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wo study cases 26 
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28 

reaches 108% between September 1975 and 2002 for 91 ponds identified in central Gourma. 29 

Ponds with turbid waters and no aquatic vegetation are mostly responsible for this increase, more 30 

pronounced in the centre and north of the study zone. Possible causes of the differential changes 31 

in flooded areas are discussed in relation with the specifics in topography, soil texture and 32 

vegetation cover over the watersheds that feed each of the ponds. Changes in rain pattern and in 33 

ponds sedimentation are ruled out, and the impact of changes in land use, limited in the area, is 34 

 

Abstract 

 

Changes in the flooded area of ponds in the Gourma region from 1950 to present 

remote sensing, in the general context of the current multi-decennial Sahel drough

and interannual variations of the areas covered by surface water are assessed using

multi-sensor satellite images (SPOT, FORMOSAT, LANDSAT-MSS, –TM

CORONA, and MODIS) and aerial photographs (IGN). Water body classificatio

each type of spectral resolution, with or without a middle-infrared band, and

resolution, using linear unmixing for mixed pixels of MODIS data. The high-freq

data document the seasonal cycle of flooded areas, with an abrupt rise early in we

progressive decrease in the dry season. They also provide a base to study th

variability of the flooded areas, with sharp contrasts  between dry years such as 

early maximal area) and wetter years such as 2001 and 2002 (respectively high an

area).The highest flooded area reached annually greatly depends on the volum

timing of rain events. However, the overall reduction by 20% of annual rains dur

years is concomitant with an apparently paradoxical large increase in the area of

starting from the 1970’s and accelerating in the mid 1980’s. Spectacular for the t

of Agoufou and Ebang Mallam, for which time series covering the 1954 to presen

this increase is also diagnosed at the regional scale from LANDSAT data spanning 1972-2007. It 
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found secondary, as opposed to what has often been advocated for in southern

major responsibility is attributed to increased runoff triggered by the lasting impa

80’s droughts on t

 Sahel. Instead, 1 

ct of the 1970-2 

he vegetation and on the runoff system over the shallow soils prevailing over a 3 

third of the landscape. 4 
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ond half of the 7 

had a dramatic 8 

his region (e.g. 9 

n some part of 10 

r-table level, as 11 

12 

d in endorheic 13 

e, Mahé et al. 14 

ated in Burkina 15 

, and therefore, 16 

escroix et al., 17 

Sahel in Mali 18 

roughts of the 19 

 dry season or 20 

ey (Niger), the 21 

ural population 22 

23 

(Leblanc et al., 24 

 also occurred 25 

09). Moreover, 26 

rthern Sahel, where cropping has 27 

a very limited extent. The extent to which the Sahelian paradox applies to central and northern 28 

Sahel is still an open question. Yet, assessing and monitoring the recent changes in water 29 

resources, and understanding the processes of these changes are critical for the economy and 30 

livelihood of the Sahel population. Unfortunately, quantitative information on rainfall, surface 31 

water, aquifers and land use is relatively scarce over this wide inland region.  32 

 33 
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1. Introduction 

The Sahel experienced an important decrease in precipitation during the sec

20th century, with severe droughts in 1972-73 and again in 1983-84 that have 

impact on the ecosystem and on the population living on the natural resources of t

Dregne and Chou, 1992, Olsson, 1993, Hiernaux, 1996, Nicholson, 2001). Yet, i

the Sahel, the rainfall deficit did not lead to a decrease in surface runoff or in wate

it happened in the wetter Soudanian and Guinean zones further south in West Africa (Descroix et 

al., 2009). Indeed, evidence of an increase in water-table level has been reporte

areas, such as in south-western Niger (Leduc et al., 2001). Along the same lin

(2003) and Mahé et al.(2005a) outlined changes in hydrologic regime of rivers loc

Faso, Mali and Niger, showing a discharge increase north of the 700mm isohyets

over northern Soudanian and southern Sahelian zones (see also the review by D

2009 and reference therein). Moreover, field observations in central and northern 

(Ag Mahmoud 1992, Hiernaux unpublished data) suggest that, after the major d

1970’s and 1980’s, the flood of some temporary ponds extended longer over the

even that some of these ponds became permanent. In southern Sahel, near Niam

increase in areas cleared for cropping, following the demographic expansion of r

was suggested as a possible explanation for this phenomenon often referred to as the ‘Sahelian 

paradox’: less precipitation leading to increase in runoff and water table recharge 

2008, Favreau et al., 2009). However, similar clearing to expand the area cropped

in the Soudanian zone, without producing an increase in runoff (Descroix et al., 20

this explanation does not hold for pastoral areas in central or no
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The aim of this work is to document and discuss the evolution of surface wat

the mid twentieth century onwards in the pastoral region of Gourma, in Mali. Mor

study focuses on the evolution of the flooded area of ponds over the 1954-2007 pe

scarcity of in-situ quantitative information, flood regimes are studied through ser

sensed data. This requires combining remote sensing information acquired by di

and different support, satellite and aerial, to establish a coherent picture of the evolution of the 

flooded areas. In particular, the average size of the flooded ponds (at most a few 

dry season) requires the use of high resolution data, which is hardly compatible with a

time-sampling. Indeed, the flooded area of ponds strongly varies with time 

(seasonal cycle) and display significant year-to-year variability in responses to rain

To date, attempts have been made to map the pond floods and to estimate flooded

one date, at a relatively high spatial resolution on the basis of one LANDSAT or SPOT-HR

image (Liebe et al., 2005, Lacaux et al., 2007) or at a lower resolution using 

NOAA-AVHRR, SPOT-VGT or MODIS data (e.g. Gond et al., 2004, Haas et al., 2

al., 1996). Beside, the spectral response of surface water has received relatively li

far in this region, with a few exceptions like 

er bodies from 1 

e precisely, the 2 

riod. Given the 3 

ies of remotely 4 

fferent sensors 5 

6 

hectares in the 7 

 suitable 8 

within a year 9 

fall variations. 10 

 areas either at 11 

V 12 

time series of 13 

009, Verdin et 14 

ttle attention so 15 

Lacaux et al. (2007). Combined to restrictions in 16 

s esolutions and 17 

o far, despite 18 

19 

 Section 2, 20 

 outline the extent of the flooded areas of ponds are presented 21 

in Section 3 as well as an assessment of the classifiers’ accuracy. Section 4 provides an analysis 22 

onds, which changes over time and space are characterized. Finally, the 

gion and their 24 

25 

26 

27 

28 

29 

border with Burkina-Faso. It extends over the Sahelian bioclimatic gradient from 550 mm annual 30 

rainfall, in the south, to 150 mm in the north. Most of the ponds monitored in this study are 31 

located in the centre of the Gourma region, within the study site, referred as ‘supersite’, of the 32 

AMMA project (15.58 – 15.13 °N; 1.75° – 1.33 °W) with mean annual rainfall ranging between 33 

300 and 450mm (Mougin et al., 2009). As elsewhere in the Sahel, the climate is tropical semi-34 

ampling over time, the difficulty of using series of images with different r

different spectral bands probably explains why no monitoring has been carried out s

surface water being such a critical resource in the Sahel. 

After a short description of the site’s characteristics and the available data sets in

classification methodologies used to

of the flooded area of p23 

observed changes of in pond’s flood, in the mode of runoff in the Gourma re

possible causes are discussed in Section 5.  

 

2. Study area and data  

2.1.The study site 

The Gourma region is located in Eastern Mali, within the loop of the Niger River, down to the 
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arid with monsoonal rains falling between late June and mid September followed

season (Frappart et al., 2009). Rainfall recorded at Hombori display the general

Sahel drought with a sharp contrast between the 1950’s and the 1980’s (Fig. 1). 

of most years from 1970 onwards stand below the 1936-2008 average  (375,2mm

average rainfall dropping by 20% from 422,2mm prior 1970 to 336,2mm si

temperature recorded at Hombori is 30.2°C. Th

 by a long dry 1 

 pattern of the 2 

Indeed, rainfall 3 

 ± 110,8) with 4 

nce. Mean air 5 

e highest monthly value is observed in May 6 

7 

8 

 composed of 9 

y a few hard 10 

ed from humid 11 

e is 12 

lleys, a web of 13 

 segmented by 14 

but it harbours 15 

the LANDSAT 16 

-green on the 17 

ited sheet 18 

t considered in 19 

% of the area, 20 

 of the area, 21 

arger distances 22 

terconnected 23 

SAT scene in 24 

lood dynamics 25 

onds generated 26 

here are a few 27 

racted material 28 

ple, 29 

see Fig. 2). Ponds also occur along the main valleys when the stream bed gets locally deeper, 30 

often at the confluence of streams (Ekia, Zalam-zalam, In Gariaten), or because of a slow down 31 

of the stream flow due to a physical obstacle, either rocky (Massi, Toundourou) or sandy (Gossi, 32 

Adjora). Attempts to control the out-flow of these two last ponds have been made by building 33 

concrete weirs at the downstream outlet in 2006, their impact on the pond flood is not commented 34 

(42°C) whereas the lowest one is found in January (17.1°C).  

  

The Gourma region is part of large sedimentary basin which bedrock is mainly

Precambrian sandstones and schists eroded in a peneplain only surmounted b

sandstone plateaus. The eroded slopes are locally capped by an iron pan inherit

periods of the late Eocene and the Holocene, while a bit more than half of the landscap

covered by fixed sand dunes inherited from the arid periods of the Holocene. In va

alluvial and lacustrine plains is also inherited from the humid periods, and has been

the sand dunes cutting across valleys. The Gourma region is globally endorheic, 

two runoff systems arranged in a mosaic as shown by the subset represented by 

image in Fig. 2. On the sandy soils (58% of the area, appearing in red–brown

LANDSAT scene in Fig. 2), the endorheic system operates at short distance with lim

runoff from dune slopes to inter-dune depressions feeding ephemeral puddles no

this study. On the shallow soils associated to rock and iron pan outcrops (30

appearing in blue-white in Fig. 2), and on low-land fine-textured soils (12%

appearing in dark red-brown in Fig. 2), the endorheic system operates over much l

with concentrated runoff feeding a structured web of rills ending in one or several in

ponds, which flood is the object of the study (contoured in yellow on the LAND

Fig. 2). The position of the pond along the stream web, its geomorphology and f

distinguish different categories (Ag Mahmoud, 1992). Upstream, there are small p

by a local obstacle to the water runoff, such as a bar of hard rock or a sand dune. T

case of partially artificial ponds that man historically deepened by digging, the ext

being deposited in a crescent shaped dam to the downstream side (Taylalelt ponds for exam
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in this paper. Down stream, final ponds are either located at the bottom of 

lacustrine plain (Kelma, Fossa, Alzouhra), or else at the foot of a natural dam mo

sand dunes cutting across the valley (Agoufou, Dimamou, Doro). In the first case,

surrounded by temporarily flooded alluvial plain which loamy clay soils are part

by open forest of adapted tree species such as Acacia seyal (Kelma, In Orfan) 

(Ouart Fotou) or Anogeissus leiocarpus (Darawal). Following local perception and nom

(Ag Mahmoud, 1992), these temporarily flooded plains are not considered as pon

minimum water depth of 50 cm with drying up occurring before October, and thu

included in this study. The flooded areas of the studied ponds vary from a few he

thousand hectares. Most of these ponds are temporary flooded, but there are a 

lakes such as Gossi, and more recently Agoufou, Ebang Mallam and Dimamou. 

ponds or lakes also feed local sh

the alluvial or 1 

st often due to 2 

 pond are often 3 

ially colonised 4 

Acacia nilotica 5 

enclature 6 

ds defined by a 7 

s, they are not 8 

ctares to a few 9 

few permanent 10 

Some of these 11 

allow water tables that complement the water resources for the 12 

inuous aquifer 13 

14 

15 

s layer almost 16 

attered bushes, 17 

ost 18 

 the herbaceous 19 

e of vegetation 20 

w in average 21 

 drainage lines, 22 

23 

(Leprun 1992, 24 

rvested on the 25 

unoff further 26 

 pastoral, with 27 

ent practices and seasonal mobility strategies (Boudet et al., 1971). In 28 

the southern half of the Gourma region, up to the surroundings of the Hombori mountains, 29 

husbandry is associated to some staple crops, mostly millet on sandy soils, and sorghum on finer 30 

textured soils. Yet, total land cropped in southern Gourma extends on less than 3% of the land 31 

(Cheula, 2009) and has not much expanded since the early 1970’s (Marie and Marie, 1974) and 32 

1980’s (Bourn and Wint, 1985). 33 

 34 

Gourma population and their livestock in a region otherwise deprived of cont

(Défossez, 1962).  

 

The vegetation of the Gourma region is typical Sahelian with an herbaceou

exclusively composed of annual plants, among which grasses dominate, and sc

shrubs and low trees (Boudet et al., 1971, Boudet, 1977, Hiernaux et al., 2009a). Alm

continuous on sandy soils, except for a few deflation patches and bare dune crests,

layer is highly discontinuous on shallow soils and clay plains, living large area bar

prone to runoff. The density and canopy cover of woody populations are lo

(Hiernaux et al., 2009b). However, there are concentrations of woody plants along

around ponds, in the inter-dune depressions and also on shallow soils, with a regular pattern of 

narrow linear thickets set perpendicular to the slope known as ‘tiger bush’ 

Hiernaux and Gerard, 1999). These thickets live on the water and nutrients ha

impluvium made by the bare soil upstream, and their development efficiently limit r

downstream (d’Herbes et al., 1997). The economy of rural population is mostly

various livestock managem
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, as shown on 7 

two main ‘case 8 

ver the central 9 

DSAT archive 10 

d, resulting in 11 

12 

nd 2006. The 13 

ries spans the 14 

15 

ynamics of the 16 

efore to study 17 

18 

st every other 19 

oarser spectral 20 

found between 21 

d in this study 22 

23 

images should have at least 25 ha area. All the other images employed have a spatial resolution 24 

f  to 1 ha. Also, 25 

s in different 26 

frared channel 27 

egetation. 28 

29 

SPOT, LANDSAT and FORMOSAT images were already registered in the UTM zone 30 30 

North projection using the WGS84 datum, whereas MODIS images (MOD09Q1, 250 m 31 

resolution NIR and red reflectance) were projected in sinusoidal projection. All satellite data have 32 

been radiometrically corrected, but neither atmospheric nor viewing angles effects have been 33 

taken into account. The CORONA and aerial photographs have been registered only locally, 34 

 Data 

Different types of images, with different spectral, temporal and spatial re

been employed to monitor the flooded area of ponds over the longest possible per

era of multi-spectral data acquisition with sensors onboard satellites (the first LAND

was launched in 1972), images were acquired with airborne cameras o

panchromatic sensors. Series of images from LANDSAT, SPOT, FORMOSAT, CORONA, 

MODIS have been collected over the Gourma region as well as aerial photograph

Fig. 3, and detailed in Table 1. Two ponds, Agoufou and Ebang Mallam, are the 

studies’ with intensive acquisition of high resolution data. Spatial extension o

Gourma is obtained from less frequent high resolution satellite data: the full LAN

was searched for images matching approximately with the peak of the pond’s floo

two time series, the September time series consisting of images in 1975, 2001, 2002 and 2007, 

and the November time series consisting of 1972, 1984, 1986, 1999, 2002 a

September series offers the largest overlapping area, whereas the November se

longest time period. 

The temporal resolution of the images is a major issue to study the long term d

pond’s flood. Indeed, the flood of ponds is highly seasonal in the Sahel, ther

interannual changes it is crucial to acquire images at same periods of the seasonal cycle. This 

seasonal cycle should be typically monitored with images every week, or at lea

week. Unfortunately, satellites with a daily or weekly repeat-pass have a c

resolution than those with 30 days frequency transit, and a compromise has to be 

temporal and spatial resolutions. The coarser resolution among the sets of data use

is of 250 m for MODIS images. The smallest flooded pond that could be classified with these 

iner than 30 m (Table 1), allowing thereby mapping smaller flooded areas, down

the spectral resolution, namely the ability of the sensor to differentiate band

wavelengths, widely varies from one sensor to another, the presence of a middle in

being determinant to accurately classify pond waters partially covered by aquatic v
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namely around a specific pond, using a registered SPOT-4 panchromatic image w

pixel size from 2005 as the reference. To this end, tie points, mostly located on

featu

ith a 5m x 5m 1 

 trees or rocky 2 

res, have been used and a second degree polynomial transformation has been applied to each 3 

image. 4 

5 

bori 6 

ition, a web of 7 

rain gauges, and a set of automatic meteorological stations have been 8 

deployed in the Gourma progressively since the inception of the AMMA project (Mougin et al., 9 

t et al., 2009).  

 11 

12 

ages are very 13 

for all images. 14 

ts. Except for 15 

er images have 16 

lues. Table 2 17 

18 

ssically used to 19 

and especially 20 

ting terrestrial 21 

the Normalized 22 

23 

rared wavelength. A Normalized Difference Turbidity Index 

( l of turbidity of 25 

 like bare soil, 26 

27 

28 

3.1.Spectral signatures of sahelian ponds 29 

As suggested by Lacaux et al. (2007) for the ponds of the Ferlo region (Senegal), ponds in the 30 

Gourma can be sorted into 2 categories, showing a distinct spectral signature. In the following, 31 

these two types of flooded ponds are labelled according to the colour in which they appear on a 32 

classical Red-Green-Blue false colour composite of Near Infrared-Red-Green spectral bands: 33 

 

Historical climate data (daily rainfall, minimum and maximum temperature) for Hom

have been kindly provided by the national meteorological service (DNM). In add

manual and automatic 

2009, Frappar10 

3. Methods 

Since the spatial and spectral resolutions of the available satellite im

heterogeneous, it has not been possible to use the same classification algorithm 

Instead, a specific methodology had to be defined for each kind of data se

LANDSAT images, for which a supervised classification has been applied, all oth

undergone classifications using thresholds on pixels’ reflectance or index va

summarizes the indexes used for the classifications. The Normalized Difference Vegetation Index 

(referred to as NDVI, Eq. (1) in Table 2), introduced by Rouse et al. (1973), is cla

monitor the amount of vegetation. Puech (1994) used it to detect water bodies, 

ponds with suspended sediment load. However, it is not suitable for separa

vegetation from aquatic vegetation. That is why Lacaux et al.(2007) have defined 

Differenced Pond Index (NDPI, Eq.(3) in Table 2), based on the very low reflectance (about 

15%) of water in the middle inf24 

NDTI, Eq.(2) in Table 2) has also been used by these authors to evaluate the leve

open water. It takes heed of the fact that turbid water tends to respond spectrally

with low reflectance in the green wavelength, but high in the red one. 
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(i) ‘blue’ ponds, (Fig. 4a), have very turbid water, free of vegetation

reflectance in the middle infrared wavelength. Flood in blue ponds

detected because of the strong negativ

, with a low  1 

 can easily be 2 

e values of NDPI. Their spectral signature is 3 

d with various 5 

 well as high 6 

7 

 in the middle 8 

rtial vegetation 9 

atic vegetation 10 

s maritimus, or 11 

, Panicum 12 

 on islands. In 13 

at are rooted in 14 

ems (Nelsonia 15 

ans), dissected 16 

 water (Ottelia 17 

oating species 18 

uresque, 1995). In 19 

addition to herbaceous aquatic plants temporary, flooded ponds can harbour some 20 

us mauritiana, 21 

gyna inermis. After the first rains, the ‘red’ ponds behave as 22 

‘blue’ ponds and turn ‘red’ as aquatic vegetation develops later in the rainy season. 23 

24 

cess described 25 

26 

27 

28 

29 

NDPI index is markedly negative. SPOT-4 imaging, with its middle infrared channel and its high 30 

spatial resolution is therefore very convenient to map the flood for this category of pond. As 31 

suggested by Lacaux et al. (2007), the classification of ponds was performed, using a decision 32 

tree, using a first threshold on the NDPI value and a second one on the reflectance in the middle 33 

infrared wavelength. To determine thresholds values automatically, a region of interest was 34 

invariant, whether during the rainy or dry season. 4 

(ii) ‘red’ ponds, (Fig. 4b), have less turbid water, at least partially covere

aquatic plants, with high reflectance in the near infrared wavelength as

values of NDVI. Their spectral responses are therefore very similar to that of 

vegetation, which makes them more difficult to identify. Reflectances

infrared are not as low as for the flooded ‘blue’ ponds because of pa

cover over the water surface, which reduce the wave absorption. Aqu

includes dense aquatic savannas dominated by sedges such as Scirpu

grasses such as Oriza barthii, O. longistaminata, Echinochloa stagnina

subalbidum, that all spread in shallow water at the edge of the pools or

deeper ponds aquatic vegetation is often limited to patches of plants th

the mud of the pond bed but have specialised organs such as floating st

canescens), or leaves (Nymplea lotus, N. maculata, Eichhornia nat

leaves that remain photosynthetically active under a few centimetres of

ulvifolia, Najas pectinata, Rhamphycarpa fistulosa) and a few fl

(Nymphoides indica, Utricularia stellaris, Azolla pinnata), (Boudo

woody plants from species standing seasonal flood such as Ziziph

Acacia nilotica and Mitra

 

These different spectral signatures have been accounted for in the classification pro

for each sensor in the following subsections. 

 

3.2.Classification of SPOT-4 images (HR-VIR sensor) 

The reflectance value for ‘blue’ ponds is very low in the middle infrared wavelength, and the 
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defined in the centre of the flooded pond to be outlined. The average values of the

MIR band within this region were then computed, and a tolerance was applied to 

define the threshold

 NDPI and the 1 

those values to 2 

s used for the classification (namely ± 0.1 for the index values and ± 5% for 3 

the reflectance values).  4 

3.3.Classification of FORMOSAT image6 

orithm is thus 7 

ion tree, then a 8 

 computed for 9 

s, that is to say 10 

puting an average value (for NDVI, Green and NDTI) in the centre of the pond and 11 

a pixel was classified 

a13 

14 

15 

d 3), as well as 16 

y for TM and ETM images with two channels in the middle 17 

18 

tain a regional 19 

20 

 recent years, a 21 

75, and 1984. 22 

epending on 23 

the turbidity of the water and the presence or absence of aquatic herbs, or woody plants. Theses 24 

y and then gathered into either turbid or clear waters. Temporary 

a egetation cover 26 

were manually 27 

28 

29 

3.5.Classification of  MODIS images 30 

Given the coarse spatial resolution (250m) and the spectral resolution of MODIS images, (red 31 

and infrared channel only for this resolution), small ponds and ‘red’ ponds are not monitored. In 32 

addition, since a pixel surface is equivalent to almost 7 ha, a classification based on pure pixels 33 

only may lead to a rough approximation of the effective pond’s surface for most ponds in the 34 

 5 

s 

FORMOSAT images do not have a MIR band. Alternative classification alg

needed to outline ponds. A threshold on the NDVI was first applied, using a decis

threshold on the green band and finally one on the NDTI. These thresholds were

each image and for each pond individually in a similar way as for SPOT-4 image

by com

adding a tolerance to the result to obtain the thresholds above/below which 12 

s ‘pond’. 

 

3.4.Classification of LANDSAT images     

LANDSAT images have the advantage of a wide ground coverage (Figs. 2 an

a good spectral resolution, especiall

infrared wavelengths, which are very useful to detect water bodies. A supervised classification 

scheme was applied to TM and ETM series for September and November to ob

evaluation of the areas covered with water.  

In order to compare the area flooded in the seventies and the eighties with more

supervised classification was also performed on the MSS scenes of 1972, 19

Following Liebe et al. (2005), up to nine types of flooded surfaces were identified, d

types were classified separatel25 

nd superficially flooded plains on fine textured soil, with or without tree and v

were also classified and kept separated from ponds. Clouds and clouds shadows 

masked. 
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Gourma.  Therefore, it was necessary to consider a sub-pixel classification to re

The algorithm, which has been designed, consists first in defining a region of p

pixels and one of ‘dry’ pixels (which can either be rainfed vegetation, or bare

outcrops) surrounding the pond to be outlined. For each of these two regions, spa

values are computed for both original channels (red and infrared) and NDVI val

with a NDVI value lower than the average of the ‘pure water’ region are classified as ‘floode

pond’. Conversely, pixels with NDVI values higher th

fine the result. 1 

ure open water 2 

 soils, or rock 3 

tially averaged 4 

ues. All pixels 5 

d 6 

an average over ‘dry soil’ are classified as 7 

‘dry soil’. The pixels with NDVI in between are co pixel. The fraction of open 8 

9 

nsidered mixed 

water is assessed by the following linear un-mixing relationship: 

waterdrymixed NDVIkNDVIkNDVI ⋅−+⋅= )1(    (4) 

where k is a linearity co

10 

efficient (0<k<1). The proportion of water in a mixed pixel is given by 11 

ixed pixels and summed to the pure open water pixels 

to13 

14 

15 

s, acquired in a 16 

ay be confused 17 

with rock outcrops or bare sands (Leblanc et al., 2008). Ponds were therefore outlined manually 18 

xperience and based on the comparison with the reflectance of the 

s itation process 20 

21 

22 

23 

AT, SPOT and 24 

verlapping the 25 

contour with the corresponding image. For LANDSAT TM and ETM, images, 26 

sified data with 27 

 field studies 28 

(Hiernaux unpublished). These classifications proved to be quite precise, with an overall accuracy 29 

ranging from 97% to 99%, depending on the images. An example of the accuracy assessment is 30 

reported in Table 3.    31 

These evaluations are not possible in the case of MODIS images, for which a 200 ha water body 32 

contains few pure pixels (10 to 30, depending on the shape of the pond) and several mixed pixels 33 

that make the contour difficult to identify visually. Thus, surface variations computed from 34 

(1-k). This proportion is computed for all m12 

 assess the total pond area.  

 

3.6.Classification of panchromatic images 

Panchromatic images include aerial photographs as well as CORONA image

mono-spectral mode. This prevents automatic detection of water bodies, which m

by an operator, based on field e19 

urroundings (texture, glint). As the result might be operator dependant, the delim

was made by different persons. 

 

3.7.Assessments of the classifications 

For most high spatial resolution images (CORONA, aerial pictures, FORMOS

LANDSAT-MSS), the assessment of the classification is done visually, by o

classified pond’s 

the accuracy of the maximum likelihood classifier is evaluated by comparing clas

an independent set of soil, land use and vegetation cover maps resulting from

 10



MODIS images have been compared to the results from high spatial resolution im

the FORMOSAT and SPOT times series in 2005, 2006 and 2007. The main

presented in Fig. 5. During the rainy season, the variation of the flooded area

MO

ages, namely 1 

 outcomes are 2 

 derived from 3 

DIS compare well with the area assessed with the other sensors, with a difference of less than 4 

15 

ing up to 6 

f ‘pure water’ 7 

 dry season are 8 

ds, like Ebang 9 

l resolution of 10 

ensors (Verdin 11 

ation is 12 

accurate above a given threshold of a few ha or tens of ha, allowing pure pixels to be present. 13 

at the end of the wet season, typically September to November, is therefore preferred 

lysis of the long term changes of the flood in ponds. 

16 

17 

18 

oon, with rains usually starting 19 

 et al., 2009). The 

patial and inter-21 

cycle of Agoufou and Ebang Mallam with 22 

of the pond 24 

ccurring between June and July followed by marginal changes during 25 

the rest of the rainy season (August and September). 26 

ase of pond’s area, which is mostly due to evaporation, with some 

 irrigation and 28 

29 

November and May.  30 

 31 

4.2.Inter-annual variability 32 

The flooded surface of ponds is influenced by the inter-annual variability of rainfall, both in 33 

volume and intensity of the rain events (i.e. rainfall deficit, droughts) and in their timings (i.e. 34 

0%.  

The agreement is weaker at the end of the dry season, with a relative difference reach

78% in the worst cases. This is explained by the sharp decline of the number o

pixels as the pond dries up. For most ponds, the classifications at the end of the

thus based on mixed pixels and are therefore less accurate. Moreover, some pon

Mallam, split into several small ponds, which size may be smaller than the spatia

MODIS. This is in line with previous studies using moderate and low resolution s

et al., 1996, Gond et al., 2004, Haas et al., 2009), which concluded that surface estim

Ponds’ size 14 

to carry out the ana15 

 

4. Results 

4.1.Seasonal variability 

Rainfalls over the Gourma depend on the West African Mons

in June and ending in late September, sometimes not until October (Frappart20 

flood regime of the ponds is closely related to the rainfall distribution and its s

annual variability. The monitoring of the seasonal 

eight year of MODIS data shows that two phases can be distinguished (Fig. 6): 23 

(i) The rising up of the flood fed by surface runoff. There is an abrupt rise 

area generally o

(ii)  The decre27 

infiltration and, to a lesser extent to the use by human for drinking,

livestock watering (Desconnets, 1994). Most ponds in the Gourma dry up between 

 11



delay of the first rains which may occur as late as late July). The variations of the f

of the Agoufou pond inferred from 1999-2007 data (Fig. 7) show a significan

precipitations (r² =0.78 for a linear regression) that only holds over that period. Th

in Agoufou reached its maximal size at the end of October 1999, which was an

year for the 1980-2000 period, (Fig. 1), whereas it was minimum in 2004, a year c

a strong rainfall deficit over the Gourma, close to the major droughts of the 1970’ and 1980’. 

These two years excepted, the values of the flooded surface do not appear to be w

over the last 10 years

looded surface 1 

t relation with 2 

e flooded area 3 

 unusually wet 4 

haracterized by 5 

6 

idely scattered 7 

: for cumulative rainfall ranging from 290 mm to 400 mm, the surface of 8 

Agoufou pond falls between 150 ha and 230 ha (Fig. 6 and 7) and Ebang Mallam falls between 9 

11 

12 

eas for the two 13 

 few punctual 14 

n Fig. 6). The 15 

ainfall amount. 16 

able (Figs.6, 7 17 

 18 

80’s, turns out 19 

mple, the area 20 

 and seventies, 21 

roximately the 22 

23 

g Mallam pond 24 

In 1990, the area of these two ponds increased 25 

to such an extent that open water remained during the whole dry season. The swelling of these 26 

atch the onset (early 1970’s) nor the peak of the drought (mid 1980’s). It 

d preceded them, 28 

29 

ponds continued to grow after 1990 to reach the present size. 30 

 31 

4.4.A regional phenomenon 32 

The supervised classification of flooded surface in September 1975, 2001, 2002 and 2007 33 

displays important changes for the 91 ponds located in the overlapping area of the four 34 

300 ha and 500 ha (Fig. 6). 10 

 

4.3.Changes in the flood regime of ponds 

The analysis reported above provides a range of seasonal values of flooded ar

ponds of Agoufou and Ebang Mallam. These values are compared to the

estimations of flooded area available for the previous years (isolated points i

comparison holds for estimations made at the same time of year and for similar r

The evolution of the annual maximum of flooded area since the 1950’s is remark

and 8). Even when the seasonal and inter-annual variability are taken into account, the area of

open water during the wet period, which preceded the drought of the 1970’s and 19

to be much smaller than the areas reached nowadays (Figs. 6 and 8). For exa

flooded at Agoufou and Ebang Mallam only reached a few hectares in the sixties

and both ponds were drying up a couple of months after the last rains. For app

same cumulated rainfall value of 375 mm, the size of the water area is much larger nowadays 

than what it was in 1965 or 1996 (Fig. 7). Likewise, to reach a similar size, Eban

needed twice more rainfalls in 1966 than in 2004. 

pond flood does not m27 

id not coincide either with the wetter years of (1991, 1994, 1996 and 1999) but 

starting in the early 1970’s and accelerating in the late 1980’s. Moreover, the area flooded in both 

 12



LANDSAT images covering the centre of the Gourma region (Fig. 3). All togeth

area of these ponds reached 13800 ha in 1975, 27157 ha in 2001, 28742 ha in 2002

in 2007, thus an overall increase by 105 % over the 1975-2007 period of time

analysis of the time series of November images from 1972, 1984, 1986, 1999, 2

leads to the same conclusions (Fig. 9b). This series documents the evolution o

found in the overlap of the November images (Fig. 3), it samples a smaller region than the 

September series, but with a higher frequency over time. The images from the 197

show that the change in water area started in the early 1970’s and strongly accel

1986 and 1999. This is fairly consistent w

er, the flooded 1 

 and 28351 ha 2 

 (Fig. 9a). The 3 

002, and 2006, 4 

f the 51 ponds 5 

6 

0’s and 1980’s 7 

erated between 8 

ith the September time series, which displays a strong 9 

c  Ebang Mallam 10 

11 

12 

uring this time 13 

own in Fig. 10. 14 

creased by less 15 

rge geographic 16 

ains (Fig. 3), it 17 

 south to north (Fig. 11). Moreover, this 18 

e f area flooded 19 

ond) display a 20 

aters decreases 21 

ar water increase by 57% (Fig. 11). .  22 

23 

nd the type of 24 

g some of the 25 

26 

d at peak flood 27 

 increase rates 28 

es larger 29 

than the overall rate for the 91 ponds of central Gourma (Fig. 9a). However, these rate values are 30 

closer to the mean rate of increase of flooded areas (370%) calculated for the 31 turbid water 31 

ponds found in the central region. Similarly, the changes in flooded areas observed between 32 

November 1986 and November 2002 at Agoufou (958%) and Ebang Mallam (98%), reach 33 

respectively, 6.2 and 0.8 times the relative rate calculated for the 51 ponds (Fig 9b). Hence, the 34 

hange between 1975 and 2001, and also with the data collected for Agoufou and

in 1965, 1966, 1975, 1990 and 1996 (Fig. 6 and 7). 

The spatial distribution of the observed increase has been analyzed for the 2002-1975 paired 

classifications of September images. The overall 108% area increase observed d

interval results of different changes in flood area from each individual ponds as sh

Indeed, 22 ponds had no flood increase but rather display a slight decrease, 6 in

than 50%, 14 by 50 to 100% and 49 by more than 100%. When grouped by la

zones: erosion surfaces of northern Gourma, of central Gourma, and southern pl

appears that ponds’ flood spread at increasing rates from

xpansion in the northern and central regions is mostly caused by the increase o

with turbid waters (‘blue’ pond), while the area flooded with clear waters (‘red’ p

lower increase; whereas in the southern plains, the small contribution of turbid w

slightly, while cle

The area increase of pond’s flood is a regional phenomenon, which displays a continuous 

spectrum of individual responses (Fig. 10), with both the geographical position a

water (turbid/clear associated with the presence of aquatic vegetation) explainin

inter-pond variability. 

When replaced in this regional context the changes of the flooded area observe

at Agoufou and Ebang Mallam are large but not exceptional. Indeed, the relative

between September 1975 and 2002 are 980% and 502% respectively, thus 9 and 4.6 tim

 13



increase rate of Agoufou compares better with the mean rate for all blue ponds (811%). while the 1 

lower rate of Ebang Mallam is mostly due to an earlier increase in flood.   2 

55 

6 

images coming 7 

rmation on the 8 

l, temporal and 9 

LANDSAT, as 10 

ent of the 11 

atic photos or 12 

tation has been 13 

r time were so 14 

es (MODIS), a 15 

 developed to 16 

oded gets inferior to 25 ha, but 17 

ter bodies (Fig. 5). Overall, the magnitude of the error made on 

t ompared to the 19 

20 

21 

22 

enon, but 23 

0%) while the 24 

o larger in the 25 

 the depression 26 

d north whose 27 

 the south that 28 

29 

the death of woody plants in the deepest part of the pond following the anaerobic conditions due 30 

to a prolongation of the flood period was only observed in ‘blue’ ponds; no change was observed 31 

either, on the shore line, nor on the topographic profile of the red ponds. The radiometric 32 

signature of the ponds is associated with both water turbidity and the presence of aquatic plants, 33 

which development is impeded by high turbidity. High turbidity in turn depends on the geological 34 

 3 

5. Discussion 4 

.1.Technical considerations 

The large time span over which ponds were monitored brought the main challenge of this 

study. It required the combination of information from aerial photos and satellite 

from a wide variety of sensors. The objective was to obtain coherent temporal info

flooded areas of ponds in spite of the different quality, and the different spectra

spatial resolutions of those data. High spatial resolution images, such as SPOT or 

well as FORMOSAT (but lacking middle infrared channel) , provide accurate assessm

flooded area of ponds, and thus trends of theses flooded areas over time. Panchrom

images do not allow automatic detection of water bodies and hence photo-interpre

used to calculate flooded areas. In the Gourma region, the observed changes ove

large that these methods were accurate enough. When using coarse resolution imag

threshold for accurate assessment of pond’s flood was determined. The algorithm

include mixed pixels proved less satisfactory when the area flo

was accurate enough for larger wa18 

he assessment of the flooded area of ponds, at least for the ‘blue’ ponds, is small c

large increase observed for these ponds between the 1950’s and present time.  

 

5.2. A paradoxical and uneven dynamics 

The expansion of pond’s flooded area between 1975 and 2002 is a regional phenom

it is uneven. It is mostly due to an increase of the area covered by turbid water (26

increase area of clear water is less important (51%). The average increase is als

centre and to the north of the Gourma than in the South, and more specifically in

that surround the Hombori mounts. Yet, there are individual ponds in the centre an

flooded areas have not increased much, and reciprocally, there are a few ponds in

have largely increased. These remote sensing outputs are also confirmed by field observations: 

 14



nature of the watershed, schist producing more loam and clay alluvium than do

hard pan, and on the speed and the duration of the runoff flow. Some of the discr

flood change over years observed between ‘blue’ and ‘red’ ponds presumably ar

differences. In addition, it is expected that rainfall variability causes inter-annual va

flooded areas of ponds, but this should vanish at decadal time scale (Frappart e

more persistent cause of variability in the observed changes may be related to changes in 

connectivity of the runoff web. Indeed, structural modifications of the runoff sys

observed. Increasingly concentrated runoff accelerated water flows with the

expanding upstream, while it deepened and broadened the gullies downstream. 

momentum, in turn, shortcuts some of the relay ponds, connecting or reinfo

connections between watersheds. This applies to Agoufou, which effective wat

only extended over 32 km². In 1986, it had expanded to 127 km² by connection of the watershed 

that was previously only feeding the Taylalelt ponds. It had expanded again by 4

with the connection established to the west with the watershed that so far was o

Sabangou ponds. However, such a change in watersheds connectivity does not ex

area increase of the Agoufou pond, since the sum of all ponds in the total watersh

Taylalelt + Sabangou) exhibits a l

 sandstone and 1 

epancies in the 2 

ise from these 3 

riability in 4 

t al., 2009). A 5 

6 

tem have been 7 

 web of rills 8 

Enhanced flow 9 

rcing existing 10 

ershed in 1975 11 

12 

1 km² in 2001 13 

nly feeding the 14 

plain the large 15 

ed (Agoufou + 16 

arge increase (Fig. 10). A change in watershed connectivity is 17 

the Gourma region and each 

w ending on its 19 

20 

21 

22 

23 

nd any trend in 24 

 found, however, a possible trend towards more intense 25 

r t, this possible 26 

rly 1970’ and 27 

nsity based the 28 

high frequency records are only available for more recent years, since the deployment of 29 

automatic rain gauges under the AMMA project. 30 

Increase of flooded areas of ponds might also be caused by sediments deposition. Sediment 31 

deposition in Gourma ponds certainly increased during the study period with increasing runoff 32 

and soil erosion but it should play a minor role in the flood area expansion of the major ponds 33 

part of the phenomenon affecting the flood regime of ponds in 18 

atershed has its own dynamics, regarding how connections can evolve dep

topography and geomorphological traits.  

 

5.3. What are the possible causes of the uneven increase in pond flooded areas?  

 In the Gourma region, increase in rainfall amount (Fig 1) as well as increase in daily rainfall 

intensity can be ruled out as a direct cause. Indeed, Frappart et al. (2009) did not fi

rain per rainy day over 1950-2000. They

ains (rain per rainy day) in 2000-2007 compared to the previous decades. Ye

increase occurred well after pond’s increase in flooded area (starting in the ea

acceleration in the late 1980’). Unfortunately, more precise analysis of rainfall inte

 15



because of the long time required for coarse alluvium to reach the outlet pond in this overall flat 1 

l2 

served increase 3 

served in other 4 

escroix et al., 5 

6 

shed is feeding 7 

ourma region, 8 

 there are also 9 

imamou, Doro 10 

the fact that a 11 

12 

 a downstream 13 

ithout marked 14 

lood in alluvial 15 

f the low land 16 

lains (Hiernaux 17 

et al., 2009a). The contrasted flood dynamics between ‘blue’ and ‘red’ ponds would thus not 18 

nd shallow soils slopes but differences in 

t  plain, or rapid 20 

21 

22 

23 

nce the 1980’s, 24 

depression that 25 

 ‘red’ type and 26 

ropped, nor the 27 

umbers, at the 28 

29 

for other regions of the Sahel such as in South-West Niger (Leblanc et al., 2008, Favreau et al., 30 

2009). Indeed, crop fields (less than 3% of total land area) are confined to sandy soils that only 31 

marginally contribute to runoff. In addition to crops expansion, degradation of vegetation cover 32 

may also be caused by wood harvesting to meet the needs of local population for domestic use. 33 

During the most severe years of the droughts (1972-1973 and 1983-1984), some people ended in 34 

andscape.  

 Increased surface runoff is therefore the most plausible factor causing the ob

of the pond flooded areas in Gourma. This is in line with the increased runoff ob

Sahelian regions (Mahé et al., 2003, Mahé et al., 2005a, Mahé et al., 2005b, D

2009). However, the unevenness of the increase in flooded areas would then be explained by the 

unevenness of the increase in soil surface runoff depending on whether the water

‘blue’ or ‘red’ ponds. Red ponds concentrate in the southern part of the G

especially the watershed spreading from the sandstone plateaux of Hombori, but

some red ponds in central and northern Gourma, including large ones such as D

and Karouassa (Fig. 2), which watershed have substantial schist substrate. Yet 

number of the ‘red’ ponds are located along a stream could explain their behaviour even under 

the hypothesis of increased runoff. Indeed, increased run-on could be evacuated as

discharge or could be absorbed in the swelling of the surrounding flood plains w

effect on the flood level and thus the flooded area of the pond. This expansion of f

plains could in turn explain the expanding woody plant population at the edges o

open forest observed since the mid 1980’s in most low land clay soil in Gourma p

imply local differences in runoff increase from rocky a19 

he fate of runoff water between storing in ponds, temporal accumulation in flood

infiltration over sandy soils as observed in western Niger (Favreau et al., 2009). 

 

5.4.What are the possible causes of the increase in surface runoff? 

It is noteworthy that the ‘blue’ ponds, especially those which increased most si

are not located in the area where crops concentrate. In addition, most ponds in the 

surrounds the Hombori mounts, area under strong anthropogenic pressure, are of

have not increased size much. As a consequence, nor the limited increase in area c

intensity of grazing and trampling by livestock maintained longer, and in higher n

vicinity of settlements, can be advocated as leading factor of the increased runoff, as suggested 
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harvesting and selling wood to buy millet in order to face the deficiency of their ow

But again, the Gourma region does not seem to be concerned by the asp

deforestation. Benjaminsen (1996) studied the evolution of woody population o

Gourma, between 1955 and 1985, and came to the conclusion that the significant 

number of trees in this area is only due to the drop in rainfalls, and that the d

firewood could not be involved. Since then, the monitoring of woody plant populations from 

1984 to present in the Gourma concludes to an overall increase both in density a

woody population (Hiernaux et al., 2009a). There are however important exceptio

the woody population located on shallow soils, over rock or hard pan outcrops, ha

a continuous decline in density and cover, associated to a profound change in str

and  Hiernaux et al., 2009a). For example, the ‘tiger bush’ arrangement common o

of southern Sahel with dense thicket set perpendicular to the slope, have been decim

dismantled (Roussel, 2009), and in this case replaced by totally different arrange

scattered shrubs settled along the rills and thus along the slopes. The rock

associated shallow soils, extend on a third of the Gourma territory (Mougin et al., 2

constitute the landscape units generating most of the runoff. In contrast, the woody 

the two other main types of landscape units, the sandy soils of dunes and valleys 

loamy clay soils of lowlands (12%) progressively regenerated after the losses due to the drought 

(Fig. 12). Moreover, the herbaceous vegetation on sandy soils and on lowl

monitored in Gourma revealed very resilient to droughts, with a fast recla

production, within 2 to 5 years as observed in field surveys (see fig. 5 in Hiernau

and by remote sensing (Tracol et al., 2006). On rock slopes and associated

herbaceous layer only recovered partially since mid 1990’s in scattered patches set along the 

drainage lines and on thin sand depositions, offering little resistance to runoff.

decline of herbaceous and woody vegetatio

n millet crops. 1 

ect of human 2 

ver the Malian 3 

decrease in the 4 

omestic use of 5 

6 

nd cover of the 7 

ns to this trend: 8 

ve experienced 9 

ucture (Fig. 12 10 

n the hard pans 11 

ated or 12 

ments in which 13 

 outcrops, and 14 

009), and they 15 

populations of 16 

(55%) and the 17 

18 

and clay soils 19 

mation of the 20 

x et al., 2009b) 21 

 shallow soils, 22 

23 

 The persistent 24 

n cover on these rock outcrops and shallow soil has 25 

been monitored in the field, but is hardly quantifiable by remote sensing due to leaf area indexes 26 

t a few percents and to the extremely patchy distribution. Whether a future return 

 and regime in 

nt question for 

pastoral Sahel, which deserves dedicated monitoring. 30 

 31 

6. Conclusion 32 

Changes in the flooded area of ponds in the Gourma region were established through the use 33 

of multi-date and multi-sensor satellite images. The actual classification process to outline the 34 

reaching at mos27 

to normal precipitation in the next decades could cause a reversal of flood size28 

ponds, triggered by a recovering of vegetation on the shallow soil, is an importa29 
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flood area of ponds has to be adapted to fit each type of spectral resolution (lack o1 

middle infra-red band, panchromati2 

r presence of a 

c image) and spatial resolution (for a resolution coarser than 

30m mixed pixels had to be accounted for). 3 

4 

ponds with the 5 

6 

o year changes 7 

g Mallam) that 8 

 temporary to 9 

ber, the size of 10 

lood evolution 11 

12 

o trend of flood 13 

the peak of the 14 

15 

lation to their 16 

he radiometric 17 

18 

and pastoral use were discussed and considered secondary. Instead, 19 

it is argued that the lasting impact of the climatic droughts of the 1970’s and 1980’s on the 20 

oody plant vegetation over the shallow soils on rock and hard pan outcrops, and 21 

its consequences on the runoff system and the routing of the waters flows, are the main causes of 22 

this spectacular phenom23 

24 

25 

26 

for stimulating 27 

(FORMOSAT) 28 

29 

authors are grateful to the Institut d’Economie Rurale (IER) and the Direction Nationale de la 30 

Météorologie (DNM) for the collaboration in field data collection, and to the Institut de 31 

Recherche pour le Développement (IRD) Representation in Mali for all logistical support. Based 32 

on a French initiative, AMMA was built by an international scientific group and is currently 33 
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The outcomes enabled to document the seasonal dynamics of flooded area in 

fast rising of the flood related to rainfall distribution followed by a slow retreat of the flood 

during the dry season for a majority of the ponds in the Gourma region. The year t

of the maximum area flooded was quantified for two ponds (Agoufou and Eban

experienced a spectacular increase in flood level and duration, evolving from

permanent ponds. Indeed, for a same total rainfall of 380 mm at the end of Octo

the pond of Agoufou has been multiplied threefold between 1996 and 2003. The f

of these two ponds is at the larger end of the general behaviour of Gourma ponds, but it is typical 

f turbid ponds of the central zone. The results of this study showed an overall 

increase from the 1950’s till present causing the flooded area of ponds observed at 

flood to double from 1975 to 2002. 

The causes of the changes in flood regime of ponds were analysed in re

geographic location, the soil and land use particularities of their watershed and t

characteristics of their flood. The possible impact of cropland expansion, limited in this region, 

and intensification of forestry 

herbaceous and w

enon. 
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of images
Satellite Sensor 

Spa al S

re ion re

tral 

n 

ar of 

uisition 

Ground 

SPOT 1 HRV 20 m R, NI 60km*60km 2  G, R 1990 
SPOT 4 HRV 20 m G, R, NI 60km*60km 14+5 IR R, MIR 2005 to 2006
FORMOSAT-2 8 m , R, 2007 24km*24km 30 B, G  NIR 

MS 57 m / 
0m R, 1972, 1975,  3 S 6  G, NIR 1984 

2 TM 5 , R
MIR 

986, 2006, 
2007  28,

30 m 
m / B, G , NIR 1LANDSAT

TM ,5 m /
30 m 

, G, R
M

99

170km*180km 

5 

 

E  28  B , NIR, 1
IR 

9 , 2001,  
2002 

Terra 366 MODIS 250 m R, NIR 2000 to 2008 1200km*1200km 
CORO 7km*230km 8 NA KH-4A 2,79 m PAN 1965 and 1966 1
Aerial photographs 1.06 m PAN 1954 and 1996 10km*10km 2 

 3 

Table.1. Characteristics of the satellite and aerial images used in the study 4 

 25



 1 

fference
Vegetation Index 
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Turbidity Index 

malized Difference  
Pond Index 
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rednir

rednirNDVI
ρρ
ρρ
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−

=  (1) 
greenred

greenredNDTI
ρρ
ρρ

+

−
=  (2) 

greenmir

greenmirNDPI
ρρ
ρρ

+

−
=  (3) 

 

Table 2 Definitions of indexes, base

2 

d on reflectance values in specific wavelengths. NIR stands 3 

for near infrared, MIR for middle infra-red. 4 
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 2 

97.1 %    Overall accuracy : 6 

Kappa c 9oefficient : 0. 4    

Class labe Commission Omission (%) Producer Accuracy (%) User accuracy (%) l  (%) 

Blue pon 0.00 3.99 96.01 100.00 ds 

Red ponds 0.00 1.76 98.24 100.00 

 3 

Table 3 Confusion matrix and accuracy estimators for the classification of a whole LANDSAT-4 

ETM image with a maximum likelihood classifier (image collected on 29 October 1999). 5 
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Figure 1. Deviation of annual rainfall from the 1936-2008 average in Hombori (Mali), data by 3 

courtesy of DNM 4 
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 2 

 3 

Figure 2: LANDSAT ETM scene of the Gourma, with contours (yellow) delimiting areas where 4 

ponds are found (ponds are actually smaller than these contours). The scene is subdivided into 5 

three regions (separated by the C-S and N-C black lines), where ponds show different evolution 6 

with time (see text). Only the ponds explicitly mentioned in the text are labelled. 7 
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Figure 3: Study site and frames of the different satellite and aerial images us

ma (Mali). 
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D-E=water covered with aquatic vegetation, E-F= rocky outcrop.  
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Figure 5: Comparison of ponds’ area derived from MODIS (curves) with area derived from 2 

SPOT-HRVIR and FORMOSAT-2 (point).  Top is Agoufou, bottom is Ebang Mallam. 3 
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Figure 6: Variation of the surface of Agoufou (up) and Ebang Mallam (down) over the last 50 23 

years showing a dramatic increase. Curves are derived from MODIS data, while isolated dates 24 

come from LANDSAT, SPOT or panchromatic images. The scale is uniform throughout all 25 

images. 26 
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Figure 7: Pond’s area versus annual precipitations for the pond of Agoufou, October data (full 4 

circle) and September data (open square). 5 

1
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 1 

 
 2 
Figure 8: Successive contours of the pond of Agoufou, between 1966 and 2006, at the end of the 3 

rainy season, showing the remarkable increase of the pond. 4 

 5 

 6 
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 1 

a) b) 

Figure 9 : a) Average surface of water per pond (open square), average surface of turbid water (full circle) 

for the 91 ponds present in all September Landsat images.

September (line), derived from all data sources. 

b) same as (a) but for November and for the 51 ponds present in all November Landsat images. 

 2 

 3 

 Also figured is the surface of the Agoufou pond in 
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 6 

Figure 10: The 91 ponds of central Gourma ranked by the absolute value of the c

area between 1975 and 2002 (X axis, negative values indicate decrease in

 37
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/2002 in the Gourma. Relative rates of change are calculated 4 

for the overall flood and for both clear and turbid water. Ponds are grouped following their 5 

location in the Gourma (see map in Fig 2) 6 

 7 

Figure 11: Change in areas flooded with clear or turbid water (91 ponds in t

between 14/09/1975 and the 03/09
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-land clay soils 3 

, dunes and low-land sandy soils (13 sites, right-scale) and eroded slopes 4 

shallow soils (4 sites, right scale) in the Gourma following the 1983-84 drought (adapted from 5 

Hiernaux et al. 2009a). 6 

 7 

Figure 12: Changes of the mean the canopy cover of woody populations over low

(5 sites, left scale)
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