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NONLOCAL HAMILTON-JACOBI EQUATIONS RELATED

TO DISLOCATION DYNAMICS AND A

FITZHUGH-NAGUMO SYSTEM

OLIVIER LEY

Abstract. We describe recent existence and uniqueness results ob-
tained for nonlocal nonmonotone Eikonal equations modelling the evo-
lution of interfaces. We focus on two model cases. The first one arises
in dislocation dynamics and the second one comes from a FitzHugh-
Nagumo system. The equation is nonlocal since, in both case, the ve-
locity at a point of the boundary of the interface depends on the whole
enclosed set via a convolution. In these models, the evolution is non-
monotone since we do not expect to have an inclusion principle.

1. Introduction

This text is the proceeding of conference given a the RIMS Meeting Vis-
cosity solutions of differential equations and related topics in Kyoto in 2008.
I would like to thank Professors H. Ishii and S. Koike for the invitation.

The aim is to describe recent results for nonlocal and nonmonotone Eikonal
equations obtained in [11, 8, 10, 9] in collaboration with Guy Barles, Pierre
Cardaliaguet, Régis Monneau and Aurélien Monteillet. I also refer the reader
to [33] and [35]. I have chosen to sacrify some generality and to present the
most significant results in two model cases: the dislocation dynamics and a
FitzHugh-Nagumo system.

We are interested in the following equation






∂u

∂t
(x, t) = c[11{u≥0}](x, t)|Du(x, t)| in R

N × [0, T ],

u(·, 0) = u0 in R
N ,

(1.1)

where u0 : R
N → R is Lipschitz continuous and, for all open subset Ω ⊂ R

N ,

c[11Ω](x, t) := α(k ⋆ 11Ω(x, t)) + c1(x, t).(1.2)

The functions α : R → R and c1 : R
N × [0, T ] → R are Lipschitz continuous,

“⋆” denotes some convolution between a kernel k and the indicator function
of Ω. More precise assumptions will be given later. This expression of c[·]
encompasses the two model cases.
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The paper is organized as follows. In Section 2, we briefly recall some
facts about the level set approach to study front propagation problems. It
is the motivation to study (1.1). Then, in Sections 3 and 4, we introduce
the dynamics of dislocations and a FitzHugh-Nagumo system. Front prop-
agation problems corresponding to these problems lead to nonlocal non-
monotone speed like (1.2). In Section 5, we introduce a notion of weak
solutions for (1.1). Before stating some existence results of weak solutions,
we recall some properties of the solutions of the classical Eikonal equation
(Section 6). The last three sections are devoted to uniqueness results. As
shown by a counter-example (Section 8), weak solutions are not unique in
general. Uniqueness holds when the velocity is positive. Our results in this
direction are stated in Section 9 and a sketch of proof is given in Section 10.

2. Preliminaries on the Level set approach and nonlocal

nonmonotone front propagation problems

Consider the following front propagation problem: we want to find a
family (Ωt)t≥0 of open subsets of RN such that every point x of the boundary
Γt := ∂Ωt (called the “front”) evolves with a prescribed normal velocity
given by

−→V Ωt(x) = h(x, t,Ωt)
−→n Ωt(x),(2.1)

where −→n Ωt(x) is the outer unit normal of Γt at x (it means that Γt is
“oriented” by its interior Ωt) and h is a given evolution law.

The idea of Osher & Sethian [38] for the level set approach is to introduce
an auxiliary function u : RN × [0, T ] → R whose 0-level set represents the
front Γt. We therefore define u such that, for all t ≥ 0,

u(·, t) = 0 on Γt, u(·, t) > 0 in Ωt and u(·, t) < 0 otherwise.(2.2)

Straightforward computations give:

−→n Ωt(x) = − Du(x, t)

|Du(x, t)| and
−→V Ωt(x) =

∂u
∂t
(x, t)

|Du(x, t)|
−→n Ωt(x) for all x ∈ Γt.

From (2.1), we obtain the level set PDE

∂u

∂t
(x, t) = h(x, t, {u(·, t) ≥ 0})|Du(x, t)| for all x ∈ Γt.(2.3)

This PDE holds a priori on Γt. The main work of Chen, Giga & Goto [18]
and Evans & Spruck [22], who were the first to develop rigorously the level
set approach, was to prove that (2.3) can be set and solved on R

N × (0, T ].
This PDE is complemented with an initial data u0 which represents the
initial front (i.e., (2.2) holds at t = 0 with u0 and a given Ω0). One recovers
Γt by setting

Γt := {u(·, t) = 0} for all t ≥ 0.

It is worth mentioning that, even for very simple velocities, the front
may develop singularities in finite time and some changes of topology may



NONLOCAL HAMILTON-JACOBI EQUATIONS 3

happen. Similarly, one cannot hope to find smooth solutions of (2.3). We
will use the notion of viscosity solutions which are well adapted to these
nonlinear problems. We refer the reader to Crandall, Ishii & Lions [20] for
viscosity solutions and the book of Giga [25] for an overview of the level set
approach.

Let us introduce some evolution laws h we will be interested in. The first
and the simplest one is h = c(x, t) (no dependence with respect to Ωt). In
this case, (2.3) becomes the classical Eikonal equation

∂u

∂t
(x, t) = c(x, t)|Du(x, t)| in R

N × [0, T ](2.4)

(see Barles [6] and Bardi & Capuzzo Dolcetta [5] for instance). We recall
some properties about this equation in Section 6 and we need to develop
fine estimates for its solutions to prove uniqueness results for the more com-
plicated velocities which follows.

We are mainly interested in nonlocal velocities which can be written

h(x, t,Ωt) = c[11Ωt
](x, t) = α(k ⋆ 11Ωt

(x, t)) + c1(x, t).(2.5)

They lead to the level set PDE (1.1). Notice that this PDE is nonlocal
since the velocity does not depend only on local properties of Γt at x but on
the whole set Ωt. This brings some difficulties to study (1.1). This nonlocal
dependence is enlighted by the use of the notation c[·].

The first typical case that we consider is the dislocation dynamics where

c[11Ωt
](x, t) = c0 ⋆ 11Ωt

(x) + c1(x, t),(2.6)

with a space convolution: c0 ∈ L1(RN ) and

c0 ⋆ 11Ωt
(x) =

∫

RN

c0(x− y)11Ωt
(y)dy.(2.7)

The second case is a velocity which governs the asymptotics of a FitzHugh-
Nagumo system, namely

c[11Ωt
](x, t) = α(v(x, t)),

where α is a real valued Lipschitz continuous function and v is the solution
of

∂v

∂t
−∆v = 11Ωt

in R
N × (0, T ).(2.8)

Using the representation formula for the heat equation (with a zero initial
data), we have

v(x, t) = G ∗ 11Ωt
(x, t),(2.9)

where “∗” is the usual space-time convolution and G is the classical Green
kernel. Therefore,

c[11{u≥0}](x, t) = α(G ∗ 11{u≥0}(x, t))(2.10)

is also in the form (2.5).
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Before giving some details about dislocations and FitzHugh-Nagumo sys-
tems, let us discuss the monotonicity properties of the evolutions under
consideration.

Front propagation problems (local and nonlocal ones) can be classify into
two categories: the monotone evolutions and the nonmonotone ones.

We say that a front propagation problem is monotone if the inclusion
principle is satisfied. Otherwise it is called a nonmonotone problem. In-
clusion principle can be described as follows. Start with initial sets Ω1

0 and
Ω2
0 and let them evolves with the same velocity. They satisfy the inclusion

principle if

Ω1
0 ⊂ Ω2

0 =⇒ Ω1
t ⊂ Ω2

t for all t ≥ 0.(2.11)

At least formally, the inclusion principle holds when

Ω ⊂ Ω′ ⊂ R
N and x ∈ ∂Ω ∩ ∂Ω′ =⇒ VΩ(x) ≤ VΩ′(x).(2.12)

For instance, this latter property is true for the mean curvature motion and
for h = c(x, t). Using the level set approach, where ui is the solution of (2.3)
corresponding to Ωi for i = 1, 2, the inclusion principle implies

{u10 ≥ 0} ⊂ {u20 ≥ 0} =⇒ {u1(·, t) ≥ 0} ⊂ {u2(·, t) ≥ 0} for all t ≥ 0.

Since the level set PDE (2.3) holds for all level sets (and not only the 0-level
set), we get u1 ≤ u2 (if u10 ≤ u20). It means that one expects a comparison
principle for (2.3) in the monotone case. It allows to apply Perron’s method
(see Ishii [31]) to build solutions for all times to (2.1).

On the contrary, for nonmonotone evolutions, (2.11)-(2.12) are violated
and one cannot expect to have a comparison principle for (2.3). It is a serious
obstacle to build solutions and prove uniqueness results. It happens that our
typical cases (2.6) and (2.10) are nonmonotone front propagation problems.
Indeed, in the case of dislocation dynamics, a physical assumption is

∫

RN

c0 = 0.(2.13)

In consequence, (2.12) cannot be satisfied. In the FitzHugh-Nagumo model,
α is merely Lispchitz continuous and this is not sufficient to ensure (2.12).

3. Dislocation dynamics

Dislocations are lines of defects which propagate in crystals. It is the
main microscopic explanation of their macroscopic properties (see the books
of Nabarro [36] and Hirth & Lothe [28] for the physics of dislocations and
Lardner [32] for a mathematical exposition of the model). In our work, we
consider a special mathematical model due to Rodney, Le Bouar & Finel [39].

Dislocation lines move preferentially in a crystallographic plane. The dy-
namics is given by a normal velocity proportional to the Peach-Koehler force
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acting on this line. This Peach-Koehler force may have two possible contri-
butions: the first one is the self-force created by the elastic field generated
by the dislocation line itself (i.e., this self-force is a nonlocal function of the
shape of the dislocation line); the second one is the force created by every-
thing exterior to the dislocation line, like the exterior stress applied on the
material, or the force created by other defects. It follows that the velocity
is given by (2.6) and it leads to (1.1) (a priori in R

2 × [0, T ] but we can
consider any N ≥ 2).

A mathematical study of this model was started by Monneau and his
collaborators (see [3, 1, 2, 15] and the references therein). Here we focus on
long-time existence and uniqueness results for (1.1). Recall that the motion
is nonmonotone because of (2.13). The pioneer work in this direction is due
to Alvarez, Hoch, Le Bouar & Monneau [3] where existence and uniqueness
were proved for short time. The first uniqueness result was obtained by
Alvarez, Cardaliaguet et Monneau [1] under the assumption that the velocity
is regular enough (C1,1) and nonnegative (i.e., the front is expanding) when
starting with initial sets Ω0 having an interior ball property. In [11], we
provide a new simpler proof of this fact. The techniques we introduced
(lower bound gradient estimates, semiconvexity, L1 estimates for the level
sets of the solution, etc.) were re-used to obtain the results of [8, 10]. Let
us finally mention the work of Cardaliaguet & Marchi [16] for dislocations
with Neumann boundary conditions.

Several sets of assumptions on c0, c1 were used in the different works under
consideration. We start with the basic ones.

(dislo-1) c0, c1 ∈ C(RN × [0, T ]) and there exist c̄, C̄ > 0 such that, for all
x, y ∈ R

N , t ∈ [0, T ],

|c0(x, t)|+ |c1(x, t)| ≤ c̄,

|c0(x, t)− c0(y, t)|+ |c1(x, t)− c1(y, t)| ≤ C̄|x− y|.
Moreover, c0 ∈ C([0, T ], L1(RN )).

Notice that this assumption ensures that the velocity is bounded:

c[11{u(·,t)≥0}](x, t) =

∫

RN

c0(x− y)11{u(·,t)≥0}(y)dy + c1(x, t)

≤ sup
0≤t≤T

|c0(·, t)|L1(RN ) + c̄.

4. A FitzHugh-Nagumo type system

Consider






ut = α(v)|Du| in R
N × (0, T ),

vt −∆v = g+(v)11{u≥0} + g−(v)(1 − 11{u≥0}) in R
N × (0, T ),

u(·, 0) = u0, v(·, 0) = v0 in R
N .

(4.1)

This system yields a front Γt = {u(·, t) = 0} which evolves with normal
velocity α(v), the function v being itself the solution of a reaction-diffusion
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equation whose coefficients change according to the regions determined by
Γt.

This system appears when taking the asymptotics, as ε → 0, to the
FitzHugh-Nagumo system

(4.2)







uεt − ε∆uε =
1

ε
f(uε, vε) in R

N × (0, T ),

vεt −∆vε = g(uε, vε) in R
N × (0, T ),

where
{

f(u, v) = u(1− u)(u− a)− v (0 < a < 1),

g(u, v) = u− γv (γ > 0).

The functions α, g+ and g− in (4.1) are Lipschitz continuous and depend
on f, g. Moreover g− and g+ are bounded and satisfy g− ≤ g+ in R. Initial
data u0 and v0 are Lipschitz continuous and v0 is bounded and C1.

These equations are related to wave propagation phenomena in excitable
media. There exist a lot of works on this subject in biology, chemistry,
physics and mathematics, see for instance [24, 37, 23, 41, 27, 17].

The issues we are interested in are the same as for dislocations. We want
to define long-time solutions and prove some uniqueness properties. Giga,
Goto & Ishii [26] obtained some weak solutions of (4.1). Wheras Soravia &
Souganidis [40] established rigorously the convergence of (4.2) towards the
limit problem (4.1) and proved the properties of α, g+ and g−. In particular,
they found some conditions under which α > 0. Until [10, Theorem 4.1],
uniqueness was an open problem. We proved uniqueness for (4.1) when
α > 0.

To simplify, here we will choose g+ ≡ 1, g− ≡ 0 and v0 = 0 (see [10]
for the general case). To sum up, we consider (1.1) with a velocity given
by (2.10), where v is the solution of (2.8) and thus may be written as (2.9).
The following properties of v are straightforward.

Lemma 4.1. [10, Lemma 4.2] For all χ ∈ L∞(RN×[0, T ]; [0, 1]), the solution
v of

∂v

∂t
−∆v = χ in R

N × (0, T ), v(x, 0) = 0,(4.3)

is continuous, v(·, t) is C1,β (β < 1) and, for all x ∈ R
N , 0 ≤ s ≤ t ≤ T,

|v(x, t)| ≤ t, |Dv(x, t)| ≤ γN
√
t and |v(x, t)−v(x, s)| ≤ γN

√
s
√
t−s+ t−s,

where γN is a constant which depends only on the dimension.

In the sequel, we will assume

(FN-1) α : R → R is Lipschitz continuous.

From Lemma 4.1 and (FN-1), we obtain some properties of the velocity
c[χ] = α(v). In particular, it is bounded (because v is bounded in [0, T ]
independently of χ).
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The main features of the FitzHugh-Nagumo problem are the following.
On the one hand, the motion is nonmonotone since there is no monotonicity
assumption on α. On the other hand, even if α is smooth, the regularity of
the velocity is limited by the regularity of v which is, at the best, C1,β for
all β < 1 (it comes from the regularity properties for the heat equation with
L∞ coefficients). This lack of regularity is a major difficulty and it prevents
us to use the techniques of [8] which require a C1,1 velocity (see Section 9).

5. Definition of weak solutions

In [8] and [9], we introduce a new notion of weak solution.

Definition 5.1. [8, 9] A continuous function u : RN × [0, T ] → R is a weak
solution of (1.1) if there exists χ ∈ L∞(RN × [0, T ]; [0, 1]) such that

(1) u is a L1 viscosity solution of






∂u

∂t
(x, t) = c[χ](x, t)|Du(x, t)| in R

N × [0, T ],

u(·, 0) = u0 in R
N .

(5.1)

(2) For almost all t ∈ [0, T ],

11{u(·,t)>0} ≤ χ(·, t) ≤ 11{u(·,t)≥0} almost everywhere in R
N .

Moreover, we say that the weak solution u of (1.1) is classical if, for
almost all t ∈ [0, T ],

11{u(·,t)>0} = 11{u(·,t)≥0} almost everywhere in R
N .(5.2)

The main difficulty to define solutions of geometrical equations like (1.1)
is the fattening phenomenon which may appear (See Giga [25] and the ref-
erences therein). In this case, the set {u(·, t) = 0} has positive Lebesgue
measure and t 7→ c[11{u(·,t)≥0}] is discontinuous from [0, T ] into L1(RN ).
When there is no fattening, χ is uniquely determined by

χ(·, t) = 11{u(·,t)>0} = 11{u(·,t)≥0}.

This definition makes interest for equations which are well-posed when the
non-local term is frozen. More precisely, the point is to be able to solve (5.1)
in the sense of L1 viscosity solutions for a fixed χ. Notice that L1 viscosity
solutions appear naturally since, in the dislocation case for instance, the
convolution regularizes the velocity in space but not in time, namely (x, t) 7→
c[χ](x, t) is merely measurable. The generalization of the notion of viscosity
solutions for equations with measurable in time coefficients is due to Ishii
[30]. For further references see [8, Appendix A] where the results we need
are collected.

This notion of solutions is very weak. In general, there is no uniqueness
(see Section 8) but it provides general existence results. When the velocity
is positive, we prove that the solutions are in fact classical and we obtain
some uniqueness results (see Section 9).
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6. Preliminaries on the classical eikonal equation and lower

bound gradient estimate

Consider (2.4) with an initial data u0. Classical assumptions on the speed
c are:

(eikonal) c ∈ C(RN × [0, T ]) and there exist c, C > 0 such that, for all
x, y ∈ R

N , t ∈ [0, T ],

0 ≤ c(x, t) ≤ c,

|c(x, t) − c(y, t)| ≤ C|x− y|.
Assume moreover that

(lower-bound) (Lower bound gradient estimate on the initial front) u0 :
R → R is Lipschitz continuous and there exists η0 > 0 such that

− |u0| − |Du0|+ η0 ≤ 0 in R
N in the viscosity sense.(6.1)

Some comments about this latter hypothesis are given below. The first
part of the following theorem is classical, see Crandall & Lions [21] and
Ishii [29]. The second part comes from Ley [34] and still holds in the context
of L1 viscosity solutions.

Theorem 6.1. [34]

(i) (Lipschitz regularity) Under the assumption (eikonal), (2.4) has a
unique viscosity solution u. If u0 is Lipschitz continuous, then u is
Lipschitz continuous and, for all x ∈ R

N , t ∈ [0, T ],

|Du(x, t)| ≤ eCT |Du0|∞ , |ut(x, t)| ≤ ceCT |Du0|∞ .

(ii) (Preservation of the lower bound gradient estimate) Assume that
(eikonal) and (lower-bound) hold true. Then there exists η =
η(T,C, c, η0) > 0 such that

−|u(x, t)| − |Du(x, t)|+ η ≤ 0 in R
N × [0, T ] in the viscosity sense.(6.2)

In the context of the level set approach, (6.1) and (6.2) imply a lower
bound gradient estimate on the front Γt. Indeed, suppose that u0, u are
smooth. If x is on the front, then u(x, t) = 0 and (6.2) implies |Du(x, t)| ≥
η > 0. It follows from the implicit function theorem that the front is a smooth
hypersurface. But u0, u are not smooth in general and (6.1), (6.2) has to
be understood in a generalized sense (see [34] for details). Nevertheless the
lower bound gradient estimate holds almost everywhere in a neighborhood
of the front. This is enough to prove some L1 type estimates for level sets
like {−δ ≤ u(·, t) ≤ δ} (with δ ≈ 0) which are crucial.

At this step, let us make a very important remark. Since the velocity is
bounded (cf. Sections 3 et 4), let us say by a constant V , we have a finite
speed if propagation. With the notations of (2.2), if

Γ0 ∪ Ω0 = {u0 ≥ 0} ⊂ B(0, R0),(6.3)
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then

Γt ∪Ωt = {u(·, t) ≥ 0} ⊂ B(0, R0 + V T ) for all t ≥ 0.(6.4)

It means that, starting with compact fronts, everything takes place in a big
fixed ball B(0, R0 + V T ). Thanks to the expression (1.2) for the velocity
together with the assumptions (dislo-1) and (FN-1), we deduce that the
velocity c[χ] satisfies (eikonal) with constants which are independent of χ ∈
L∞(RN×[0, T ]; [0, 1]) as soon as χ is compactly supported in B(0, R0+V T ).
It follows that the greater part of the results for the the classical eikonal
equation applies to our model problems.

7. Existence of weak solutions and classical solutions

We have

Theorem 7.1. [8, 9] Under the assumptions (dislo-1) (dislocations case) or
(FN-1) (FitzHugh-Nagumo case), for all Lipschitz continuous u0 such that
(6.3) holds, Equation (1.1) admits at least a weak solution in R

N × [0, T ].

As said above, one does not have any comparison principle which al-
lows to build visocsity solutions by Perron’s method. We need to use other
strategies. In the case of dislocations, existence is proved in [8, Theorem
1.2] by approximation: the velocity c[11{u≥0}] is regularized by replacing the
indicator function by a continuous function. We can apply Schauder’s the-
orem to the perturbated equation and extract a convergent subsequence by
Ascoli’s theorem. To conclude, it remains to prove that the limit is a so-
lution. This is not obvious because we are not in the classical framework
of viscosity solutions. At this point, we need to use a new stability result
for measurable in time equations which was proved by Barles [7]. For the
FitzHugh-Nagumo system, existence was proved in [26] for a different notion
of weak solutions. In [9], we introduce a general framework yielding weak
solutions (in the sense of Definition 5.1) for both model problems (and even
more general cases). Our proof is based on Kakutani’s fixed point theorem
(see [4]) which was already the main ingredient of the proof in [26]. We end
by recalling that, since the velocity c[χ] satisfies (eikonal) with constants
which are independent of χ, we can apply Theorem 6.1 (i) and (6.4) in our
proof.

Let us state some additional assumptions in order to obtain classical so-
lutions.

(dislo-2) For all x ∈ R
N , t ∈ [0, T ], 0 ≤ −|c0(·, t)|L1(RN ) + c1(x, t).

(FN-2) 0 ≤ α.

A consequence of these new assumptions is that c[χ](x, t) is nonnegative
for all χ ∈ L∞(RN × [0, T ]; [0, 1]), x ∈ R

N and t ∈ [0, T ].

Theorem 7.2. [8, 9] Under the assumptions (dislo-1-2) (dislocations case)
or (FN-1-2) (FitzHugh-Nagumo case), for all Lipschitz continuous u0 such
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that (6.3) and (lower-bound) hold, the weak solutions of (1.1) are classical
ones.

The proof is straightforward using the preservation of the lower bound
gradient estimate of Theorem 6.1 since this latter property implies that the
front has zero Lebesgue measure and therefore (5.2) holds.

8. A counter-example to uniqueness

The following example comes from [8, Example 3.1] and is inspired by [12].
It takes profit of the fact that the velocity vanishes.

We set N = 1 and consider the following PDE of type (1.1),






∂U

∂t
= (1 ⋆ 11{U(·,t)≥0}(x) + c1(t))|DU | in R× (0, 2],

U(·, 0) = u0 in R,
(8.1)

where we choose c1(x, t) := c1(t) = 2(t−1)(2−t) and u0(x) = 1−|x|. Notice
that 1 ⋆ 11A = L1(A) for all measurable subset A ⊂ R.

We start by studying auxiliary problems in the time intervals [0, 1] and
[1, 2] which will be useful to build a family of weak solutions for (8.1) in
[0, 2].

1. Construction of a solution for 0 ≤ t ≤ 1. The function x1(t) = (t− 1)2 is
solution of ẋ1(t) = c1(t) + 2x1(t) on (0, 1) with x(0) = 1 (note that ẋ1 ≤ 0
in [0, 1]). Consider







∂u

∂t
= ẋ1(t)

∣

∣

∣

∣

∂u

∂x

∣

∣

∣

∣

in R× (0, 1],

u(·, 0) = u0 in R.
(8.2)

From Theorem 6.1, there exists a unique continuous viscosity solution u
of (8.2). By Lax-Oleinik formula, u(x, t) = u0(|x| − x1(t) + 1). Hence, for
0 ≤ t ≤ 1, we have

(8.3) {u(·, t) > 0} = (−x1(t), x1(t)) et {u(·, t) ≥ 0} = [−x1(t), x1(t)].

In Step 3, we will establish that u is a weak solution of (8.1) on [0, 1].

2. Construction of solutions for 1 ≤ t ≤ 2. For all measurable functions
0 ≤ γ(t) ≤ 1, let yγ be the unique solution of ẏγ(t) = c1(t) + 2γ(t)yγ(t) on
(1, 2) with yγ(1) = 0. By comparison, one has 0 ≤ y0(t) ≤ yγ(t) ≤ y1(t)
for 1 ≤ t ≤ 2, where y0, y1 are the solutions of the previous equation with
γ(t) ≡ 0 and 1. Note that ẏγ ≥ 0 in [1, 2]. Then, consider







∂uγ
∂t

= ẏγ(t)

∣

∣

∣

∣

∂uγ
∂x

∣

∣

∣

∣

in R× (1, 2],

uγ(·, 1) = u(·, 1) in R,

where u is the solution of (8.2). Again, this problem has a unique continuous
viscosity solution uγ which is zero if |x| ≤ yγ(t) and uγ(x, t) = u(|x|−yγ(t), 1)
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otherwise (note that, since u(·, 1) ≤ 0, by the maximum principle, uγ ≤ 0 in
R× [1, 2]). It follows

{uγ(·, t)>0} = ∅ and {uγ(·, t)≥0} = {uγ(·, t)=0} = [−yγ(t), yγ(t)].(8.4)

3. There are several weak solutions to (8.1). For 0 ≤ γ(t) ≤ 1, set

cγ(t) = c1(t) + 2x1(t), Uγ(x, t) = u(x, t) if (x, t) ∈ R× [0, 1],
cγ(t) = c1(t) + 2γ(t)yγ(t), Uγ(x, t) = uγ(x, t) if (x, t) ∈ R× [1, 2].

Then, from Steps 1 and 2, Uγ is the continuous viscosity solution of







∂Uγ

∂t
= cγ(t)

∣

∣

∣

∣

∂Uγ

∂x

∣

∣

∣

∣

in R× (0, 2],

Uγ(·, 0) = u0 in R.

Taking χγ(·, t) = γ(t)11[−yγ(t),yγ (t)] for 1 ≤ t ≤ 2, from (8.3) et (8.4), we
obtain

11{Uγ(·,t)>0} ≤ χγ(·, t) ≤ 11{Uγ(·,t)≥0}

(see Figure 1). This implies that all the functions Uγ , for measurable 0 ≤
γ(t) ≤ 1, are weak solutions of (8.1).

x1(t)

Uγ = 0

Uγ < 0 Uγ < 0

Uγ < 0 Uγ < 0

Uγ > 0
Uγ = 0

yγ(t)

y1(t)

0 1 2
t

x

−1

1

︸ ︷︷ ︸

cγ>0

︸ ︷︷ ︸

cγ<0

Figure 1.
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9. Uniqueness results

We obtained several uniqueness results under different assumptions in
the case of dislocations. I focus on the most recent one here (established
in [10], see Theorem 9.1). This result requires the weakest assumption on the
regularity of the velocity which needs to be merely Lipschitz continuous. I
describe simultaneously the case of dislocations dynamics and the FitzHugh-
Nagumo system. A sketch of proof is given in Section 10.

When the velocity is only Lipschitz continuous, we assume that it is pos-
itive. In order to get this property, we need to reinforce (dislo-2) and
(FN-2):

(dislo-3) There exists c > 0 such that, for all x ∈ R
N , t ∈ [0, T ], 0 < c ≤

−|c0(·, t)|L1(RN ) + c1(x, t).

(FN-3) There exists c > 0 such that 0 < c ≤ α.

We have

Theorem 9.1. [10, Theorems 3.1 and 4.1] Assume (dislo-1-3) (disloca-
tions case) or (FN-1-3) (FitzHugh-Nagumo case) and suppose that u0 sat-
isfies (lower-bound), (6.3) and that Γ0 := {u0 = 0} is C2. Then there
exists a unique (classical) viscosity solution for (1.1).

Let us now explain what are the results we obtained previously for dislo-
cations when the velocity is more regular, namely C1,1 or semiconvex. We
recall that f : RN → R is semiconvex if, for all x, y ∈ R

N ,

f(x+ y) + f(x− y)− 2f(x) ≥ −L|y|2.(9.1)

We refer the reader to the book of Cannarsa & Sinestrari [14] for details
about semiconcavity (a function f is semiconcave if −f is semiconvex. If f
is both semiconvex and semiconcave then it is C1,1).

Theorem 9.2. (Dislocations case) Suppose that (dislo-1) holds, that u0
satisfies (6.3) and (lower-bound) and that

c0(·, t) and c1(·, t) are semiconvex uniformly with respect to t ∈ [0, T ].

(1) [1, Theorem 4.3] and [11, Theorem 4.2] If (dislo-2) holds and u0
is semiconvex, then there exists unique (classical) viscosity solution
for (1.1).

(2) [8, Theorem 1.3] If (dislo-3) holds, then there exists unique (classi-
cal) viscosity solution for (1.1).

10. Sketch of the proof of the uniqueness Theorem 9.1

I give a sketch of the proof of Theorem 9.1 and I will point out how getting
the results of Theorem 9.2 for more regular velocities. For the whole proof,
see [10, Proofs of Theorems 3.1 and 4.1].

Under the assumptions of Theorem 9.1, consider two classical solutions
u1 and u2 of (1.1) with the same initial data u0 (the existence is given by
Theorems 7.1 and 7.2).
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1. Preliminary estimates. As explained at the end of Section 6, the subsets
{ui(·, t) ≥ 0}, i = 1, 2 are contained in a ball B(0, R0+V T ) and c[11{ui(·,t)≥0}]

satisfies (eikonal) with fixed constants. Therefore, the conclusions of The-
orem 6.1 hold true for the ui’s. In particular, for δ > 0 small enough, we
have the lower bound gradient estimate

|Dui| ≥ η

2
for almost all (x, t) such that x ∈ {−δ ≤ ui(·, t) ≤ δ}.(10.1)

For 0 ≤ τ ≤ T, define

δτ = sup
RN×[0,τ ]

|u1 − u2|.

Since δ0 = 0 and using the continuity of ui, we can choose τ > 0 small
enough in order to have δτ < δ.

Since the ui’s satisfy (1.1), by a classical comparison result for eikonal
equations with different speeds (see [11, Lemma 2.2]), we have

δτ ≤ |Du0|∞eC τ

∫ τ

0
|c[11{u1(·,t)≥0}]− c[11{u2(·,t)≥0}](·, t)|∞dt.(10.2)

Now, the purpose is to bound the previous integral by a quantity like

oτ (1)δτ .(10.3)

It follows δτ = 0 for small τ. By a step-by-step argument, we can conclude
δT = 0. At this step, we have to distinguish the dislocations case and the
FitzHugh-Nagumo one. The difference lies in the convolution kernel which
appears in the velocity. For dislocations, this kernel is bounded whereas it is
not bounded in the FitzHugh-Nagumo case (the heat kernel is not bounded
with respect to time). In this latter case, we need fine perimeter estimates
in order to get (10.3).

2. Dislocations case. We continue the computation (10.2) by using (2.6).

δτ ≤ |Du0|∞eC τ

∫ τ

0
|c0(·, t) ⋆ (11{u1(·,t)≥0} − 11{u2(·,t)≥0})|∞dt

≤ c|Du0|∞eC τ

∫ τ

0

∫

RN

(

11{−δτ≤u1≤0} + 11{−δτ≤u2≤0}

)

dxdt,

since c0 is bounded (see (dislo-1)) and

|11{u1≥0} − 11{u2≥0}| ≤ 11{−δτ≤u1≤0} + 11{−δτ≤u2≤0} in R
N × [0, τ ].(10.4)

It remains to deal with
∫ τ

0

∫

RN

11{−δτ≤ui≤0}dxdt.

Depending on the type of assumptions, there are several ways to proceed to
obtain one of the results of Theorems 9.1 or 9.2. Let us start by a heuristic
computation which enlights the interest of the lower bound gradient estimate
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and the perimeter estimates in the proof of Theorem 9.2. By the coarea
formula, using (10.1), we have

∫

RN

11{−δτ≤ui(·,t)≤0}dx =

∫ 0

−δτ

∫

{ui(·,t)=s}
|Du|−1dHN−1ds

≤ 2δτ
η

sup
−δτ≤s≤0

Per({u(·, t) = s}).

It means that, if we may obtain a bound for the perimeter of {u(·, t) = s}
with s ≈ 0 for all t ∈ [0, τ ], then we are done. This bound was obtained
in [1] as a consequence of the propagation of the interior ball property for
the front when the velocity is C1,1. In [11], we follow an equivalent strategy
(semiconvexity associated with a lower bound gradient estimate is equivalent
to the interior ball property, see [11, Lemma A.1]). This latter strategy has
the advantage to require only volume estimates of LN ({−δτ ≤ ui ≤ 0}) ([11,
Section 3]) and not perimeter estimates which are more delicate to prove.
Moreover, we could improve these L1 estimates for less regular velocities. In
[8], we prove that, if (dislo-3) holds and the velocity is semiconvex, then
an interior ball property is created during the evolution and the desired
perimeter estimates follow.

Let us come back to the proof of Theorem 9.1. Let ϕ : R → R
+ be a

continuous function such that δτϕ
′ = 11[−δτ ,0] (it suffices to take ϕ which is

zero on (−∞,−δτ ], 1 on R
+ and linear with a slope 1/δτ on [−δτ , 0]). It

follows (see [10, Proposition 5.5]), using the lower bound gradient and the
equation, that

∫ τ

0

∫

RN

11{−δτ≤ui≤0}dxdt

=

∫ τ

0

∫

RN

δτϕ
′(ui(x, t))dxdt

≤
∫ τ

0

∫

RN

δτϕ
′(ui(x, t))

c[11{ui≥0}](x, t)

c

|Dui|
η

dxdt

=
δτ
cη

∫ τ

0

∫

RN

ϕ′(ui(x, t))
∂ui

∂t
dxdt

=
δτ
cη

∫ τ

0

∫

RN

∂

∂t
ϕ(ui(x, t))dxdt

≤ δτ
cη

(

LN({ui(·, τ) ≥ −δτ})− LN ({u0 ≥ 0})
)

.

The dominated convergence theorem implies that oτ (1)δτ is an upper-bound.
It completes the proof in the case of dislocations.

3. FitzHugh-Nagumo system. In this case, we estimate (10.2) as follows.

|c[11{u1(·,t)≥0}]− c[11{u2(·,t)≥0}](·, t)|∞ = |(α(v1)− α(v2))(·, t)|∞
≤ C|(v1 − v2)(·, t)|∞,
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where vi is the solution of (4.3) with χ = 11{ui≥0}. We continue the com-

putation (10.2) by taking profit of the formula for vi given by Lemma 4.1
and (10.4):

δτ ≤ |Du0|∞eC τ(10.5)
∫ τ

0

∫ t

0

∫

RN

G(x− y, t− s)
(

11{−δτ≤u1≤0} + 11{−δτ≤u2≤0}

)

dydsdt.

At this step, we cannot conclude as in the dislocation case since G is not
bounded. Moreover, the merely Lipschitz continuity of the velocity does
not imply some interior ball properties. We overcome this difficulty by
establishing some interior cone properties which are more involved.

At first we have

{−δτ ≤ ui ≤ 0} ⊂ Ei(t) :=

(

{ui(·, t) ≥ 0}+ 2δτB(0, 1)

η

)

\ {ui(·, t) ≥ 0}.

The above inclusion means that one can keep under control the size of
{−δτ ≤ ui ≤ 0} by broaden a bit the 0-level set. Notice this is hopeless
in general; the lower bound gradient estimate is crucial.

Next step is devoted to show that the subsets {ui(·, t) ≥ 0} satisfy a
uniform interior cone property. Namely, for each x ∈ ∂{ui(·, t) ≥ 0}, there
exists a cone Cρ,θ

x with a degree of opening θ and a height ρ whose vertex

is x and such that Cρ,θ
x ⊂ {ui(·, t) ≥ 0} (see Figure 2). The proof of this

ρ

θ

Figure 2.

result is based on the positiveness of the velocity (FN-3) and the nonsmooth
Pontryagine maximum principle (see Clarke [19]). Such tools were already
used for proving the creation of the interior ball property in [8] (see also [13]
and [1]).

Then, we prove that a bounded subset satisfying the uniform interior cone
property has a finite perimeter.
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Theorem 10.1. [10, Theorem 5.8] Let K be a compact subset of RN sat-
isfying the uniform interior cone property with parameters θ and ρ. Then,
there exists Λ = Λ(N, ρ, θ) such that, for all R > 0,

HN−1(∂K ∩B(0, R)) ≤ ΛLN (K ∩ B̄(0, R + ρ/4)).(10.6)

The proof of this result is involved and used Besicovitch’s covering theorem.

From the two previous results, we get [10, Lemma 4.4]:
∫ t

0

∫

RN

G(x− y, t− s)11Ei(t)dyds ≤ Λ̃
2δτ
η

,

where Λ̃ depends on the given data and Λ (see (10.6)). Plugging this estimate
in (10.5), we obtain an upper-bound like (10.3). The proof of the theorem
is complete.

References

[1] O. Alvarez, P. Cardaliaguet, and R. Monneau. Existence and uniqueness for disloca-
tion dynamics with nonnegative velocity. Interfaces Free Bound., 7:415–434, 2005.

[2] O. Alvarez, E. Carlini, R. Monneau, and E. Rouy. A convergent scheme for a
non local Hamilton Jacobi equation modelling dislocation dynamics. Numer. Math.,
104(4):413–444, 2006.

[3] O. Alvarez, P. Hoch, Y. Le Bouar, and R. Monneau. Dislocation dynamics: short-time
existence and uniqueness of the solution. Arch. Ration. Mech. Anal., 181(3):449–504,
2006.

[4] J.-P. Aubin and A. Cellina. Differential inclusions, volume 264 of Grundlehren der
Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences].
Springer-Verlag, Berlin, 1984. Set-valued maps and viability theory.

[5] M. Bardi and I. Capuzzo Dolcetta. Optimal control and viscosity solutions of
Hamilton-Jacobi-Bellman equations. Birkhäuser Boston Inc., Boston, MA, 1997.
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