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ON THE UNIMODALITY OF POWER TRANSFORMATIONS OF

POSITIVE STABLE DENSITIES

THOMAS SIMON

Abstract. Let Zα be a positive α−stable random variable and r ∈ R. We show the
existence of an unbounded open domain D in [1/2, 1] × R with a cusp at (1/2,−1/2),
characterized by the complete monotonicity of the function Fα,r(λ) = (αλα − r)e−λα

, such
that Zr

α is unimodal if and only if (α, r) /∈ D.

1. Introduction and statement of the result

A real random variable X is said to be unimodal (or quasi-concave) if there exists a ∈ R

such that its distribution function P[X ≤ x] is convex on (−∞, a) and concave on (a,+∞).
The law of X decomposes then into P[X ∈ dx] = cδa(dx)+f(x)dx, where f is non-decreasing
on (−∞, a) and non-increasing on (a,+∞). The number a is called a mode of X and is not
necessarily unique. We will denote by Ua the set of unimodal random variables with a mode
at a and set U = ∪a∈R Ua. The set of random variables with a monotone density function,
which is included in U , will be denoted by M.

Unimodal random variables share many interesting properties in mathematical statistics,
sometimes analogous to those of the normal distribution. A celebrated example is the fol-
lowing three-rule: when X is unimodal and square-integrable, then

P[|X − x| > 3τx] ≤ 4/81 < 0.05

for all x ∈ R, with the notation τ 2x = E[(X − x)2]. This optimal bound was discovered by
Gauss in 1823 when x is a mode of X, and extended to all x by Pétunine & Vissotchanski
in 1983. Notice that in the particular case x = E[X ] the above rule divides the classical
bound of Bienaymé & Tchebitcheff in more than one-half. We refer to the monograph [4]
for details, references and further results concerning unimodality.

In the present paper the unimodality of Zr
α is discussed, where Zα is a positive α−stable

random variable (0 < α < 1) with density function fα normalized such that

(1)

∫ ∞

0

e−λtfα(t)dt = E
[

e−λZα
]

= e−λα

, λ ≥ 0,

and r ∈ R. Apart from the trivial situation r = 0 the random variable Zr
α has always a

smooth density f r
α and we would like to know if f r

α has a unique local maximum value, or
not. There are already some results in the literature, all with a positive answer.
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• First of all, the cases r = 1 and {α ∈ [1/2, 1), r = −α} were considered in [2]. When
r = 1 the fact that Zα ∈ U is a consequence of Lemma 1 and the proof of the Theorem
therein. The other case comes after recalling - see e.g. Exercises 29.7 and 29.18 in [11], that

Z−α
α

d
= Xα conditioned on Xα > 0,

where Xα is a (1/α)−stable random variable with skewness parameter β = −1, so that
one can apply Lemma 1’ and a similar discussion to the proof of the Theorem in [2] to get
Z−α

α ∈ U .
• The case r ≤ α/(α−1) is a corollary to the main theorem in [9], which shows a stronger

property. From (3.1) therein one obtains indeed the following representation

f r
α(x) =

∫ ∞

0

e−xyy P[exp{Vα,−r} ∈ dy],

where the positive random variable Vα,−r has Laplace transform given by

E[e−sVα,−r ] =
Γ(1 + sr/α)

Γ(1 + s)Γ(1 + sr)

and is actually infinitely divisible (ID). The easy part of Bernstein’s theorem - see e.g.
Theorem 1.4. in [13] - entails then that f r

α is completely monotone (CM), hence monotone,
and one gets Zr

α ∈ U0. Notice that Zr
α is ID as well - see Theorem 51.6 in [11].

• Last, the case r = α follows from the remark made in [8] - see Paragraph 3.2 therein,
that Zα

α is self-decomposable (SD): the classical result of Yamazato - see e.g. Theorem 59.12
in [11] - yields then Zα

α ∈ U .
However, one cannot deduce further positive results from the above three cases, because

unimodality is hardly stable under power transformations. We may also recall that proving or
disproving unimodality can actually turn out to be a difficult problem for random variables
whose density function cannot be written in closed form. Our main result answers the
question for Zr

α in the following way:

Theorem. (a) One has Zr
α ∈ U ∩Mc for all r > −α.

(b) One has Z−α
α ∈ M for α ≤ 1/2 and Z−α

α ∈ U ∩Mc for α > 1/2.

(c) In the case r < −α there exists a homeomorphism R : [1/2, 1) → [1/2,+∞) such that

Zr
α ∈ U ⇔ Zr

α ∈ M ⇔ Fα,r is CM ⇔ α ≤ 1/2 or r ≤ −R(α),

with the notation Fα,r(λ) = (αλα − r)e−λα
for all λ ≥ 0. Moreover, one has the following

bounds:

1/4(1− α) ≤ R(α) ≤ (α/ sin2(πα)) ∧ (α/(1− α)),

so that R(α) ∼ α as α → 1/2 and R(α) ≍ 1/(1 − α) as α → 1. In particular, the open
domain D = {(α, r) / Zr

α /∈ U} is unbounded and has a cusp at (1/2,−1/2).
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One can understand from the limiting case r = −α why there should be a prohibited zone
for the unimodality of Zr

α in the area {α > 1/2, r < −α}. The well-known Humbert-Pollard
series representation for fα - see (9) below - yields indeed the following limiting values

f−α
α (0+) =

1

Γ(1− α)
, (f−α

α )′(0+) =
−2

Γ(1− 2α)
and f r

α(0+) = +∞ for all r < −α.

In particular, the random variable Z−α
α has a mode which is not zero for α > 1/2, and by

the continuity of r 7→ f r
α(x) for all x > 0 one sees that f r

α must have at least two separate
modes (one of which is zero) provided that r is close enough to −α. However, it is somewhat
surprising for the forbidden area D to be cuspidal at (1/2,−1/2) and we could not find any
quick, intuitive explanation for that. As in [15], it also appears that the cases α ≤ 1/2
and α > 1/2 are completely different as far as unimodality properties for Zα are concerned.
When α ≤ 1/2, the condition r ≤ −α characterizes namely the complete monotonicity of
Fα,r, but also its weaker log-convexity as well as the much stronger property that − logFα,r

is a Bernstein function (in other words, that Fα,r is the Laplace transform of a positive ID
law). When α > 1/2 these three equivalent characterizations do not hold anymore, and
finding a closed expression in α for the frontier function R(α) seems somehow hopeless.

From the limiting case {α > 1/2, r = −α} it is reasonable to conjecture that the variable
Zr

α is bimodal when (α, r) ∈ D. In general, techniques for investigating multimodality are
different from those devoted to unimodality. Anyway it does not seem that the methods of
this paper, which in the non-monotonic situation rely on the notion of strong multiplicative
unimodality [3], can be of any help for proving bimodality. It would also be interesting to
study the unimodality of Xr

α, where Xα is a general α−stable variable conditioned to stay
positive. Such cut-off variables have been introduced in Chapter 3 of [16] in the framework
of M-infinite divisibility. Their multiplicative factorizations are however more complicated
than in the true positive situation, and we will hence leave this question open to some further
research, as well as that of the bimodality of Zr

α when (α, r) ∈ D.

2. Proof of the theorem

2.1. Two lemmas. For parts (a) und (b) we will use the following multiplicative factoriza-
tion of Zα which was discovered by Kanter - see Corollary 4.1. in [7] - as a direct consequence
of a contour integration made by Chernine & Ibragimoff - see the final remark in [2]: one
has

(2) Zα
d
= L(α−1)/α × b−1/α

α (U),

where L ∼ Exp(1), U ∼ Unif(0, π) independent of L, and

bα(u) = (sin u/ sin(αu))α(sin u/ sin((1− α)u))1−α, u ∈ (0, π).

We will need the following property of bα, partly already shown in [7].

Lemma 1. The function bα is decreasing and concave on (0, π).

Proof. First, it follows directly from the beginning of the proof of Theorem 4.1. in [7] that
bα decreases and is log-concave on (0, π). When α = 1/2, one can write b1/2(u) = 2 cos(u/2)
which is surely a concave function on (0, π). When α 6= 1/2, it is however more difficult to
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prove that bα is concave. We will suppose 0 < α < 1/2 and set β = 1 − α. A computation
yields

b′′α(u) = bα(u)(α(A
2
α(u)− A′

α(u)) + β(A2
β(u)− A′

β(u))− αβ(Aα(u)−Ab(u))
2),

where Aα(u) = α cot(αu)− cot(u) and Aβ(u) = β cot(βu)− cot(u). It is hence sufficient to
show that the quantity

α(A2
α(u)−A′

α(u)) + β(A2
β(u)−A′

β(u)) = 2(α2 cot(αu)Aα(u) + β2 cot(βu)Aβ(u))− 3αβ

is non-positive for all u ∈ (0, π). We will obtain the slightly better inequality

α2 cot(αu)Aα(u) + β2 cot(βu)Aβ(u) ≤ αβ(3)

and for this purpose we change the expression on the left-hand side into

αβ(cot(αu)Aα(u) + cot(βu)Aβ(u)) + (β − α)(β cot(βu)Aβ(u)− α cot(αu)Aα(u)).

A further decomposition gives

cot(αu)Aα(u) + cot(βu)Aβ(u) = α cot2(αu) + β cot2(βu)Aβ(u) + 1− cot(αu) cot(βu)

= (Aα(u)−Aβ(u))(cot(αu)− cot(βu)) + 1

and

β cot(βu)Aβ(u)− α cot(αu)Aα(u) = (Aα(u)− Aβ(u))(cot(u)− cot(αu)− cot(βu)).

After some simplification one finds that (3) is equivalent to

(4) (Aα(u)− Aβ(u))(αAα(u)− βAβ(u)) ≤ 0, u ∈ (0, π).

Differentiating in α it is easy to see - and already used in the proof of Theorem 4.1. in [7]
- that Aα(u) ≥ Aβ(u) for every u ∈ (0, π). It is however more painful to show αAα ≤ βAβ

on (0, π) with the help of successive derivatives, and we will rather appeal to the eulerian
formula

π cot(πz) =
1

z
+ 2z

∑

n≥1

1

z2 − n2
·

Setting u = πz, the latter entails namely

αAα(u)− βAβ(u) =
2αβ(β2 − α2)z3

π

∑

n≥1

n2

(z2 − n2)(α2z2 − n2)(β2z2 − n2)
≤ 0,

the inequality being justified by β ≥ α and z ∈ (0, 1). This shows (4) and completes the
proof.

�

Remark 2. It is easy to see that Gα,β(u) = α2 cot(αu)Aα(u) + β2 cot(βu)Aβ(u) → αβ as
u → 0, so that the lemma would follow as soon as it is shown that Gα,β is non-increasing
on (0, π). This latter property can be obtained similarly as above but we could not find any
simpler method.

For part (c) we will need the following interesting property of Fα,r, whose proof relies partly
on the theory of Bernstein functions - see [13] for a modern account, especially Chapter 3
therein.
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Lemma 3. There exists an increasing function R : [0, 1] → [0,+∞], such that

(5) Fα,r is CM ⇐⇒ r ≤ −R(α).
Moereover, one has R(α) = α for all α ∈ [0, 1/2] and the bounds 1/4(1 − α) ≤ R(α) ≤
α/ sin2(πα) hold for all α ∈ [1/2, 1].

Proof. Let us first consider the function Gα,t = (λα+ t)e−λα
on R

+. Since e−λα
itself is CM -

recall (1) - we see that the notation T (α) = inf{t ∈ R, Gα,t is CM} makes sense and - from
the continuity in t of the successive derivatives of Gα,t, that

Gα,t is CM ⇐⇒ t ≥ T (α).

Moreover it is clear that T (0) = 0, T (α) ≥ 0 and from the computation

G
(n)
1,t (λ) = (−1)ne−λ(λ+ t− n),

that T (1) = +∞. Next we show indirectly that T is non-decreasing on [0, 1]: supposing
α1 < α2 and T (α1) > T (α2) and considering then t ∈ (T (α2), T (α1)) and γ = α1/α2 ∈ [0, 1),
because Gα2,t is CM and λγ is a Bernstein function - see again (1), it follows from Criterion
2 p. 417 in [6] - see also Theorem 3.6. in [13] - that Gα1,t is also CM, which contradicts the
definition of T (α1), so that T does not decrease on [0, 1]. Finally, the function R(α) = αT (α)
increases on [0, 1], fulfils R(0) = 0, R(1) = +∞, and it is clear from the above discussion
that the equivalence (5) holds.

For the lower bound we first recall that by Bernstein’s theorem and Hölder’s inequality,
the CM property implies the log-convexity one. A computation yields on the other hand

Gα,t is log-convex on R
+ ⇐⇒ x2 + (2t− 1/(1− α))x+ t2 − t ≥ 0 for all x ≥ 0.

This entails that if Gα,t is CM, then necessarily t2 ≥ t and either t ≥ 1/2(1 − α), or
(2t − 1/(1 − α))2 ≤ 4(t2 − t), from which the bounds R(α) ≥ α for all α ∈ [0, 1/2] and
R(α) ≥ 1/4(1− α) for all α ∈ [1/2, 1] easily follow.

For the upper bound we finally notice that if Hα,t(λ) = λα − log(1 + λα/t) is a Bernstein
function, then Gα,t is CM as t−1 times the Laplace-transform of an ID law. Besides, λα and
log(1 + λα/t) are Bernstein functions themselves, whose Lévy measures are given by

λα =
α

Γ(1− α)

∫ ∞

0

(1− e−λx)
dx

x1+α
and log(1 + λα/t) = α

∫ ∞

0

(1− e−λx)Eα(−txα)
dx

x
·

Above,

Eα(x) =

∞
∑

n=0

xn

Γ(1 + αn)

is the Mittag-Leffler function with index α and the second computation comes from Remark
2.2. in [10], having made the correction xk → xαk therein. Recall also the asymptotic
behaviour

Eα(−xα) ∼ x−α

Γ(1− α)
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as x→ +∞ - see (18.1.7) in [5], which ensures the convergence of the integral in the second
formula. One gets

(6) Hα,t(λ) =
α

tΓ(1− α)

∫

R+

(1− e−λx)(t− Uα(tx
α))

dx

x1+α

with the notation Uα(x) = Γ(1− α)xEα(−x), so that Hα,t is Bernstein if and only if

(7) Uα(x
α) ≤ t

for all x ≥ 0. From Exercise 29.18 in [11], (1) in the present paper and Exercise 4.21 (3) in
[1] one obtains the classical integral representation

(8) Eα(−xα) = E
[

e−xα/Zα
α
]

= E

[

e−x(Z̄α/Zα)
]

=
sin πα

π

∫

R+

uα−1e−xu

u2α + 2uα cosπα + 1
du,

where in the second equality Z̄α is an independent copy of Zα, and the complement formula
for the Gamma function entails

Uα(x
α) =

1

Γ(α)

∫ ∞

0

uα−1e−u

(u/x)2α + 2(u/x)α cos πα+ 1
du,

an expression which is everywhere smaller than 1 when α ≤ 1/2 and everywhere smaller
than 1/ sin2(πα) when α ≥ 1/2. In other words, one has T (α) ≤ 1 when α ≤ 1/2 and
T (α) ≤ 1/ sin2(πα) when α ≥ 1/2.

These two bounds yield finally R(α) = α for all α ∈ [0, 1/2] and 1/4(1 − α) ≤ R(α) ≤
α/ sin2(πα) for all α ∈ [1/2, 1], as desired.

�

Remarks 4. (a) As mentioned before one has G
(n)
1,t (λ) = (−1)ne−λ(λ+ t− n). On the other

hand the simple formula (λα)(n) = Γ(α + 1)λα−n/Γ(α + 1 − n) holds, and one could hence
deploy Faa di Bruno’s formula in order to investigate the CM property of Gα,t(λ) = G1,t(λ

α)
and try to find the function R(α) explicitly for all α ∈ [0, 1]. The combinatorial character
of the resulting formulæ is however somewhat mysterious, and does not seem to give any
simple reason why R is the identity function on [0, 1/2] and suddenly behaves differently
when α > 1/2. An exact formula for R on (1/2, 1], if any, is probably not given in terms of
elementary functions.

(b) During the proof of the theorem we will establish the continuity of R, which is hence
an homeomorphism from [0, 1] to [0,+∞]. It is plausible that limα→1(1 − α)R(α) exists in
[1/4, 1] and that R is convex.

(c) In the above proof one sees that the curious equivalence

Gα,t is log-convex ⇐⇒ Gα,t is CM ⇐⇒ Hα,t is Bernstein

holds for all α ≤ 1/2. We stress that this is not true anymore when α > 1/2. For the first
equivalence we have for example G3/4,t is log-convex ⇔ t ≥ 4/3 and on the other hand,
although

(−1)nG
(n)
3/4,4/3(λ) ≥ 0
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for all n ≤ 4, a further computation yields

(−1)5G
(5)
3/4,4/3(λ) =

3e−λ3/4

45λ1/2
(195µ5 + 35µ4 − 150µ3 − 135µ2 − 27µ+ 81)

with the notation µ = λ−3/4 : one sees that the expression on the right-hand side is negative
for µ = 4/5. For the more subtle invalidity of the second equivalence when α > 1/2, we refer
to Proposition 7 (a) below.

2.2. End of the proof. Part (a) is an easy consequence of Kanter’s representation (2) and

Lemma 1. The latter entails indeed clearly that the function b
−r/α
α (u) is increasing and

convex for all r > 0, resp. decreasing and concave for all r ∈ [−α, 0). In particular, the

variable b
−r/α
α (U) is monotone for all r ≥ −α and r 6= 0, because its distribution function is

concave for all r > 0 resp. convex for all r ∈ [−α, 0). On the other hand, one sees explicitly
that the function x 7→ λα,r(e

x) is log-concave for all α ∈ (0, 1) and r 6= 0, where λα,r is the
density of Lr(α−1)/α. By Theorem 3.7. in [3], this means that Lr(α−1)/α is multiplicatively
strong unimodal, in other words, that its independent product with any unimodal random
variable remains unimodal. Recalling

Zr
α

d
= Lr(α−1)/α × b−r/α

α (U),

we can deduce that Zr
α ∈ U as soon as r ≥ −α.

For the non-monotonicity assertion we simply remark from the Humbert-Pollard repre-
sentation - see e.g. (14.31) in [11]:

(9) fα(x) =
∑

n≥1

(−1)n−1Γ(1 + αn) sin παn

πn!
x−αn−1 =

∑

n≥1

(−1)n

n!Γ(−αn) x
−αn−1, x > 0,

Linnik’s asymptotic limt→0 x
α/(1−α) log fα(x) = cα ∈ (−∞, 0) - see e.g. (14.35) in [11], and a

change of variable, that f r
α(0+) = 0 as soon as r > −α, whence Zr

α 6∈ M as desired.

(b) From above, we already know that Z−α
α ∈ U , and it is hence enough to show that zero

is a mode of Z−α
α for α ≤ 1/2 and not a mode of Z−α

α for α > 1/2.When α = 1/2 this comes
from the explicit formula

f
−1/2
1/2 (x) =

1√
π
e−x2/4

and when α 6= 1/2 one obtains the desired properties easily from the limiting values

f−α
α (0+) =

1

Γ(1− α)
and (f−α

α )′(0+) =
−2

Γ(1− 2α)

which were derived during the introduction.

(c) We first recall the limiting value f r
α(0+) = +∞ for all r < −α - see again the end of

the introduction, whence the first equivalence

Zr
α ∈ U ⇐⇒ Zr

α ∈ M.

Moreover, a change of variable yields

r2(f r
α)

′(x) = −x−(1−1/r)hrα(x
1/r)
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with hrα(x) = (1 − r)fα(x) + xf ′
α(x). From (9) and (14.35) in [11] one sees that fα and hrα

are bounded and integrable. Using fα(0) = 0, an integration by parts yields
∫

R+

e−λxhrα(x)dx = −re−λα

+ λ

∫

R+

xe−λxfα(x)dx

= −re−λα

+ λ
d

dλ

(

e−λa)

= (αλα − r)e−λa

= Fα,r(λ)

for all λ ≥ 0. Berstein’s theorem and Lemma 2 entail then the two other desired equivalences

(10) Zr
α ∈ M ⇔ hrα ≥ 0 ⇔ Fα,r is CM ⇔ α ≤ 1/2 or r ≤ −R(α),

with the above notation for R(α). From hrα ≥ 0 ⇔ r ≤ −R(α) and the continuity (α, r) 7→
hrα(x) for all x > 0 - which is itself a clear consequence of (9) and its derivative - we get
the continuity of α 7→ R(α), so that R is homeomorphic from [0, 1] onto [0,+∞]. Last, the
remaining bound R(α) ≤ α/(1− α) for α ≥ 1/2 comes from Zr

α ∈ M ⇔ r ≤ −R(α) and
the main theorem of [9].

�

Remarks 5. (a) This result shows in particular that Zr
α is unimodal for all r ∈ R and

α ≤ 1/2. As a matter of fact, this property is also a direct consequence of our previous
theorem in [15], which established the equivalence Zα is MSU ⇔ α ≤ 1/2 - see p. 2 in
[15] for a definition of the MSU property. From (1.2) in [15] it is namely clear that the
equivalence

Zα is MSU ⇐⇒ Zr
α is MSU for all r ∈ R

∗

holds, and Theorem 3.6. in [3] entails the implication X is MSU ⇒ X ∈ U , for all positive
random variables X . The theorem of [15] gives hence another proof that R(α) = α whenever
α ≤ 1/2. The argument which is given above in terms of log-convexity and Bernstein’s
property is perhaps more illuminating, though also more surprising - recall Remark 4 (c)
above.

(b) Our two theorems in [15] and in the present article raise the natural question whether
the equivalence

X is MSU ⇐⇒ Xr ∈ U for all r ∈ R

should not hold for all positive random variables, since it is true for the stable ones. Before
studying this conjecture it would be interesting to investigate the MSU property for a larger
class of positive random variables than the stable family, for example the self-decomposable
subclass. One may ask if this property could not be characterized in terms of the Lévy
measure.

(c) The function

x 7→ (αxα + r)e−xα

(1 + r)Γ(1 + 1/α)

is a density on R
+ for all α, r > 0 and Lemma 3 entails that it is log-convex for all r ≥ 1/4

and α ≤ 1 − 1/4r. By Theorem 51.4 in [11], it is then the density of an ID law, and this
property is also easy to verify for α = 1 and all r > 0. However it is not clear whether the
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law of the corresponding variable remains ID for all α ∈]1− 1/4r, 1[, like for the CM density
function e−xα

/Γ(1 + 1/α).

3. Further results and remarks

Considering the smooth function grα(x) = (1+1/r)fα(x)+(x/r)f ′
α(x) for all α ∈ (0, 1), r >

0, it is clear from the above proof of Part (c) of the theorem that the equivalences

grα is a density on R
+ ⇐⇒ Z−r

α ∈ M ⇐⇒ r ≥ R(α)

hold, and we will set Xα,r for the random variable with density grα, whenever it exists. The
following corollary provides a multiplicative factorization somehow analogous to the main
theorem of [9].

Corollary 6. One has the equivalence

(11) r ≥ R(α) ⇐⇒ Zr
α

d
= eL × X,

where L ∼ Exp (1) and X is an independent random variable. Moreover, when (11) holds,

then X
d
= Xr

α,r.

Proof. From the identity eL
d
= U−1 with U ∼ Unif(0,1), the required equivalence reads

r ≤ −R(α) ⇐⇒ Zr
α

d
= U × Y

with Y ⊥ U. The latter is however a direct consequence of Khintchine’s theorem - see e.g.
Footnote 22 p. 155 in [6] - since we have previously shown r ≤ −R(α) ⇔ Zr

α ∈ U0. For
the remaining identity in law we first remark from (11) that for all s < α/r ≤ 1 one has

E[Xs] = (1− s)E[Zrs
α ] = 2E[Zrs

α ] − (1 + s)E[Zrs
α ]

=

∫ ∞

0

xs(2f r
α(x) + x(f r

α)
′(x))dx

=

∫ ∞

0

xs(x1/r−1grα(x
1/r)/r)dx = E[Xrs

α,r],

where the third equation comes from an integration by parts - noticing that both boundary
values vanish from r > 0 and Linnik’s asymptotic resp. from rs < α and the Humbert-
Pollard representation - and the fourth one from a direct computation. Mellin inversion
entails the desired identity

X
d
= Xr

α,r.

�

The Laplace transform of Xα,r reads

E[e−λXα,r ] = (1 + αλα/r)e−λα

and because r ≥ α, we know from the proof of Lemma 3 that Xα,r is ID as soon as α ≤ 1/2.
It is interesting to ask whether its is always the case, in other words, whether the second
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equivalence in Remark 4 (c) always holds. From Corollary 6 and the main theorem of [9]
one obtains namely

eL/r × Xα,r
d
= Zα

d
= L−1/r × eYα,r

as soon as r ≥ α/(1−α) ≥ R(α), with Yα,r always an ID random variable. If Xα,r is also ID,
one obtains through Zα a kind of cross-correpondence between Exp and some ID laws which is
perhaps more than a formal one. Besides, the infinite divisibility ofXα,R(α) for α > 1/2 would
give a characterization of Zr

α ∈ M in terms of the Bernstein property for − logFα,r, would
be more tractable than the CM property for Fα,r - see Remark 8 (a) below - in investigating
further properties of the frontier function R(α). The following proposition shows however
that Xα,r is not always ID, at least for α > 1/2 and r = R(α). For completeness we also
discuss the self-decomposability of Xα,r.

Proposition 7. (a) There exists a homeomorphism R̃ : [0, 1] → [0,+∞] such that

Xα,r is ID ⇐⇒ r ≥ R̃(α).

Moreover one has R̃(α) = α for all α ≤ 1/2 and α/ sin2(πα) ≥ R̃(α) > R(α) for all α > 1/2.

(b) There exists a homeomorphism R̂ : [0, 1] → [0,+∞] such that

Xα,r is SD ⇐⇒ r ≥ R̂(α).

Moreover one has R̂(α) = α for all α ≤ 1/2 and α/ sin2(πα) ≥ R̂(α) > R̃(α) for all α > 1/2.

Proof. (a) The case α ≤ 1/2 comes directly from Lemma 3 and Remark 4 (c). In the case
α > 1/2 one sees from the proof of Lemma 3 that the equivalences

Xα,r is ID ⇐⇒ Hα,t is Bernstein ⇐⇒ sup{Uα(x), x ≥ 0} ≤ t

hold, with the notation of Lemma 3 and t = r/α. Setting

T̃ (α) = inf{t ≥ 0 / Hα,t is Bernstein},
the above second equivalence and the smoothness of (α, x) 7→ Uα(x) entail the continuity of

α 7→ T̃ (α). It is not clear from the definition of Uα that the function T̃ does not decrease
on [0, 1], but instead one can prove this indirectly just like in Lemma 3, since λ 7→ ψ(λβ) is

Bernstein for all Bernstein functions ψ and 0 < β < 1. The function R̃(α) = αT̃ (α) ≥ R(α)
yields the required homeomorphism and the upper bound R̃(α) ≤ α/ sin2(πα) comes from
the integral representation of Uα in Lemma 3.

We finally show R̃(α) > R(α), in other words, that X̃α = Xα,R(α) is not ID as soon as

α > 1/2. Fix α ∈ (1/2, 1) and set gα = g
R(α)
α for the density of X̃α. From (9) we first get

grα(x) =
∑

n≥1

(−1)n(1− αn/r)

n!Γ(−αn) x−αn−1, x, r > 0,

whence we easily deduce the existence of x0 > 0 and of an open neighbourhood V ofR(α) > α
such that grα(x) > 0 for all r ∈ V and all x > x0. On the other hand, from the positivity
of fα and f ′

α on (0, mα] - here mα denotes the mode of fα, there exists x1 > mα > 0
such that grα(x) > 0 for all r > 0 and x ∈ (0, x1). By (10) however there must exist, for all
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r < R(α) close enough to R(α), some xr ∈ [x1, x0] such that grα(xr) < 0. By a straightforward
compacity argument, this entails that gα must vanish on [x1, x0].

Now if X̃α were ID, then its Lévy-Khintchine exponent would be H
T (α)
α and one sees from

(6) that X̃α would be driftless and that the support of its infinite (because Uα(x) → 0 as
x → 0) Lévy measure would contain zero. From Theorem 24.10 in [11] we deduce that the

support of X̃α would be the whole R+, and Theorem 3.3. in [14] entails that gα would never
vanish on ]0,+∞[, a contradiction.

(b) From the proof of Lemma 3 and Corollary 15.11 in [11] we see that Xα,r is SD if and
only if the function

x 7→ x−α − Γ(1− α)Eα(−xαt)
is non-increasing, with t = r/α, which is equivalent to the upper bound Vα(x) ≤ t for all
x ≥ 0, where we have set Vα(x) = x2αΓ(1 − α)E ′

α(−xα). As above we can hence introduce
the function

R̂(α) = inf{r > 0 / Xα,r is SD},
whose continuity on [0, 1] is clear, and which yields the desired characterization. One shows

that T̂ (α) = R̂(α)/α does not decrease indirectly like in Part (a), using this time Proposition

4.1. in [12], so that R̂ increases and is a homeomorphism. Differentiating (8) we finally obtain

Vα(x) =
1

Γ(α + 1)

∫ ∞

0

uαe−u

(u/x)2α + 2(u/x)α cos πα+ 1
du,

whence T̂ (α) = 1 ⇔ R̂(α) = α for all α ≤ 1/2, respectively T̂ (α) ≤ 1/ sin2(πα) ⇔ R̂(α) ≤
α/ sin2(πα) for all α > 1/2. For the strict lower bound in the case α > 1/2 we first recall
from (a) that

R̂(α) = α sup{Uα(x), x ≥ 0} > α.

Since Uα(0) = 0 and Uα(x) → 1 as x → ∞, the corresponding maximal value is attained in
]0,+∞[ and the function

x−α(T̃ (α)− Uα(T̃ (α)x
α)) = x−α − Γ(1− α)Eα(−xαT̃ (α))

must vanish inside ]0,+∞[. Hence the latter function must increase somewhere in ]0,+∞[,
since it is clearly positive in the neighbourhood of +∞. This shows that the ID variable
Xα,R̃(α) is not SD and one has R̂(α) > R̃(α) for all α > 1/2.

�

Final remarks 8. (a) As mentioned before, the limiting functions R̃ and R̂ can be expressed
as extremal values of an explicit function: one has

R̃(α) = α sup{Uα(x), x ≥ 0} and R̂(α) = α sup{Vα(x), x ≥ 0},

and the classical integral representations for Eα and E ′
α entail readily R̃(α) = R̂(α) = α for

all α ≤ 1/2. As for R(α), these representations give however little hope of a closed formula

for R̃(α) and R̂(α) when α > 1/2.
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(b) When r ≥ R(α) writing e−λα
= (1 + αλα/r)−1(F−r

α (λ)/r) provides another, additive
factorization for Zα:

Zα
d
= (α/r)1/αMα + Xα,r,

where Mα is a so-called Mittag-Leffler variable - see [10] - and Mα ⊥ Xα,r. Notice that a
direct moment computation - see also the final remark in [10] - gives the factorization

Mα
d
= Zα × L1/α

for all α ∈ (0, 1), with L ∼ Exp(1) and L ⊥ Mα. It is however purposeless to search for a
reverse multiplicative factorisation of Zα through Mα because Mα ∈ U0 (its density function
is namely αxα−1E ′

α(−xα) which is non-increasing on R
+ - see (18.1.6) in [5]) and Zα 6∈ U0,

which would contradict Khintchine’s theorem.
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