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Abstract

In this work we present a pressure-correction scheme for the incompressible
Navier—Stokes equations combining a discontinuous Galerkin approximation
for the velocity and a standard continuous Galerkin approximation for the
pressure. The main interest of pressure-correction algorithms is the reduced
computational cost compared to monolithic strategies. In this work we show
how a proper discretization of the decoupled momentum equation can ren-
der this method suitable to simulate high Reynolds regimes. The proposed
spatial velocity-pressure approximation is LBB stable for equal polynomial
orders and it allows adaptive p-refinement for velocity and global p-refinement
for pressure. The method is validated against a large set of classical two- and
three-dimensional test cases covering a wide range of Reynolds numbers, in
which it proves effective both in terms of accuracy and computational cost.

Keywords:
Incompressible Navier—Stokes equations, Discontinuous Galerkin,
Pressure-Correction

1. Introduction

Discontinuous Galerkin (dG) methods constitute an effective means to ob-
tain accurate discretizations of complex problems on general meshes. In this
work, we deal with convection-dominated incompressible flows, which consti-
tute a challenging class of problems both in terms of numerical stability and
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computational cost. In this context, dG methods offer many advantages: sta-
bilized equal-order discretizations can be devised, the extension to arbitrary
unstructured and nonconforming grids is straightforward, and the resulting
discretization displays an increased stability in the high Reynolds regimes.
Another feature highly appreciated by practitioners in fluid dynamics is that
the discretization can be designed so that physical quantities such as momen-
tum or mass are locally conserved. Flexibility, however, comes at a price. In
particular, the memory requirements as well as the increased computational
cost have discouraged wide adoption of these methods up to now. In this
work we present an effective strategy to overcome these limitations inspired
by classical projection methods.

Discontinuous Galerkin space discretizations of the Incompressible Navier—
Stokes (INS) equations have been considered in several works. A mixed-order
scheme on simplicial meshes has been considered by Girault, Riviere and
Wheeler [21], where the authors prove LBB stability for polynomial orders
up to three. More general meshes and equal-order approximation can be dealt
with by suitable pressure stabilization techniques. We refer, in particular,
to Cockburn Kanschat, Schétzau and Schwab [9] and to Bassi, Crivellini, Di
Pietro and Rebay [4] [5]; see also [12]. Several techniques have also been pro-
posed for the discretization of the non-linear convective term. Convergence
estimates for a trilinear form with upwind stabilization have been derived by
Girault, Riviere and Wheeler [21]. In [9], Cockburn, Kanschat and Schotzau
prove the convergence of a fixed point iteration based on the LDG method
for the Oseen equations introduced in [§] to the solution of the INS problem.
More recently, Di Pietro and Ern in [I3] have proposed a set of sufficient
conditions on the trilinear form ensuring convergence to minimal regularity
solution.

As regards time marching schemes, splitting methods have already been
considered also in conjunction with (fully or partially) discontinuous space
discretizations. The original pressure-correction method is due to Chorin [7]
and Temam [35]; an incremental form was later proposed by Goda [22], while
a second-order incremental scheme is due to Van Kan [37]. In [31], Liu and
Shu propose a method for the two-dimensional INS equations in the vortic-
ity stream-function formulation with discontinuous velocity and continuous
pressure. In [33], Shahbazi, Fischer and Ethier introduce an effective three-
step algebraic splitting dG discretization of the INS equations in primitive
variables with explicit treatment of the non-linear term in the convection dif-
fusion step. In the cited work, it is claimed that the pressure solver related to
the dG discretization of the projection step is the most expensive stage, and
efficient preconditioning has to be devised. As this assertion is confirmed by
our numerical experiments, we have opted for a continuous approximation of



the pressure.

The focus of the work will be on moderate-to-high Reynolds flows. As
noted by Karniadakis and Sherwin [27], in high Reynolds incompressible
flows, splitting methods can be computationally efficient and competitive
in accuracy compared to more expensive coupled methods. As a matter of
fact, monolithic approaches involve the solution of the saddle point problem
induced by the incompressibility constraint, which in turn requires ad-hoc
preconditioners and has limited applicability to 3D large-scale unsteady sim-
ulations. Stability at high-Reynolds numbers is achieved here using a dis-
continuous approximation for the velocity. Discontinuous approximations are
known to exhibit a better behavior when convection becomes dominant, as
the additional freedom to jump across interfaces can often compensate poor
grid resolution. To reduce the amount of artificial diffusion, the convective
term is discretized following Di Pietro and Ern [13], where a non-dissipative
formulation based on Temam’s device is proposed. Interestingly enough, this
choice proves robust even at considerably high Reynolds numbers. Moreover,
when coupled with a continuous pressure approximation, it yields inherently
inf-sup stable space couples. This renders pressure stabilization unnecessary,
thereby reducing the coupling between the equations of momentum and mass
conservation.

The particular form of the pressure-correction scheme proposed is in-
spired by Guermond and Quartapelle [24], with projection step expressed
as a Poisson problem. The main difference lays in the implicit treatment
of the momentum equation based on either the backward Euler method or
on a second-order backward differentiation formula (in convection-dominated
flows time step restrictions due to explicit or semi-implicit treatment of the
convective term are too severe compared to the loss of accuracy induced by
the splitting error). Both steps of the scheme can be solved with iterative
methods employing standard preconditioners, resulting in an effective solu-
tion process.

2. Solution strategy

In this section we discuss the solution strategy in some detail. The ma-
terial is organized as follows: §2.1| contains a general overview of projection

methods, deals with the time discretization and with the space

discretization.

2.1. Projection Methods

Let Q C RY d € {2,3}, denote a bounded, connected open set, and
let tp > 0 denote the final simulation time. We consider the unsteady INS



equations with homogeneous Dirichlet boundary conditions,

ou+u;0;u—vAu+ Vp=f in Q x (0,tp), (1a)
Vau=0 in Q x (0,tp), (1b)

u= on 02 x (0,tp), (1c)

u(-,t =0) = uy, in 2, (1d)

{P)a =0, (le)

where v > 0 denotes the (constant) viscosity, f is a given body force, wug
is the initial condition, and (-)q denotes the average value over Q. In (|1
and throughout the paper we shall use Einstein’s notation to understand
summations on repeated indices. The main idea of projection methods is to
decouple the solution of the momentum equation from the enforcement
of the incompressibility constraint . Such a strategy is attractive because
it only requires to solve a convection-diffusion equation for the velocity and
an elliptic equation for the pressure at each time step, thereby circumventing
the need for a monolithic solver. The decoupling is achieved by introducing
a projection operator onto the space of divergence-free functions,

DY {(ve [’ (| V-v=0inQ, vn=0on o0},
and using the classical decomposition
(L) =D @ V(H'(Q). (2)

Equation (2)) states that every function v € [L?(€2)]¢ can be uniquely decom-
posed into the direct sum of a divergence-free component plus an irrotational
one. Denote by Pp : [L%(Q2)]¢ — D the operator that maps every function
of [L%(Q)]¢ into its divergence free part. For a given v € [L?(Q)]¢, this pro-
jection can be computed by solving the following Neumann problem for the
potential ¢ € H'(Q):

A¢p =V-v in Q,

Oa® =Vv'n on 051,

<¢>Q = 07
and setting

Pp(v) =v —Vo. (3)

Applying the divergence operator to the momentum equation ({la)) and using
the divergence-free constraint ((1bf), we formally obtain the Poisson equation
for the pressure

Ap = V- (f —u;0;u) in Q x (0,tp), (4a)
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while taking the normal component on 0€) and using the homogeneous Dirich-
let boundary conditions yields

Opp = (f+vAu)n  on 092 x (0,tF). (4b)

In writing the above expression we have assumed that the normal deriva-
tive of the pressure, the forcing term and the Laplacian of the velocity are
defined almost everywhere on 0§2. Whenever this is not the case, equa-
tion has to be intended in the sense of the duality pairing between
H~2(09Q) and Hz(99Q). Note, however, that Cattabriga’s regularity for the
exact solution [6] is needed to estimate the convergence rate. In the context
of projection methods, a modified form of the problem is verified by the
pressure approximation, as discussed in the following section.

2.2. Pressure-correction scheme and time integration

This section addresses the time discretization by the pressure correction
method and pinpoints the relation between the semi-discrete formulation
and the computation of Pp. More precisely, for brevity of exposition, we
first discuss the incremental form of the pressure-correction with backward
Euler time discretization, and then propose a possible generalization relying
on a second-order backward differentiation formula (BDF). We introduce a
partition of the time domain (0,¢r) into equally spaced intervals of length

At and set, for n > 0, t" ©FpAL Let (1% u® p%) denote a set of suf-
ficiently accurate initial guesses matching similar assumptions as the ones
in 24, egs. (5.8) and (5.18)] with H'-norm replaced by the ||-||qg-norm de-

fined by (14).

We define the sequence of triplets (u™, u™*! p™*1) iteratively by solving
the following problems:

u"tt—un 1

N —VAu"H—i—(u?Haj)u"“—i—é(Vu"“)u"“—kVp” _ fn—l—l in Q’
(5a)
u"tl =0 on 09,
(5b)
and
Sn+l _ yntl
——— V- =0 i, (6a)
varl =0 inQ, (6b)
u"ttn=0  on 0Q. (6¢)



In (Ba), Temam’s device [35] has been used to obtain a skew-symmetric ver-
sion of the convective term. In practice, the projection step @ is performed
by solving a Poisson problem on the pressure increment supplemented by
homogeneous boundary conditions, as detailed in what follows. Both u™ and
u” represent approximations of the exact velocity at the discrete time ¢". In
particular, u™ accounts for momentum diffusion and convection as well as for
the exact boundary condition, whereas u™ incorporates the divergence-free
constraint. It can be checked that the projection step @ is equivalent to
setting u"™! = Ppu"*!, thereby showing that the algorithm (5)-(6]) belongs
to the class of projection methods.

Following Guermond and Quartapelle [23], our implementation does not
require the actual computation of u”. As a matter of fact, from equation
it is inferred that, for n > 1,

u" =u" — AtV (p" —p" ).

Plugging the above expression for u” into yields

n+1l__.n
%_VAunJrl_i_(u;Hrlaj)unJrl
1 n+1\,,n+1 n+1 n n—1 : (7)
+§(V-u urtt ="t —v(©2p" —p")  in Q,
=0 on 0f).

Applying the divergence operator to , the projection step can be refor-
mulated as a Poisson equation for the pressure increment (p"™! — p™),

1
—NA(p"tt —p") = —KtV-u”Jrl in Q, (8a)
Oa(p™™ —p") =0 on 09, (8b)
<pn+1 pn>Q =0. (8C)

The homogeneous Neumann boundary condition is obtained taking the
inner product of by the outward normal n and using to conclude,
whereas condition descends from . The pressure approximation p™*!
can thus be obtained as a result of the projection process avoiding the direct
discretization of problem . However, it is inferred from that

Vp"™n=Vp" - n=...=Vp’ n  ondQ. 9)

This boundary condition is clearly different from the consistent one derived
in (4b]), and it is responsible for the appearance of a spurious boundary layer
in the approximate solution (cf. Orszag [32]). It has been demonstrated by
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Shen [34] and E and Liu [I4] that enforcing an artificial boundary condition
in a projection method limits the temporal accuracy of the pressure to first
order, whereas second order can still be attained for the velocity. In the
context of finite element methods, the enforcement of the consistent boundary
condition requires either to resort to more expensive projection methods [25]
or to adopt alternative formulations [I5]. Interestingly enough, however,
due to the presence of viscosity in the right hand side of equation , the
accuracy loss ascribed to the imposition of the artificial boundary condition
@D decreases with the increase in the Reynolds number. Indeed, that d,p = 0
on solid, stationary no-slip walls (with no body force) is a good approximation
at large Re is one of the cornerstones of boundary layer theory and one of the
major results of the Blasius solution on a flat plate (widely validated with
experimental results). This aspect limits the benefits provided by costly
projection formulations when dealing with convection-dominated flows and
will be numerically investigated in §3.2]

An alternative form of the pressure-correction algorithm can be obtained
replacing the backward Euler scheme by a BDF2 formula, thereby modifying
as follows:

1
(i_(; o I/A) un+l + (u;}-i-laj)un-i-l + 5(V_un—&-l)un-i-l —
£t — ﬂu” + &u"*1 — V(np" + 7"t + ") inQ
At At ’
(10a)
u"tt' =0 on 09, (10b)

where By = 3/2, 81 = —2, By = /2, while taking v; = 7/3,79 = —5/3,73 = 1/3
yields a pressure extrapolation of suitable order (cf., e.g., Guermond, Minev
and Shen [25]). To avoid time step restrictions and extrapolations for the
non-linear term, problem can be solved by means of the Newton method
requiring the computation of the analytic Jacobian at every iteration. The
projection step associated to reads

_A(pn-i-l _pn) — _i_()tv.un+l n Q, (11&)

On(p"™ —p") =0 on 0f. (11b)

All the numerical experiments of §3| are run using this second form of the
method.

2.3. Space discretization
The fully discrete problem is based on a discontinuous Galerkin discretiza-
tion of @ combined with a standard continuous Galerkin discretization
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of (§). This choice guarantees LBB stability and it allows to benefit from
the favorable properties of dG methods in convection-dominated regimes.

Let {T }n>0 denote a shape- and contact-regular, family of matching sim-
plicial or quadrilateral /hexahedral meshes of the domain 2. The mesh faces
are collected in the set F, partitioned into F; U Fy, where F? collects the
faces located on the boundary of €, whereas, for all F € F; there exist
Ty, Ty € Ty, T1 # Ty, such that F' = 9171 N 0Ts. For any function ¢ such that
a (possibly two-valued) trace is defined a.e. on F' € F}, we let

def

(1% b, —dm, 10} S (6m + bm).

On boundary faces, the jump and average operators are conventionally de-
fined by [¢] = {¢} = ¢. Finally, for F' € F}, nr represents the unit outward
normal to , whereas for F' € F}, np is defined as the unit normal pointing
from T} to T, (the order of the elements sharing F' is arbitrary but fixed).
When 7T, is simplicial, for a given polynomial degree k£ > 1, we define

AG(k) & {vy € LX(Q) | VT € T, vnr € PE(T)},

def 0/ k (12)
cG(k) = {qn € C°(Q) [ VT € T, quyr € Pa(T)},
where PX(T') denotes the restriction to the element T" of the polynomials of d
variables and total degree smaller or equal than k. The space Q%(T) replaces
P* in the definition of ¢cG(k) whenever matching quadrilateral /hexahedral
meshes are used for the pressure equation.
The discrete velocity and pressure are sought, respectively, in

U, & [dG(k))Y, P, ¥ cG(k)/R.

Observe that non-matching meshes could be allowed for the (discontinuous)
velocity approximation provided one disposes of an efficient projection oper-
ator onto the conforming pressure mesh. For brevity of notation, equal-order
and mixed-order velocity-pressure discretizations are hereafter identified by
dG(k)-cG(k) and dG(k)-cG(k—1) respectively.

Diffusive term in the momentum equation. The diffusive term is discretized
following Arnold [2], and the k-dependency of the penalty parameter is ac-
counted for using a simplified version of the expression proposed by Geor-
goulis and Siili in [20]. For all uy, vy, € Uy, the corresponding bilinear form



is then given by

an(up, vi) < /Q Vitin-Vavng + ) % /F [un] - [va]

FeFy

= | {Vhunsynp [on] +{Vavn,}op [ug]), (13)

FeFy, F

where 7 is a positive penalty parameter independent of both the mesh size h
and the polynomial degree k, and hp o minger, 17la/jo7),_1, with Tr denoting
the set of elements to whose boundary F' belongs. In all the numerical
experiments of §3| we set n = 3.

Nonlinear convective term in the momentum equation. For the convective
trilinear form, we follow Di Pietro and Ern [I3], where a non-dissipative
formulation relying on Temam’s device is proposed. For all wy, uy, v, € Uy,
we set

th(Wh,up, vp) def /Qwh.ththhJ — Z /FnF Awi} [un] - {vi}
%/Q(Vh'wh)(“h"’h) _% > /FnF [wall {un - va},

FeF,

_|_

yielding a non-conservative dG method that contains a source term propor-
tional to the divergence of the discrete velocity (still converging to zero as the
mesh is refined). A conservative variant requiring the non-standard modi-
fication of the pressure field first proposed in [9] has been devised in [13]
§5.4].

Discrete velocity divergence and discrete pressure gradient. The bilinear form
associated to the pressure-velocity coupling terms is defined, for all (v, qn) € Uy, X P,
as

b (Vs an) & — /Q Vi Vay = /Q Vevia— S [ ne il {a)

FeFy, F
Remark 1 (LBB stability). Let, for all v, € Uy,
<
de _
Vallie = D [ IVsonillzz) + D 'l [onid 72 | - (14)
i=1 FeFi



That [|-[ag is a norm on Uy, is a classical result (see [2, Lemma 2.1]). To
check the discrete inf-sup condition, fix g, € P,. Following Necas [26], there
exists v,, € [H}()]? such that V-v,, = g, almost everywhere in Q and
IVan i @ye < Cllanl|z2) with C independent of the mesh size h. Then,

||Qh||%2(9) Z/Q(V'th)%z —/quh'VQh

= — / TV, Van = bu(Thve, . qn)
Q

br(Th Vg, G br(Wh, qn
< anththG <C sup g

S ”%HL?(Q),
wiel,  [Wallac wreln  |[Wrllac

where we have used the fact that P, C dG(k) to replace v, with its L? pro-
jection mj,v,, onto Uy, in the second line, and concluded using the H!-stability
of the L*-projector to bound ||7,vg, [lac With ||V, |71 ()¢ (and, hence, with
Cllgnll2(2))- Observe that the above argument does not entail restrictions
on the polynomial degree k in . This is so because the pressure is sought
in a continuous space. When considering discontinuous pressures and tri-
angular meshes, the space couples dG(k)-dG(k—1) are stable only up to
k = 3 (see Girault, Riviere, and Wheeler [19]). We refer to Toselli [36] for
a comprehensive study of fully discontinuous space couples on quadrilateral
and hexahedral meshes. Stabilized formulations allowing equal-order, fully
discontinuous approximations can be found, e.g., in [4] (5] 10, 8, @) 1T2], 13].

Finally, the bilinear form associated to the time derivative discretization
is

def
mh(uh,vh) = /Qllh'Vh.

The discrete equivalent of equation (10]) consist in seeking u}*! € Uy, such
that

B
A_(;fmh(uZH» Vh) + Vah<u2+1> Vh) + th(uz7 uZ—H? Vh) + th(uZ—H’ LIZ, Vh) =

1
/ fvy, — Em(uzth) + b (Vi, pp) + ta(uy,uy, vy), Vv € Uy, (15)
Q

where we have set uj, oo Biu} + Bou) ! and pj & VPP + yapp 4 yapl 2,
with the coefficients 5; and 7; defined in section 2.2 Finally, the discrete
problem corresponding to equation (11]) consists in seeking pZ“ € P, such

that
/ Viupp Vg, = —% bp(up ™ ) + / Vuph-Viuan, Van € Py, (16)
Q Q
with the coefficient Sy defined in section [2.2

10



3. Numerical validation

In order to demonstrate the effectiveness of the solution method in the
context of convection-dominated incompressible flows, we now present tem-
poral and spatial accuracy results obtained for a set of classical benchmark
cases.

3.1. Implementation

The solver is implemented using the tools provided by the 1ibMesh open
source finite element library [29]. For the approximating polynomial space
PX(T) we use monomials for the discontinuous spaces dG(k) and Lagrange
polynomials for the continuous spaces ¢G(k). Thus, velocity is approximated
by modal shape functions, while pressure is discretized by means of nodal
shape functions. The quadrature points are computed using a Gaussian
quadrature formula, and the quadrature order is set so that the mass matrix
is integrated exactly. The quadrature order is not increased to take into
account exact integration of the non-linear term.

Parallelization is provided by the 1ibMesh library at the assembly level,
while data structures and algorithms for the parallel solution of sparse lin-
ear systems are provided by the PETSc toolkit [3]. Both levels make use
of the MPI communication protocol following a distributed memory model.
Mesh partitioning is performed using the METIS library [28] or its parallel
counterpart ParMETIS.

3.2. Temporal accuracy

In order to confirm the temporal accuracy estimates derived by E and Liu
[14], we consider the Taylor vortex test along with the benchmark problem
proposed by Couzy [11].

Taylor vortex temporal test. The aim of this test is to demonstrate that the
scheme (15)—(16) allows to march in time with high CFL numbers inde-
pendently of the Reynolds number, while preserving the expected tempo-
ral accuracy. The computational domain consist of the space-time cylinder
Q x (0.1,6.1) with Q = (=7/2,7/2)>. The Dirichlet boundary conditions as
well as the initial condition are deduced from the exact solution

[— cos(mz) sin(my)i + sin(7x) cos(my)j] e >,

u=

p = — cos(2mx) cos(2my)e ™,
where {i,j} denotes the canonical basis of R%. The space discretization relies
on a dG(2)-cG(2) approximation on a very fine 300 x 300 quadrilateral grid,
yielding L?-projection errors of the order of 107® for the exact solution (u, p).
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0.01 —O— velocity Re 100
—@— pressure Re 100
—/— velocity Re 1000
—— pressure Re 1000
—— velocity Re 10000
—&— pressure Re 10000

'/

1x10°®

1x10% o \

e T

.

0.01

L2 error

time step

Figure 1: Temporal accuracy of the scheme evaluated using the unsteady Navier—Stokes
Taylor vortex analytical solution (see text for details).

The simulations were run with time steps At € {0.2,0.1,0.05,0.025,0.0125}
and Reynolds number Re € {102,103,10?}. The results are summarized in
Figure . The convergence rate for the velocity and the pressure error in L?
norm, evaluated at the final simulation time tr = 6.1, is 2 for all but the
smaller time step at Re = 10%, where the spatial error starts to dominate.
The maximum CFL number, corresponding to the largest time step and
computed as proposed in [27] for a convection model problem, is about 50.
The implicit treatment of the non-linear term allows to choose At according
to accuracy considerations related to the splitting error and to the physics
to be modeled instead of dealing with the stringent stability limit of the
convection-diffusion operator.

Couzy decoupling error temporal test. The second test aimed at assessing the
accuracy of the proposed splitting method is the one proposed by Couzy [11].
The INS equations are solved on the time-space cylinder €2 x (0,0.75), with
space domain 2 = (0,1)?\ (0.4,0.6)* consisting of a square with a hole in
the middle. We consider the exact solution

u = [— cos(™/2) sin(™¥/2)i + sin(7%/2) cos(7¥/2)j] sin(rt),
p = —msin(7%/2) sin(™/2) sin(nt).
The forcing term as well as the Dirichlet boundary conditions and the ini-

tial condition are deduced from the above expression. The problem is dis-
cretized in space using dG(2)-cG(2) elements on a fine grid composed by
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Figure 2: Couzy test case. Top row and bottom row left, temporal accuracy of the scheme
evaluated on the unsteady Navier—Stokes problem proposed by Couzy (see text for details).
Bottom row right, contours of the pressure field at Re = 10000, time integration performed
with the smallest time step (see text for details).
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24,400 quadrilaterals, ensuring that spatial errors are dominated by tempo-
ral errors. The L? and L error for both velocity and pressure are evaluated
at the final simulation time ¢t = 0.75 using increased-order quadrature rules
to provide the required accuracy. The simulation is run for Reynolds number
Re € {10,102, 103,10*}, corresponding to v = {107!,1072,1073,10~*}. The
results are summarized in Figure 2] The slope of the fit for the velocity in
L? and L*™ norm and for the pressure in L? norm is almost 2. Interestingly
enough, while the velocity error is almost independent of the Reynolds num-
ber, the pressure error decreases with the increase of the Reynolds number.
Moreover, at low Reynolds numbers, the convergence rate for the pressure
in L* norm is somewhere in between the order of velocity and the order
of velocity minus one, confirming the expected convergence rate, while at
Re = 10* it exhibits full second order. This behavior is referable to the
pressure boundary layer due to the artificial Neumann boundary condition
derived in equation @ In the vanishing viscosity limit, equation @ enforces
the consistent boundary condition in equation so that the splitting error
limiting the accuracy of the pressure vanishes.

3.8. Spatial accuracy

To numerically assess the spatial convergence rates, we consider the Ko-
vasznay flow [30] in the two-dimensional domain (—0.5,1.5) x (0,2) and the
solution proposed by Ethier and Steinman [I7] in the three-dimensional do-
main (—1,1)3. In these test cases we deal with low Reynolds number flows (as
a matter of fact, the Kovasznay solution is similar to the low-speed flow of a
viscous fluid past an array of cylinders, while the three-dimensional solution
consists in a series of counter-rotating vortices involving all three Cartesian
velocity components). The exact solution of the Kovasznay flow is given by

A 1
u=1-—ecos(2my)i + 2—6’\9” sin(27y)j, p= 5(1 — P,
m
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Figure 3: Kovasznay test case. Top row and bottom row left, spatial accuracy of the
finite element discretization evaluated on the steady Navier—Stokes problem proposed by
Kovasznay (see text for details). Bottom row right, streamlines and velocity contours.
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1
1 1 5
where A\ = — — (4—2 +47%)2. The unsteady analytical solution devised by
v
Ethier and Steinman reads

u = — a(e®sin(ay + dz) + ¢*cos(az + dy))e” ¥4
— a(e®sin(az + dz) + e““cos(ay + dz))e "]

— a(e®sin(ax + dy) + e cos(az + dx))efdQVtk

a2

p= = (T4 e 4 e (17)

+ 2sin(ax + dy)cos(az + dx)e* V)
+ 2sin(ay + dz)cos(azx + dy)e*+)
+ 2sin(az + dz)cos(ay + dz)e® @) e=2 vt

where a = § and d = 7. In order to evaluate the spatial convergence without
dealing with temporal errors, we consider the solution at time ¢ = 0 and we
add a forcing term balancing diffusion terms in the absence of unsteady terms
(while convective terms balance the pressure gradient).

In both test cases we take v = 0.025 (corresponding to Re = 40) and
(weakly) enforce Dirichlet boundary according to the exact solution, while
the initial conditions over the whole domain corresponds to zero velocity and
pressure. In order to obtain a steady-state solution, a pseudo-time integra-
tion is performed employing a fixed time step At = 0.1. The L? error for both
velocity and pressure as well as the L? error for the velocity gradients are dis-
played in Figures |3| and |4l The theoretical convergence rates of h**! for the
L? error on the velocity, of h* for the L? error on the pressure and for the L?
error on the velocity gradients are confirmed for both the dG(k)-cG(k) and
dG(k)-cG(k—1) discretizations. It is interesting to note that in the approx-
imation of the three-dimensional solution proposed by Ethier and Steinman
the dG(1)-cG(1) discretization shows a second order convergence rate for
the pressure error in L? norm while the theoretical convergence rates for the
velocity underestimate the numerically evaluated ones by half an order.

Albeit the convergence rate is the same, dG(k)-cG(k) discretizations yield
more precise pressure approximations than dG(k)-cG(k—1) discretizations,
scoring a point for equal order finite element spaces implementations. It
has to be noticed, however, that the computational effort required by the
iterative solution of the projection step can grow considerably in large scale
simulations, see Section (3.5, which can render dG(k)-cG(k—1) discretizations
more efficient in some configurations. Unlike the convection-diffusion step,
the number of iterations required by the projection step strongly increases
moving from k£ = 1 to k = 2, revealing the need of better preconditioning
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Figure 6: 3D lid-driven cavity test, Re 1000. Streamlines color-coded by velocity magni-
tude. Side, front and bottom view.

techniques for higher-order pressure discretizations. In serial computations it
is possible to reduce the number of iterations of the GMRES iterative solver
increasing the levels of fills of the ILU preconditioner, while in parallel we
obtained sensible improvements relying on preconditioners based on algebraic
multigrid, see e.g. [1§].

3.4. 2D and 3D lid-driven cavity

As a final test case, we consider the two- and three-dimensional lid-driven
cavity flow. The computational domain for this problem is a square (a cube in
3D) with edges of unit length. The top side of the cavity slides with a constant
imposed velocity, while no-slip Dirichlet boundary conditions are enforced
on the remaining sides. Despite its simple geometry, this lid-driven cavity
flow presents complex flow patterns due to multiple recirculating secondary
vortices at the corners of the cavity, see Figure [5] The space discretization
is based on dG(2)-cG(1) elements on a 120 x 120 quadrilateral grid in 2D
and a 50 x 50 x 50 hexahedral grid in 3D. The simulation is advanced in
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Figure 7: Lid-driven cavity test. Plots of horizontal (red) and vertical (blue) velocity
components along the vertical and horizontal centerlines respectively. Top row and bottom
row left, 2D lid-driven cavity at Re 1000, 10000 and 20000: the dots correspond to the
reference values provided by Erturk et ol [16]. Bottom row right, 3D lid-driven cavity at
Rel000: the dots correspond to the reference values provided by Albensoeder et ol [1].
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time adopting a pseudo-time integration with fixed time step At = 0.1 until
a steady-state is reached.

We present 2D lid-driven cavity solutions at Reynolds number Re = 1000,
Re = 10000, and Re = 20000 and compare them with the accurate refer-
ence solutions presented in [16], where the values of the two components of
the velocity are tabulated along the horizontal and vertical centerlines for
Re < 21000. These reference solutions have been obtained on a very fine
uniform grid of 601 x 601 with a streamfunction and vorticity formulation of
the Navier—Stokes equations. In Figure [7] it can be appreciated that veloc-
ity profiles match the reference solutions for all the Reynolds numbers here
considered. As the Reynolds number increases, the gradient of the velocity
at the boundary layers becomes stronger, and the number of recirculating
vortices at the corners on the cavity increases. In these cases, the accuracy
of the solution critically depends on modeling the shear layer along the lid
and the discontinuity in the boundary condition at the upper right and left
corner.

The 3D lid-driven cavity solution is computed at Reynolds number Re = 1000,
and compared with the velocity results tabulated along the x-axis and y-axis
in [I], where a projection method coupled to a fifth-order accurate Cheby-
shev collocation discretization on a 96 x 96 x 64 hexahedral mesh is used. In
Figures [0] and [7] the symmetry of the streamlines and the perfect agreement
between the velocity profiles can be appreciated.

Overall, these results demonstrate that high levels of accuracy can be
reached for shear-driven flows at high Reynolds numbers using a projection
method.

3.5. Solver profiling

Splitting algorithms are well suited for unsteady simulations where the
choice of the time step is driven by the dynamics of the phenomena to be
modelled. The aim of this section is to provide a detailed profiling of the
proposed implementation as well as a comparison between dG(k)-cG(k) and
dG(k)-dG(k) strategies. We show, in particular, that the computational cost
is significantly reduced in the former case as a result of the increased efficiency
of the projection step . We consider the unsteady analytical solution of
Ethier and Steinmann at Re = 40 with Dirichlet boundary conditions
and initial condition deduced from . Albeit relatively simple, this test
case highlights the trends encountered in real-life situations.

We evaluate the execution times of the dG(2)-cG(2) discretization on
three hexahedral meshes containing 40%, 503, 65° elements respectively. The
discretizations top at more than 8 millions of unknown for the discontinuous
velocity on the finer mesh, while the size of the problem halves on the coarser
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’ Temporal convergence, Ethier Steinman test case, Re = 40 ‘

At L? error pressure | order | L? error velocity | order
0.1 0.1096 0.00936

0.05 0.02998 1.87 0.002398 1.96
0.025 0.007912 1.92 0.0006039 1.99
0.0125 0.002020 1.97 0.00015159 1.99

Table 1: Time convergence, Ethier and Steinman solution (17), Re = 40, dG(2)-cG(2)
discretization, 65 elements hexahedral grid.

meshes. The error related to the time discretization has been evaluated at
the final step for a total time integration interval 7" = [0, 1]. On all the grids
here considered we are able to obtain second order temporal convergence for
velocity and pressure in the L? norm as the temporal error dominate the
spatial error. Table [I| shows the results for the finest grid.

All the simulations are run in parallel on 32 processes using 4 nodes of a
quad-core CPUs dual-socket cluster disposing of 16GB of RAM per node. For
the solution of the linear systems resulting from the finite element discretiza-
tion we rely on the well know Block Jacoby preconditioned GMRES(z/y)
algorithm [3] where the number Krylov spaces (z) and the maximum number
of iterations (y) are user-defined input parameters. We prescribe a relative
residual tolerance of 1-107? and we guarantees that the maximum number
of linear iteration is not reached so that the iterative solver has converged up
to the desired tolerance. The convergence of the Newton method in is
reached when the discrete L? norm of the solution increment is smaller than
11072, which is usually achieved in a couple of non-linear iterations. This
value suffices to obtain second order time convergence.

In order to motivate the choice of a dG(k)-cG(k) strategy with discon-
tinuous velocity and continuous pressure we compare the relative amount
of time spent during the pressure correction step with respect to a fully
discontinuous dG(k)-dG(k) strategy; see Tables [2| and For the sake of
completeness, a fully coupled strategy has also been considered; see Table
We stress that the time indication includes both the matrix assembly and the
solution of the linear systems, which means that in the advection-diffusion
step we consider two Jacobian assembly and as GMRES solution processes as
Newton iterations. It is apparent from Table [2] that the number of GMRES
iterations required for the numerical solution of projection step is strongly
related to number of Krylov spaces selected, which indicates that the linear
system associated to the projection step is the harder to solve. Moving to
the finest 653 elements grid we are obliged to increase the number of Krylov
spaces up to 250 to efficiently solve the projection step. On the contrary, the
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’ Solver profiling, Ethier Steinman test case, 40° elements grid

a-d step p-c step
At n_ksp | avg step time | avg n_it | % time | avg n_it | % time
100 135's 34 6200 66
011 150 66 s 8050 | rg 700 22
100 125 s 29 6000 71
0051 150 47 s 0030 ) 76 600 24
100 112 s 29 5200 71
00251150 13 s 0+20) oy 600 26
100 112 s 26 5200 74
001251 159 10 s SUHLD gy 600 28
’ Solver profiling, Ethier Steinman test case, 50° elements grid
a~d step p-c step
At n_ksp | avg step time | avg n_it | % time | avg n_it | % time
150 206 s 49 4300 51
0.1 200 113 s 110+70 79 700 21
150 193 s 39 4200 61
0-05 200 100 s 10+40 76 600 24
150 135's 47 2200 53
00251 909 80 5 020 g6 490 24
150 111 s 48 1800 52
001251 959 7 s SOHL0 ) gy 490 25

’ Solver profiling, Ethier Ste

inman test case, 65° elements grid

a~d step p-c step
At n_ksp | avg step time | avg n_it | % time || avg n_it | % time
DEE AR

Table 2: Solver profiling on the unsteady Navier-Stokes problem proposed by Ethier and
Steinman [I7], Re = 40, dG(2)-cG(2) discretization. From left to right, time step size,
number of Krylov spaces used by the GMRES solver, average time required for a single
time step, average of the GMRES linear iterations and percentage of time spent for the
advection-diffusion step and for the projection step, respectively.
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’ dG-dG solver, Ethier Steinman test case, 50° elements grid
a-d step p-c step

At n_ksp | avg step time | avg n_it | % time | avg n_it | % time
200 589 s 16 >8000 84
0.1 400 201 s 110+70 48 1000 52
200 543 s 13 >8000 87
0051 400 178 5 040y 900 59
200 612 s 10 >8000 90
0-025 400 176 s H0+20 37 900 63
200 667 s 9 >8000 81
0-0125 400 183 s 30+10 30 1100 70

Table 3: Profiling on the dG-dG pressure-correction algorithm, unsteady Navier-Stokes
problem proposed by Ethier and Steinman [I7], Re = 40, dG(2)-dG(2) discretization.
From left to right, time step size, number of Krylov spaces used by the GMRES solver,
average time required for a single time step, average of the GMRES linear iterations
and percentage of time spent for the advection-diffusion step and for the projection step,
respectively.

number of linear iterations required by the advection-diffusion step is rela-
tively independent of the number of Krylov spaces, and smoothly increases
with the size of the problem.

The strong influence of the GMRES parameters on the execution time
makes it clear that the ability to set up an efficient solution process for
the projection is of primary importance in the pressure-correction algorithm.
In this context a continuous pressure discretization is to be preferred to a
more expensive discontinuous pressure discretization as the cost related to
iterative solution of the projection step is bounded, even employing standard
preconditioners.

To corroborate this assertion, we compare the dG(2)-c¢G(2) strategy with
a fully discontinuous dG(2)-dG(2) implementation of the splitting algorithm
and a fully discontinuous monolithic solver. The three strategies only dif-
fer for the pressure treatment, while the discretization of the convective and
diffusive term presented in Section are unchanged. In the dG(2)-dG(2)
pressure-correction algorithm the projection step is discretized by means of
the bilinear form ([13|) modified to include the proper boundary conditions.
Tables |3 and 4] contain the execution times on the 50% grid. It is interesting
to note that the iterative solution of the projection step in the dG(2)-dG(2)
pressure-correction is so much more expensive compared to the dG(2)-cG(2)
formulation that the GMRES algorithm fails to converge when the number
of Krylov spaces is set at 200. In this configuration, even if a number of
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dG solver, Ethier Steinman test case, 50° elements grid
At n_ksp | avg step time avg n_it
0.1 200 560 s 4804370
' 400 587 s 380+290
0.05 200 480 s 420+330
’ 400 461 s 310+230
200 380 s 390+120
0.025 400 340 s 280+120
200 335 s 370+80
00125 1 400 324 280-+80

Table 4: Profiling on the dG monolithic incompressible Navier-Stokes solver proposed by
[13], unsteady Navier-Stokes problem proposed by Ethier and Steinman [I7], Re = 40,
second order discretization. From left to right, time step size, number of Krylov spaces
used by the GMRES solver, average time required for a single time step, average of the
GMRES linear iterations.

maximum iteration greater than 8000 is employed, the algorithm is unable
to reach the prescribed convergence rate (1-107?), thereby spoiling the pres-
sure convergence rates at the smaller time steps. Moreover, even when the
number of Krylov spaces is set at 400 the GMRES convergence is subop-
timal compared to the dG(2)-cG(2) algorithm and better preconditioning
techniques would be required for the projection step. Remarkably enough,
the monolithic dG solver outperforms the dG(2)-dG(2) implementation when
the number of Krylov spaces is set at 200. On the other hand, the dG(2)-
c¢G(2) strategy is almost four time faster than the monolithic solver. For the
latter, an increase in the number of Krylov spaces has a reduced, possibly
negative, impact on the performance as the minor number of iteration is
balanced by an higher cost per iteration; see Table

4. Conclusions

We have presented an efficient and robust INS solver for high-Reynolds
unsteady flows. Efficiency is ensured by the use of a projection method to
decouple the momentum conservation equation from the incompressibility
constraint, thereby allowing an effective solution process based on standard
preconditioned iterative solvers. Robustness regards to the Reynolds num-
ber is guaranteed by the fully implicit dG discretization of the convection-
diffusion step.

We demonstrated the ability to accurately resolve 2D and 3D challenging
benchmark problems in moderate to high Reynolds numbers flow regimes
with time steps larger than the ones imposed by the CFL stability limit.
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The possibility to manage hybrid grids can be exploited to extend the solver
applicability to complex geometries as the ones required for hemodynamic
simulations. An open-source hemodynamics solver based on the proposed
algorithm will be the subject of future work.
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