alpān asaṃbhave tāla-
    pūrtyai bhūyo 'py ayaṃ vidhiḥ II
sarvadrutāvadhiḥ kāryaḥ
    prastāro 'yaṃ laghau gurau|
plute vyaste samaste ca
    na tu vyaste drute 'sti sah ||
```

A smaller one being set down under the first greater one, what is left is as above.
If there is a deficiency in the opposite way, in order to complete the measure, one will write greater ones on the left, if possible; if impossible, smaller ones. This rule, the end of which is [a musical measure] wholly [made of] drutas, must be carried out many times.

$$
\mathbf{0} \quad \mathbf{I}=2 \mathbf{0} \quad \mathbf{S}=4 \mathbf{0} \quad \grave{\mathbf{s}}=6 \mathbf{0}
$$

os 5

- $\mathbf{I}=20 \quad \mathbf{S}=40 \quad$ s̀ $=60$

A smaller one being set down under the first greater one, what is left is as above.
os 5

- $\mathbf{I}=20 \quad \mathbf{S}=40 \quad$ s̀ $=60$

A smaller one being set down under the first greater one, what is left is as above.

- $\mathbf{I}=2 \mathbf{0} \quad \mathbf{S}=40 \quad$ S̀ $=60$

If there is a deficiency in the opposite way, in order to complete the measure, one will write greater ones on the left, if possible; if impossible, smaller ones.

- $\mathbf{I}=2 \mathbf{0} \quad \mathbf{S}=40 \quad$ S̀ $=60$

If there is a deficiency in the opposite way, in order to complete the measure, one will write greater ones on the left, if possible; if impossible, smaller ones.

$$
\begin{array}{rrr}
0 & \mathbf{S} & 5 \\
0 & \mathbf{I} \mathbf{I} & 5
\end{array}
$$

o $\mathbf{I}=2 \mathbf{0} \quad \mathbf{S}=40 \quad$ S̀ $=60$

This rule, the end of which is [a musical measure] wholly [made of] drutas, must be carried out many times.

$\begin{array}{rrr}015 & 5 \\ 011 & 5\end{array}$

- $\mathbf{I}=20 \quad \mathbf{S}=40 \quad$ s̀ $=60$

A smaller one being set down under the first greater one, what is left is as above.
$\begin{array}{rrr}0 \mathbf{O} & 5 \\ 0 & \mathbf{I} \mathbf{I} & 5 \\ 0 & & 1\end{array}$

- $\mathbf{I}=20 \quad \mathbf{S}=40 \quad$ s̀ $=60$

A smaller one being set down under the first greater one, what is left is as above.
$\begin{array}{rrr}015 & 5 \\ 0 & \mathbf{I} & 5 \\ 0 & \mathbf{I} & 3\end{array}$

- $\mathbf{I}=2 \mathbf{0} \quad \mathbf{S}=40 \quad$ S̀ $=60$

If there is a deficiency in the opposite way, in order to complete the measure, one will write greater ones on the left, if possible; if impossible, smaller ones.
$\begin{array}{rrr}0 \mathbf{S} & 5 \\ 0 & \mathbf{I} & 5 \\ 0 & \mathbf{I} & 3\end{array}$

- $\mathbf{I}=2 \mathbf{0} \quad \mathbf{S}=40 \quad$ S̀ $=60$

If there is a deficiency in the opposite way, in order to complete the measure, one will write greater ones on the left, if possible; if impossible, smaller ones.
o $\quad \mathbf{I}=2 \mathbf{0} \quad \mathbf{S}=40 \quad \grave{\mathbf{S}}=6 \mathbf{0}$

This rule, the end of which is [a musical measure] wholly [made of] drutas, must be carried out many times.

Saṃkhyā

Counting

Or how to count the number of variations (bheda) built with the prastāra.

```
ekadvyaṅkau kramān nyasya
    yuñjītāntyaṃ purātanaiḥ |
dvitīyaturyașașṭā̃ṅkair
    abhave turyașasthhayoḥ ||
trtīyapañcamāṅkābhyā̀m
    kramāt taṃ yogam agrataḥ |
likhed dakșiṇasaṃsthaivam
    aṅkaśreṇividhīyate II
```

Having laid down successively the numbers one and two, the last one is added, as far as possible, to the second, the fourth and the sixth preceeding numbers; in the absence of the fourth and sixth numbers, to the third and fifth ones. One will write this sum gradually in the beginning. A sequence of numbers standing together on the right is thus established.

Having laid down successively the numbers one and two, the last one is added, as far as possible, to the second, the fourth and the sixth preceeding numbers; in the absence of the fourth and sixth numbers, to the third and fifth ones. One will write this sum gradually in the beginning. A sequence of numbers standing together on the right is thus established.
$1,2,3,6,10,19$,

Having laid down successively the numbers one and two, the last one is added, as far as possible, to the second, the fourth and the sixth preceeding numbers; in the absence of the fourth and sixth numbers, to the third and fifth ones. One will write this sum gradually in the beginning. A sequence of numbers standing together on the right is thus established.

$$
1,2,3,6,10,19,
$$

Having laid down successively the numbers one and two，the last one is added，as far as possible，to the second，the fourth and the sixth preceeding numbers；in the absence of the fourth and sixth numbers，to the third and fifth ones．One will write this sum gradually in the beginning．A sequence of numbers standing together on the right is thus established．
$1,2,3,6,10,19$ ，

Having laid down successively the numbers one and two, the last one is added, as far as possible, to the second, the fourth and the sixth preceeding numbers; in the absence of the fourth and sixth numbers, to the third and fifth ones. One will write this sum gradually in the beginning. A sequence of numbers standing together on the right is thus established.

$$
1,2,3,6,10,19,
$$

Having laid down successively the numbers one and two, the last one is added, as far as possible, to the second, the fourth and the sixth preceeding numbers; in the absence of the fourth and sixth numbers, to the third and fifth ones. One will write this sum gradually in the beginning. A sequence of numbers standing together on the right is thus established.

$$
1,2,3,6,10,19
$$

Having laid down successively the numbers one and two, the last one is added, as far as possible, to the second, the fourth and the sixth preceeding numbers; in the absence of the fourth and sixth numbers, to the third and fifth ones. One will write this sum gradually in the beginning. A sequence of numbers standing together on the right is thus established.

$$
1,2,3,6,10,19,33
$$

Having laid down successively the numbers one and two, the last one is added, as far as possible, to the second, the fourth and the sixth preceeding numbers; in the absence of the fourth and sixth numbers, to the third and fifth ones. One will write this sum gradually in the beginning. A sequence of numbers standing together on the right is thus established.

$$
1,2,3,6,10,19,33,60,106,191,340,610, \cdots
$$

Some mathematics

Problem: how to count all the possible ways to split a given musical measure lasting 7 drutas into a combination of the four note values: druta, laghu (=2d.), guru (=4d.) and pluta (=6d.).

Some mathematics

Problem: how to count all the possible ways to split a given musical measure lasting 7 drutas into a combination of the four note values: druta, laghu (=2d.), guru (=4d.) and pluta (=6d.).

Mathematical point of view: how to count all possible ways to write a given number (7) as a sum of the integers: 1, 2, 4 and 6 (partitions of the integer 7).

Some mathematics

Problem: how to count all the possible ways to split a given musical measure lasting 7 drutas into a combination of the four note values: druta, laghu (=2d.), guru (=4d.) and pluta (=6d.).

Mathematical point of view: how to count all possible ways to write a given number (7) as a sum of the integers: 1, 2, 4 and 6 (partitions of the integer 7).
$7=1+2+4=6+1=1+1+1+2+1+1=\cdots$

	$0=1$	$1=2$	$\mathbf{S}=$	$\grave{\mathbf{S}}=6$		$\begin{array}{rrr} 0 & 5 \\ 0 & 1 & 5 \\ 1 & 1 & 5 \\ 0 & 0 & 5 \\ 0 & 0 & 0 \\ 0 & 5 & 1 \\ 0 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \\ 5 & 1 & 1 \end{array}$
	$7=x$	-•				1 1 0 10011
						-1001
						$\begin{array}{ccccc} 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{array}$
					s̀	s
					15	150
					$\bigcirc 05$	$\bigcirc 0 \mathrm{SO}_{0}$
					S 1	510
					111	1110
					0011	-O110
						$\begin{array}{lllll}0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 \\ 0\end{array}$
					00001	$\bigcirc 00010$
				$\bigcirc{ }^{\circ}$	0 O 0	OSoo
				$\begin{array}{llll}0 & 1 & 1 \\ 1 & 0 & 1\end{array}$	0110	01100
					1010	1010
			s	\bigcirc		00 0
			11	110	1100	1100
			001	0010	-0100	-01000
		01 10	010 100	0100 1000	-11000	010000
	0	10	100	1000	10000	100000
0	\bigcirc	000	0000	-0000	$\bigcirc 000000$	-OOOOOO
1	2	3	4	5	6	7

$\mathbf{0}=1 \quad \mathbf{I}=2 \quad \mathbf{S}=4 \quad \mathbf{S}=6$
0 S

$7-1=x+\cdots$

1	10
00	000
2	3

$$
\begin{aligned}
& \mathbf{0}=1 \quad \mathbf{I}=2 \quad \mathbf{S}=4 \quad \mathbf{~}=6 \\
& \text { o S } \\
& u_{7}=u_{6}+ \\
& 7-1=x+\cdots
\end{aligned}
$$

$$
\mathbf{0}=1 \quad \mathbf{I}=2 \quad \mathbf{S}=4 \quad \mathbf{\grave { \mathbf { S } }}=6
$$

O S̀
O I S

$$
10 S
$$

$$
0005
$$

$$
u_{7}=u_{6}+
$$

$$
7=x+\cdots+2
$$

UNIVERSTTE
PARIS DESCARTES

$$
\begin{aligned}
& \mathbf{0}=1 \quad \mathbf{I}=2 \quad \mathbf{S}=4 \quad \mathbf{\text { S }}=6 \\
& u_{7}=u_{6}+u_{5}+ \\
& 7-2=x+\cdots
\end{aligned}
$$

> UNIVERSITE
> PARIS DESCARTES

$$
\begin{aligned}
& \mathbf{O}=1 \quad \mathbf{I}=2 \quad \mathbf{S}=4 \quad \mathbf{S}=6 \\
& u_{7}=u_{6}+u_{5}+ \\
& 7=x+\cdots+4
\end{aligned}
$$

> UNIVERSITE
> PARIS DESCARTES

$$
\begin{aligned}
& \mathbf{O}=1 \quad \mathbf{I}=2 \quad \mathbf{S}=4 \quad \mathbf{S}=6 \\
& u_{7}=u_{6}+u_{5}+u_{3}+ \\
& 7-4=x+\cdots
\end{aligned}
$$

> UNIVERSITE
> PARIS DESCARTES

$$
0=1 \quad \pm=2=4=5
$$

$$
u_{7}=u_{6}+u_{5}+u_{3}+
$$

$$
7=x+\cdots+6
$$

UNIVERSITE
PARIS DESCARTES

$$
0=1=2=4=5=6
$$

$$
u_{7}=u_{6}+u_{5}+u_{3}+u_{1}
$$

$$
7-6=x+\cdots
$$

UNIVERSITE
PARIS DESCARTES

$$
\mathbf{0}=1 \quad \mathbf{I}=2 \quad \mathbf{S}=4 \quad \mathbf{~} \mathbf{\mathbf { S }}=6
$$

$$
u_{7}=u_{6}+u_{5}+u_{3}+u_{1}
$$

$$
u_{n}=u_{n-1}+u_{n-2}+u_{n-4}+u_{n-6}
$$

Nașta

Disappearance

Or how to retrieve a deleted line in the prastāra

Some mathematics

Order allowing to compare words, using an ordered alphabet:

$$
a<b<c<\cdots<y<z
$$

Some mathematics

Order allowing to compare words, using an ordered alphabet:

$$
a<b<c<\cdots<y<z
$$

Words are compared letter by letter in the same position.

Some mathematics

Order allowing to compare words, using an ordered alphabet:

$$
a<b<c<\cdots<y<z
$$

Words are compared letter by letter in the same position.

A word \mathcal{B} is greater than a word \mathcal{A} if:

Some mathematics

Order allowing to compare words, using an ordered alphabet:

$$
a<b<c<\cdots<y<z
$$

Words are compared letter by letter in the same position.

A word \mathcal{B} is greater than a word \mathcal{A} if:

- There is a letter in \mathcal{B} greater than a letter in \mathcal{A} in the same position,
- Letters before that position are the same in \mathcal{B} and \mathcal{A},
- Whatever the letters after this position are.

Some mathematics

Order allowing to compare words, using an ordered alphabet:

$$
a<b<c<\cdots<y<z
$$

Words are compared letter by letter in the same position.

A word \mathcal{B} is greater than a word \mathcal{A} if:

- There is a letter in \mathcal{B} greater than a letter in \mathcal{A} in the same position,
- Letters before that position are the same in \mathcal{B} and \mathcal{A},
- Whatever the letters after this position are.

Some mathematics

Order allowing to compare words, using an ordered alphabet:

$$
a<b<c<\cdots<y<z
$$

Words are compared letter by letter in the same position.

A word \mathcal{B} is greater than a word \mathcal{A} if:

- There is a letter in \mathcal{B} greater than a letter in \mathcal{A} in the same position,
- Letters before that position are the same in \mathcal{B} and \mathcal{A},
- Whatever the letters after this position are.

Some mathematics

Order allowing to compare words, using an ordered alphabet:

$$
a<b<c<\cdots<y<z
$$

Words are compared letter by letter in the same position.

A word \mathcal{B} is greater than a word \mathcal{A} if:

- There is a letter in \mathcal{B} greater than a letter in \mathcal{A} in the same position,
- Letters before that position are the same in \mathcal{B} and \mathcal{A},
- Whatever the letters after this position are.
$a^{* * * *} \prec b^{* * * *} \prec \cdots \prec g^{* * * *} \prec \cdots$

Some mathematics

Order allowing to compare words, using an ordered alphabet:

$$
a<b<c<\cdots<y<z
$$

Words are compared letter by letter in the same position.

A word \mathcal{B} is greater than a word \mathcal{A} if:

- There is a letter in \mathcal{B} greater than a letter in \mathcal{A} in the same position,
- Letters before that position are the same in \mathcal{B} and \mathcal{A},
- Whatever the letters after this position are.
$\mathrm{a}^{* * * *} \prec \mathrm{~b}^{* * * *} \prec \cdots \prec \mathrm{~g}^{* * * *} \prec \cdots$
alpha \prec alphabet \prec alphabetic \prec alphabetical \prec alphabetize

Some mathematics

In our case, the ordered alphabet is:

$$
\mathbf{0}<\mathbf{I}<\mathbf{S}<\dot{\mathbf{S}}
$$

Some mathematics

In our case, the ordered alphabet is:

$$
\mathbf{0}<\mathbf{I}<\mathbf{S}<\dot{\mathbf{S}}
$$

Reading each "word" from right to left: $0000000 \prec 100000 \prec 010000 \prec \cdots \prec$ os̀

Some mathematics

$1,2,3,6,10,19,33$

$1,2,3,6,10,19,33$

$1,2,3,6,10,19,33$

$1,2,3,6,10,19,33$

$1,2,3,6,10,19$

1, 2, 3, 6

S	$\begin{gathered} \circ 0 \mathrm{O} \\ \mathrm{~S} \text { I } \end{gathered}$
11	111
001	0011
010	0101
100	1001
0000	$\bigcirc 0001$
	OS 0
	0110
	1010
	00010
	Soo
	1100
	00100
	01000
	10000
	00000

Samgītaśiromaṇi
ed. \& trad.: Emmie te Nijenhuis
E.J. Brill - Leiden, 1992

The Chhandas Shâstra
Pingala
Tukârâm Jâvajî - Bombay, 1908
Vṛttaratnākara
Kedārabhatța
The Nirṇaya-Sâgara Press - Bombay, 1890
generatingfunctionology
Herbert S. Wilf - University of Pennsylvania
Academic Press, Inc. 1994
目
Recursion and Combinatorial Mathematics in Chandashāstra
Amba Kulkarni - Department of Sanskrit Studies, University of Hyderabad
Hyderabad - 2008
Rermutations with strongly restricted displacements
D. H. Lehmer

Proc. Colloq., Balatonfured, 1969 (pp. 755-770)
Fast Algorithms For Generating Integer Partitions
Antoine Zoghbiu \& Ivan Stojmenovicb'
Computer Science Department, SITE, University of Ottawa, 1998

