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Abstract

In this work we present a pressure-correction scheme for the incompress-
ible Navier-Stokes equations combining a discontinuous Galerkin approxi-
mation for the velocity with a standard continuous Galerkin approximation
for the pressure. The main interest of pressure-correction algorithms is the
reduced computational cost compared to fully coupled schemes. The aim of
the present work is to show how a proper discretization of the decoupled mo-
mentum equation can render this method suitable to simulate high Reynolds
regimes. The proposed spatial velocity-pressure approximation is LBB stable
for equal polynomial orders and it allows adaptive p-refinement for velocity
and global p-refinement for pressure. The method is validated against a large
set of classical two- and three-dimensional test cases covering a wide range
of Reynolds numbers, in which it proves effective both in terms of accuracy
and computational cost.
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1. Introduction

Discontinuous Galerkin (dG) methods offer effective means to obtain ac-
curate discretizations of complex problems on general meshes. In this work,
we deal with advection-dominated incompressible flows, which constitute a
challenging class of problems both in terms of numerical stability and com-
putational cost. In this context, dG methods offer many advantages: LBB
stable equal-order discretizations can be devised, the extension to arbitrary
unstructured and nonconforming grids is straightforward, and the resulting
discretization displays an increased stability in the high Reynolds regimes.
Another feature highly appreciated by practitioners in fluid dynamics is that
the discretization can be designed so that physical quantities such as momen-
tum or mass are locally conserved. Flexibility, however, comes at a price.
In particular, memory requirements as well as the increased computational
cost have discouraged wide adoption of these methods up to now. In this
work we present an effective strategy to overcome these limitations inspired
by classical projection methods.

DG discretizations of the Incompressible Navier-Stokes (INS) equations
have been considered in several works. A mixed-order scheme on simplicial
meshes has been considered by Girault, Rivière and Wheeler [19], where the
authors prove LBB stability for polynomial orders up to the third. More
general meshes and equal-order approximation can be dealt with by suitable
pressure stabilization techniques. We refer to Cockburn Kanschat, Schötzau
and Schwab [8] and to Bassi, Crivellini, Di Pietro and Rebay [4, 5]; see also
[12]. Several techniques have been proposed for the discretization of the
non-linear advective term. Convergence estimates for a trilinear form with
upwind stabilization have been derived by Girault, Rivière and Wheeler [19].
In [8], Cockburn, Kanschat and Schötzau prove the convergence of a fixed
point iteration based on the LDG method introduced in [7] to the solution
of the INS problem. More recently, Di Pietro and Ern in [13] have proposed
a set of sufficient conditions on the trilinear form ensuring convergence to
minimal regularity solution.

As regards time marching schemes, splitting methods have also been con-
sidered also in conjunction with (fully or partially) discontinuous space dis-
cretizations. The original pressure-correction method is due to Chorin and
Temam [6, 31]; an incremental form was later proposed by Goda [20], while
a second-order incremental scheme is due to Van Kan [32]. In [27] Liu and
Shu propose a method for the two-dimensional INS equations in the vortic-
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ity stream-function formulation with discontinuous velocity and continuous
pressure. In [29], Shahbazi, Fischer and Ethier introduce an effective three-
step algebraic splitting dG discretization of the INS equations in primitive
variables with explicit treatment of the non-linear term in the advection dif-
fusion step. As noted by Sherwin [24], in high Reynolds incompressible flows,
splitting methods can be computationally efficient and competitive in accu-
racy compared to more expensive coupled methods. As a matter of facts, a
coupled velocity and pressure system involves the solution of the saddle point
problem induced by the incompressibility constraint, which in turn requires
ad-hoc preconditioners and has limited applicability to 3D large-scale un-
steady simulations. Moreover, in convection-dominated flows, the time step
is restricted by stability considerations in the first place, so that the splitting
error, scaling as ∆t/Re for a first order method, fails to limit the accuracy of
the scheme.

In this work we propose a formulation based on the well known pressure-
correction scheme featuring discontinuous velocity and continuous pressure.
As the space couple is LBB stable for equal- and mixed order discretizations,
pressure stabilization is not needed, thereby reducing the coupling between
the momentum and the pressure equation. In this configuration we are able
exploit the ability of dG to deal with convection-dominated flows maintaining
a less expensive Galerkin discretization for the Laplacian operator associated
with the pressure projection step. Both the steps of the scheme can be solved
with iterative methods employing standard preconditioners, resulting in an
effective solution process. To avoid time step restrictions the advection-
diffusion step is discretized in time using a fully implicit backward Euler or
second-order backward differentiation formula.

2. Solution strategy

The material is organized as follows: §2.1 contains a general overview of
projection methods, §2.2 deals with the time discretization and §2.3 with the
space discretization.

2.1. Projection Methods

Let Ω ⊂ R
d, d ∈ {2, 3}, denote a bounded connected open set and let

tF > 0. We consider the unsteady INS equations with homogeneous Dirichlet
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boundary conditions,




∂u

∂t
+ uj∇ju − ν∇2u + ∇p = f in Ω × (0, tF ),

∇ · u = 0 in Ω × (0, tF ),

u(x, t) = 0 for a.e. x ∈ ∂Ω, t ∈ (0, tF ),

u(x, 0) = u0(x) for a.e. x ∈ Ω,∫
Ω

p = 0,

where ν > 0 denotes the (constant) viscosity, f is a given body force and u0

is the initial condition. In the above, we made use of Einstein’s convention
for repeated indices. The main idea of projection methods is to decouple the
incompressibility constraint ∇ · u = 0 from the momentum equation. This
strategy is attractive because it only requires to solve an advection-diffusion
equation for the velocity and an elliptic equation for the pressure at each
time step, thereby lending itself to a more efficient implementation than a
fully coupled scheme. The decoupling is achieved by introducing a projection
operator onto the space of divergence-free functions,

D
def
= {v ∈ [L2(Ω)]d | ∇ · v = 0 in Ω, v · n = 0 on ∂Ω}.

and using the classical decomposition

[L2(Ω)]d = D ⊕∇(H1(Ω)). (1)

Equation (1) states that every function v ∈ [L2(Ω)]d can be uniquely decom-
posed into a divergence-free component plus an irrotational one. Denote by
PD : [L2(Ω)]d → D the operator that maps every function of [L2(Ω)]d into
its divergence free part. For a given v ∈ [L2(Ω)]d, this projection can be
computed by solving the Neumann problem for the potential φ




∇2φ = ∇ · v, in Ω,
∂φ

∂n
= v · n, on ∂Ω,

and setting
PD(v) = v −∇φ. (2)

Applying the divergence operator to the momentum equation and using the
divergence-free constraint, we obtain the Poisson equation for the pressure

∇2p = ∇ · (f − u · ∇u) in Ω × (0, tF ), (3)
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while taking the normal component on ∂Ω and using the homogeneous Dirich-
let boundary conditions yields

∂p

∂n
= n · (f + ν∇2u) on ∂Ω × (0, tF ). (4)

The exact pressure satisfies the system (3)-(4). In the context of projection
methods, a modified version of this problem is used to obtain a pressure
approximation at each time step, as will be discussed in the next section.

2.2. Pressure-correction scheme and time integration

This section addresses the time discretization by the pressure correction
method and pinpoints the relation between the semi-discrete formulation and
the computation of PD. More precisely, we consider, for the sake of nota-
tion, the incremental form of the pressure-correction with backward Euler
time discretization, while a higher-order time discretization will be derived
by means of a second-order backward differentiation formula (BDF). We in-
troduce a partition of the time domain (0, tF ) into equally spaced intervals of

length ∆t and set, for n > 0, tn
def
= n∆t. Let (ũ0,u0, p0) denote a set of initial

guesses and define the sequence of triplets (ũn+1,un+1, pn+1) iteratively by
solving the following problems:





un+1 − ũn

∆t
− ν∇2un+1

+ (un+1 · ∇)un+1 +
1

2
(∇ · un+1)un+1 + ∇pn = fn+1

in Ω,

un+1 = 0 on ∂Ω,

(5)
and 




ũn+1 − un+1

∆t
+ ∇(pn+1 − pn) = 0 in Ω,

∇ · ũn+1 = 0 in Ω,

ũn+1 · n = 0 on ∂Ω.

(6)

(Temam’s device [31] has been used in (5) to obtain a skew-symmetric version
of the advective term.) Both ũn and un represent approximations of the exact
velocity at the discrete time tn. In particular, un accounts for momentum
diffusion and advection as well as for the exact boundary condition, whereas
ũn incorporates the divergence-free constraint. It can be checked that the
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projection step (6) is equivalent to setting ũn+1 = PDun+1, thereby showing
that the algorithm (5)-(6) belongs to the class of projection methods.

Following Guermond and Quartapelle [21], it is possible to devise formu-
lations which do not require the actual computation of ũn. As a matter of
facts, from the first equation of (6) it is inferred that

ũn = un − ∆t∇(pn − pn−1).

Plugging the above expression evaluated at discrete times tn and tn−1 into
equation (5) yields





un+1 − un

∆t
− ν∇2un+1 + (un+1 · ∇)un+1

+
1

2
(∇ · un+1)un+1 = fn+1 −∇(2pn − pn−1)

in Ω,

un+1 = 0 in ∂Ω.

(7)
Applying the divergence operator to the first equation of (6), the projection
step can be reformulated as a Poisson equation for the pressure increment
(pn+1 − pn) 




−∇2(pn+1 − pn) = −
1

∆t
∇ · un+1 in Ω,

∂(pn+1 − pn)

∂n
= 0 on ∂Ω.

(8)

The pressure approximation pn+1 can be obtained as a result of the projec-
tion process avoiding the direct discretization of problem (3)-(4). However,
considering the second equation in (8), we infer that, on ∂Ω,

∇pn+1 · n = ∇pn · n = . . . = ∇p0 · n on ∂Ω. (9)

This boundary condition is clearly different from the consistent one derived
in (4), and it is responsible for the appearance of a spurious boundary layer
in the approximate solution (cf. Orszag [28]). It has been demonstrated by
Shen [30] and E and Liu [14] that enforcing an artificial boundary condition
in a projection method limits the temporal accuracy of the pressure to first
order, whereas second order can still be attained for the velocity. In the
context of finite element methods, the enforcement of the consistent boundary
condition requires either to resort to more expensive projection methods [22]
or to adopt alternative formulations [15]. Interestingly enough, however,
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due to the presence of viscosity in the right hand side of equation (4), the
accuracy loss ascribed to the imposition of the artificial boundary condition
(9) decreases with the increase in the Reynolds number. This aspect limits
the benefits provided by costly projection formulations when dealing with
convection-dominated flows and will be numerically investigated in §3.2.

The final form of the pressure-correction algorithm is obtained replacing
the backward Euler scheme by a BDF2, thereby modifying (7) as follows:





(
β0

∆t
− ν∇2

)
un+1 + (un+1 · ∇)un+1 +

1

2
(∇ · un+1)un+1 =

fn+1 −

(
β1

∆t
un +

β2

∆t
un−1

)
−∇(γ1p

n + γ2p
n−1 + γ3p

n−2)

in Ω,

un+1 = 0 on ∂Ω,

(10)
where the coefficients β0 = 3/2, β1 = −2, β2 = 1/2 are associated to the BDF2
formula, while taking γ1 = 7/3, γ2 = −5/3, γ3 = 1/3 yields a pressure extrap-
olation computed according to the BDF order (cf., e.g., Guermond, Minev
and Shen [22]). To avoid time step restrictions and extrapolations for the
non-linear term, equation (10) can be solved by means of the Newton method
requiring the computation of the analytic Jacobian associated with each lin-
ear iteration. In the same framework equation (8) becomes





−∇2(pn+1 − pn) = −
β0

∆t
∇ · un+1 in Ω,

∂(pn+1 − pn)

∂n
= 0 on ∂Ω.

(11)

2.3. Space discretization

The fully discrete problem is based on a discontinuous Galerkin discretiza-
tion of (7) combined with a standard continuous Galerkin discretization
of (8). This choice guarantees LBB stability and it allows to benefit from
the favourable properties of dG methods in advection-dominated regimes.

Let {T }h>0 denote a shape-regular, quasi-uniform family of simplicial
meshes of the domain Ω. The mesh faces are collected in the set Fh par-
titioned into F i

h ∪ F b
h, where F b

h collects the faces located on the boundary
of Ω, whereas, for all F ∈ F i

h there exist T1, T2 ∈ Th, T1 6= T2, such that
F = ∂T1 ∩ ∂T2. For any function φ such that an integrable (possibly two-
valued) trace is defined on F ∈ F i

h we let

[[φ]]
def
= φ|T1

− φ|T2
, {φ}

def
=

1

2
(φ|T1

+ φ|T2
).
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On boundary faces, the jump and average operators are conventionally de-
fined by [[φ]] = {φ} = φ. Finally, for F ∈ F b

h, nF represents the unit outward
normal to Ω, whereas for F ∈ F i

h, nF is defined as the unit normal pointing
from T1 to T2 (the order of the elements sharing F is arbitrary but fixed).

For a given polynomial degree k ≥ 1, we introduce the following finite
dimensional spaces:

V k
h

def
= {vh ∈ L2(Ω) | ∀T ∈ Th, vh|T ∈ P

k
d(T )},

Qk
h

def
= {qh ∈ C0(Ω) | ∀T ∈ Th, qh|T ∈ P

k
d(T )}.

The discrete velocity and pressure are sought, respectively, in

Uh
def
= [V k

h ]d, Ph
def
= Qk

h/R.

For simplicity of notation we identify equal-order and mixed-order velocity-
pressure discretizations respectively as dG(k)-cG(k) and dG(k)-cG(k − 1)
(cG standing for “continuous Galerkin”).

Diffusive term in the momentum equation. The diffusive term is discretized
following Arnold [2], and the k-dependency of the penalty parameter is ac-
counted for as in Georgoulis et al. [18]. For all uh, vh ∈ Uh, the corresponding
bilinear form is then given by

ah(uh,vh)
def
=

∫

Ω

∇h,juh,i∇h,jvh,i +
∑

F∈Fh

ηk2

hF

∫

F

[[uh]] · [[vh]]

∑

F∈Fh

∫

F

[{∇h,juh,i} [[vh,i]] nF,j + {∇h,jvh,i} [[uh,i]] nF,j] ,

where η is a positive penalty parameter and Einstein’s convention has been
used for repeated indices.

Nonlinear advective term in the momentum equation. For the advective tri-
linear form, we follow Di Pietro and Ern [13], where a non-dissipative for-
mulation relying on Temam’s device is proposed. For all wh, uh, vh ∈ Uh we
set

th(wh,uh,vh)
def
=

∫

Ω

wh,j · ∇h,juh,ivh,i −
∑

F∈F i

h

∫

F

nF · {wh} [[uh]] · {vh}

+
1

2

∫

Ω

(∇h · wh)(uh · vh) −
1

2

∑

F∈Fh

∫

F

nF · [[wh]] {uh · vh},
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yielding a non-conservative dG method that contains a source term propor-
tional to the divergence of the discrete velocity (still converging to zero as the
mesh is refined). A conservative variant of the advective term discretization
requiring the non-standard modification of the pressure field first proposed
in [8] has been devised in [13].

Discrete velocity divergence and discrete pressure gradient. The bilinear form
associated to the discretization of the velocity divergence in the mass con-
servation equation is defined, for all (vh, qh) ∈ Uh × Ph as

bh(vh, qh)
def
=

∫

Ω

(∇h · vh)qh −
∑

F∈Fh

∫

F

nF · [[vh]] {qh}.

Integration by parts yields

bh(vh, qh) = −

∫

Ω

vh · ∇qh +
∑

T∈Th

∑

F⊂∂T

∫

F

vh · nF qh −
∑

F∈Fh

∫

F

nF · [[vh]] {qh}

= −

∫

Ω

vh · ∇qh +
∑

F∈F i

h

∫

F

nF · {vh} [[qh]] = −

∫

Ω

vh · ∇qh,

where we have used the continuity of the functions in cG(k) to conclude.

Remark 1 (LBB stability). Let, for all vh ∈ Uh,

‖vh‖
2
dG

def
=

d∑

i=1


‖∇hvh,i‖

2
L2(Ω) +

∑

F∈F i

h

h−1
F ‖ [[vh,i]] ‖

2
L2(F )


 .

That ‖·‖dG is a norm on Uh is a classical result (cf., e.g., Di Pietro and
Ern [13]). To check the discrete inf-sup condition, fix qh ∈ Ph. Following
Nečas [23], there exists vqh

∈ [H1
0 (Ω)]d such that ∇ · vqh

= qh almost every-
where in Ω and ‖vqh

‖[H1(Ω)]d ≤ C‖qh‖L2(Ω) (C denotes a constant independent
of the mesh size h). Then,

‖qh‖
2
L2(Ω) =

∫

Ω

(∇ · vqh
)qh = −

∫

Ω

vqh
· ∇qh

= −

∫

Ω

πhvqh
· ∇qh = bh(πhvqh

, qh)

≤ sup
wh∈Uh

bh(πhvqh
, qh)

‖wh‖dG

‖πhvqh
‖dG ≤ C sup

wh∈Uh

bh(πhvqh
, qh)

‖wh‖dG

‖qh‖L2(Ω),
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where we have used the fact that Ph ⊂ V k
h to replace vqh

with its L2 projection
πhvqh

onto Uh in the second line and concluded using the H1 stability of
the L2 projector to bound ‖πhvqh

‖dG with ‖vqh
‖[H1(Ω)]d (and, hence, with

C‖qh‖L2(Ω)).

Finally, the bilinear form associated to the time derivative discretization
is

mh(uh,vh)
def
=

∫

Ω

uh · vh.

The discrete equivalent of equation (10) consist in seeking un+1
h ∈ Uh such

that

β0

∆t
mh(u

n+1
h ,vh) + νah(u

n+1
h ,vh) + th(u

n
h,u

n+1
h ,vh) + th(u

n+1
h ,un

h,vh) =
∫

Ω

fvh − m(u∗
h,vh) − bh(p

∗
h,vh) + th(u

n
h,u

n
h,vh), ∀vh ∈ Uh, (12)

where we have set u∗
h

def
=

β1

∆t
un

h +
β2

∆t
un−1

h and p∗h
def
= γ1p

n
h + γ2p

n−1
h + γ3p

n−2
h ,

with the coefficients βi and γi defined in section 2.2. Finally, the discrete
problem corresponding to equation (11) consists in seeking pn+1

h ∈ Ph such
that

∫

Ω

∇hp
n+1
h · ∇hqh = −

β0

∆t
bh(u

n+1
h , qh) +

∫

Ω

∇hp
n
h · ∇hqh, ∀qh ∈ Ph, (13)

with the coefficient β0 defined in section 2.2.

3. Numerical validation

In order to demonstrate the effectiveness of the solution method in the
simulation of advection-dominated incompressible flows, we now present tem-
poral and spatial accuracy results obtained for a set of classical benchmark
cases.

3.1. Implementation

The solver is implemented using the tools provided by the libMesh open
source finite element library [25]. For the approximating polynomial space
Pk(T ) we use monomials in case of the finite element space V k

h and La-
grange polynomials for the space Qk

h. Thus, velocity is approximated with
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a modal shape function while pressure is discretized by means of a nodal
shape function. The quadrature points are computed by means of a Gaus-
sian quadrature formula and the quadrature order is set so that the mass
matrix is exactly integrated. The quadrature order is not increased to take
into account exact integration of the non-linear term.

Parallelization is provided by the libMesh library at the assembly level,
while data structures and algorithms for the parallel solution of sparse linear
systems are provided by the PETSc toolkit [3]. Both levels make use of the
MPI communication protocol following a distributed memory model. Mesh
partitioning is performed using the METIS library or its parallel counterpart
ParMETIS (http://glaros.dtc.umn.edu/gkhome/views/metis).

3.2. Temporal accuracy

In order to confirm the temporal accuracy estimates derived by E and Liu
[14], we consider the Taylor vortex test along with the benchmark problem
proposed by Couzy [11].

Taylor vortex temporal test. The aim of this test is to demonstrate that the
scheme (12)–(13) allows to march in time with high CFL numbers inde-
pendently of the Reynolds number while preserving the theoretical tempo-
ral accuracy. The computational domain consist of the space-time cylinder
Ω × (0.1, 6.1) with Ω = (−π/2, π/2)2. The Dirichlet boundary conditions as
well as the initial condition are deduced by the exact solution

u = [− cos(πx) sin(πy)i + sin(πx) cos(πy)j] e−2πνt,

p = − cos(2πx) cos(2πy)e−4πνt,

where {i, j} denotes the canonical basis of R
2. The space discretization re-

lies on a dG(2)-cG(2) approximation on a very fine 300 × 300 quadrilateral
grid, yielding L2-projection errors of the order of 10−8 for the exact solution
(u, p). The simulations were run with time steps ∆t ∈ {0.2, 0.1, 0.05, 0.025}
and Reynolds number Re ∈ {102, 103, 104}. The results are summarized in
Figure 1. The slope of the fit for the velocity and pressure in L2 norm is
2. The maximum CFL number, corresponding to the largest time step and
computed as proposed in [24] for an advection model problem, is about 50.
The implicit treatment of the non-linear term allows to choose ∆t according
to accuracy considerations related to the splitting error and to the physics
to be modelled instead of dealing with the stringent stability limit of the
advection-diffusion operator.
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Figure 1: Temporal accuracy of the scheme evaluated using the unsteady Navier-Stokes
Taylor vortex analytical solution (see text for details).

Couzy decoupling error temporal test. The second test aimed at assessing the
accuracy of the proposed splitting method is the one proposed by Couzy [11].
The INS equations are solved on the time-space cylinder Ω × (0, 0.75), with
space domain Ω = (0, 1)2 \ (0.4, 0.6)2 consisting of a square with a hole in
the middle. We consider the exact solution

u = [− cos(πx/2) sin(πy/2)i + sin(πx/2) cos(πy/2)j] sin(πt),

p = −π sin(πx/2) sin(πy/2) sin(πt).

The forcing term as well as the Dirichlet boundary conditions and the ini-
tial condition are deduced from the above expression. The problem is dis-
cretized in space using dG(2)-cG(2) elements on a fine grid composed by
24,400 quadrilaterals, ensuring that spatial errors are dominated by temporal
errors. The L2 and L∞ error for both velocity and pressure are evaluated at
each time step using increased-order quadrature rules to provide the required
accuracy. The simulation is run for Reynolds number Re ∈ {10, 100, 1000},
corresponding to ν = {0.1, 0.01, 0.001}. The results are summarized in Fig-
ure 2. The slope of the fit for the velocity in L2 and L∞ norm and for the
pressure in L2 norm is almost 2, while the order of convergence for the pres-
sure in L∞ norm is somewhere in between the order of velocity and the order
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Figure 2: Temporal accuracy of the scheme evaluated on the unsteady Navier-Stokes
problem proposed by Couzy (see text for details).

of velocity minus one, confirming the expected convergence rate. Interest-
ingly enough, while the velocity error is almost independent of the Reynolds
number, the pressure error decreases with the increase of the Reynolds num-
ber. This behavior is referable to the pressure boundary layer due to the
artificial Neumann boundary condition derived in equation (9). In the van-
ishing viscosity limit, equation (9) enforces the consistent boundary condition
in equation (4) so that the splitting error limiting the accuracy of the pressure
vanishes.

3.3. Spatial accuracy

To numerically assess the spatial convergence rates, we consider the Ko-
vasznay flow [26] in the two-dimensional domain (−0.5, 1.5) × (0, 2) and the
solution proposed by Ethier and Steinman [17] in the three-dimensional do-
main (−1, 1)3. In these test cases we deal with low Reynolds number flows
(as a matter of fact, the Kovasznay solution is similar to the low-speed flow of
a viscous fluid past an array of cylinders while the three-dimensional solution
consists in a series of counter-rotating vortices involving all three Cartesian
velocity components). The exact solution of the Kovasznay flow is given by

u = 1 − eλxcos(2πy)i +
λ

2π
eλx sin(2πy)j,

p =
1

2
(1 − e2λx),
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Figure 3: Kovasznay test case. Top row and bottom row left, spatial accuracy of the
finite element discretization evaluated on the steady Navier-Stokes problem proposed by
Kovasznay (see text for details). Bottom row right, streamlines and velocity contours.
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Figure 4: Ethier-Steinman test case. Top row and bottom row left, spatial accuracy of
the finite element discretization evaluated on the steady Navier-Stokes problem proposed
by Ethier and Steinman (see text for details). Bottom row right, velocity contours and
velocity vectors.
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where λ =
1

2ν
− (

1

4ν2
+ 4π2)

1

2 . The unsteady analytical solution devised by

Ethier and Steinman reads

u = − a(eaxsin(ay + dz) + eazcos(ax + dy))e−d2ti

− a(eaysin(az + dx) + eaxcos(ay + dz))e−d2tj

− a(eazsin(ax + dy) + eaycos(az + dx))e−d2tk

p = −
a2

2
(e2ax + e2ay + e2az

+ 2sin(ax + dy)cos(az + dx)ea(y+z)

+ 2sin(ay + dz)cos(ax + dy)ea(z+x)

+ 2sin(az + dx)cos(ay + dz)ea(x+y))e−2d2t,

where a = π
4

and d = π
2
. In order to evaluate the spatial convergence without

dealing with temporal errors we consider the solution at time t = 0 and we
add a forcing term balancing diffusion terms in the absence of unsteady terms
(while convective terms balance the pressure gradient).

In both test cases we set ν = 0.025 (corresponding to Re = 40), Dirich-
let boundary conditions are imposed according to the exact solution, while
initial conditions over the whole domain corresponds to zero velocity and
pressure. In order to obtain a steady-state solution, a pseudo-time integra-
tion is performed employing a fixed time step ∆t = 0.1. The L2 error for
both velocity and pressure as well as the L2 error for the velocity gradients
are displayed in Figures 3 and 4. The theoretical convergence rates of hk+1

for the L2 error on the velocity, of hk for the L2 error on the pressure and
for the L2 error on the velocity gradients are confirmed for both the dG(k)-
cG(k) and dG(k)-cG(k − 1) discretizations. It is interesting to note that
in the approximation of the three-dimensional solution proposed by Ethier
and Steinman the dG(1)-cG(1) discretization shows a second order conver-
gence rate for the pressure error in L2 norm while the theoretical convergence
rates for the velocity underestimate the numerically evaluated ones by half
an order.

Albeit the order of convergence is the same, dG(k)-cG(k) discretizations
yield more precise pressure approximations than dG(k)-cG(k− 1) discretiza-
tions, scoring a point for equal order finite element spaces implementations.
It has to be noticed, however, that the computational effort required by the
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Figure 5: 2D lid-driven cavity test. Streamlines for Re 1000, 10000, 20000.

iterative solution of the projection step accounts for most of the cost of the al-
gorithm, which makes dG(k)-cG(k− 1) discretizations more efficient. Unlike
the advection-diffusion step, the number of iterations required by the projec-
tion step strongly increases moving from k = 1 to k = 2 revealing the need of
better preconditioning techniques for higher-order pressure discretizations.

3.4. 2D and 3D lid-driven cavity

As a final test case, we consider the two- and three-dimensional lid-driven
cavity flow. The computational domain for this problem is a square (a cube in
3D) with edges of unit length. The top side of the cavity slides with a constant
imposed velocity, while no-slip Dirichlet boundary conditions are imposed
on the remaining sides. Despite its simple geometry, this lid-driven cavity
flow presents complex flow patterns due to multiple recirculating secondary
vortices at the corners of the cavity, see Figure 5. The space discretization
is based on dG(2)-cG(1) elements on a 120 × 120 quadrilateral grid in 2D
and a 50 × 50 × 50 hexahedral grid in 3D. The simulation is advanced in
time adopting a pseudo-time integration with fixed time step ∆t = 0.1 until
a steady-state is reached.

We present 2D lid-driven cavity solutions at Reynolds number Re = 1000,
Re = 10000, and Re = 20000 and compare them with the accurate reference
solutions presented in [16]. In that work the values of the two components
of the velocity are tabulated along the horizontal and vertical centerlines for
Re ≤ 21000. These reference solutions have been obtained on a very fine
uniform grid of 601× 601 with a streamfunction and vorticity formulation of
the Navier-Stokes equations. In Figure 5 it can be appreciated that veloc-
ity profiles match the reference solutions for all the Reynolds numbers here
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Figure 6: 3D lid-driven cavity test, Re 1000. Streamlines color-coded by velocity magni-
tude. Side, front and bottom view.

considered. As the Reynolds number increases, the gradient of the velocity
at the boundary layers becomes stronger and the number of recirculating
vortices at the corners on the cavity increases. In these cases, the accuracy
of the solution critically depends on modeling the shear layer along the lid
and the discontinuity in the boundary condition at the upper right and left
corner.

The 3D lid-driven cavity solution is computed at Reynolds number Re =
1000, and compared with the velocity results tabulated along the x-axis and
y-axis in [1]. In that paper the solutions were computed employing a pro-
jection method coupled to a fifth-order accurate Chebyshev collocation dis-
cretization on a 96 × 96 × 64 hexahedral mesh. In Figures 6 and 7 the
symmetry of the streamlines and the perfect agreement between the velocity
profiles can be appreciated.

Overall, these results demonstrate that high levels of accuracy can be
reached for shear-driven flows at high Reynolds numbers using a projection
method.

4. Conclusions

We have presented an efficient and robust INS solver for high-Reynolds
unsteady flows. Efficiency is ensured by the use of a projection method to
decouple the momentum conservation equation from the incompressibility
constraint, thereby allowing an effective solution process based on standard
preconditioned iterative solvers. Robustness regards to the Reynolds number
is guaranteed by the fully implicit dG discretization of the advection-diffusion
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Figure 7: Lid-driven cavity test. Plots of horizontal (red) and vertical (blue) velocity
components along the vertical and horizontal centerlines respectively. Top row and bottom
row left, 2D lid-driven cavity at Re 1000, 10000 and 20000: the dots correspond to the
reference values provided by Erturk et al [16]. Bottom row right, 3D lid-driven cavity at
Re1000: the dots correspond to the reference values provided by Albensoeder et al [1].
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step.
We demonstrated the ability to accurately resolve 2D and 3D challenging

benchmark problems in moderate to high Reynolds numbers flow regimes
with time steps larger than the ones imposed by the CFL stability limit.
The possibility to manage hybrid grids can be exploited to extend the solver
applicability to complex geometries as the ones required for hemodynamic
simulations. An open-source hemodynamics solver based on the proposed
algorithm will be the subject of future work.
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