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1) Introduction

An algorithm is proposed to solve the three-dimensional Wagner problem [1] for an arbitrary blunt body
penetrating initially flat free surface. The flow is described under the classical assumptions of potential flow
theory without account for gravity and surface tension. In the continuity of [2], the boundary value problem
is formulated in terms of the displacement potential, which is time integral of the velocity potential, and a
conformal mapping of the wetted surface onto the unit disk is used. This means that regular enough shapes of
entering bodies are only considered. It is shown how to reduce the three-dimensional boundary value problem
to a non-linear system of ordinary differential equations, hence yielding a method of solution to this still open
problem.

2) Boundary value problem

The boundary value problem (BVP) is formulated in terms of the displacement potential ϕ















∆ϕ = ϕ,xx + ϕ,yy + ϕ,zz = 0 z < 0
ϕ = 0 z = 0, (x, y) ∈ FS(t)
ϕ,z = −h(t) + f(x, y) z = 0, (x, y) ∈ D(t)
ϕ → 0 (x2 + y2 + z2) → ∞,

(1)

where the regions FS(t) and D(t) are disconnected parts of the plane z = 0 and correspond to the free surface
and the wetted area of the body, respectively. A closed curve, which separates the regions FS(t) and D(t), is
denoted Γ(t) and is referred to as the contact line. The body shape is represented by the equation z = f(x, y),
where f(x, y) is a smooth positive shape function, and h(t) is the penetration depth of the body into the liquid.
The contact line Γ(t) in (1) is unknown in advance and its shape can be obtained with the help of the Wagner
condition [1], which requires that both the displacement potential ϕ(x, y, 0, t) and the vertical displacements
of the liquid particles ϕ,z(x, y, 0, t) of the liquid boundary are continuous at the contact line.

Alternatively one can formulate the boundary value problem of water impact in terms of another variable
V (x, y, z, t) which is the vertical displacement of a fluid particle: V = −ϕ,z















∆V = 0 z < 0
V = h(t) − f(x, y) z = 0, (x, y) ∈ D(t)
V,z = 0 z = 0, (x, y) ∈ FS(t)
V → 0 (x2 + y2 + z2) → ∞.

(2)

It is shown in [3] that the mixed BVP (2) has a unique solution provided that the RHS of the Dirichlet
condition is smooth enough. Consequently it is easy to show that the solution V (x, y, z, t) is induced by a
unique distribution of sources over the surface D(t) and V can be expressed as a simple layer potential

V (x, y, z, t) =
1

2π

∫

D(t)

S(x0, y0, t) dx0dy0
√

(x − x0)2 + (y − y0)2 + z2
. (3)

It is important to know that V (x, y, z, t) defined by equation (3) is continuous through out the fluid domain
z ≤ 0 including its boundary z = 0. In particular, V (x, y, 0, t) is continuous at the contact line Γ(t). This means
that the Wagner condition, which requires finite and continuous vertical displacement at Γ(t) is automatically
satisfied through the formulation (3).

Differentiating (3) with respect to z and putting z = 0 provide

∆2ϕ = S(x, y, t) for (x, y) ∈ D(t). (4)



Substituting (3) into the Dirichlet condition from (2) gives the integral equation for the source distribution
S(x, y, t) over D(t)

1

2π

∫

D(t)

S(x0, y0, t) dx0dy0
√

(x − x0)2 + (y − y0)2
= h(t) − f(x, y). (5)

The solution of equation (5) is unique. In [4] the behavior of the solution S close to the contact line Γ(t) was
analyzed. It was proved that the solution has a square root singularity at the boundary of the region D(t).

If the contact region D(t) is known, the integral equation (5) can be solved and the displacement potential
in D(t) can be obtained thereafter as the solution of the Poisson equation (4), which satisfies the following
boundary condition

ϕ = 0 on Γ(t). (6)

Additional condition is suggested to prescribe along the contact line. This condition implies that not only the
displacement potential ϕ(x, y, 0, t) and the vertical displacement ϕ,z(x, y, 0, t) but also the horizontal displace-
ments ϕ,x(x, y, 0, t) and ϕ,y(x, y, 0, t) are continuous through Γ(t). With account for (6) the latter condition
can be presented as

ϕ,n = 0 on Γ(t) (7)

where ϕ,n = ϕ,x(x, y, 0, t)nx + ϕ,y(x, y, 0, t)ny and n = (nx, ny) is the unit normal vector along the contact line
Γ(t). Condition (7) is used below to determine the position of the contact line at each time instant.

3) Methods of solution

Several methods of solution can be proposed to solve the integral equation (5). Some of them are summarized
in [6] (pp 201–206). Here we face the difficulty that the contact line is unknown. The operator T defined as

T [S(x, y, t)] =

∫

D(t)

S(x0, y0, t)dx0dy0
√

(x − x0)2 + (y − y0)2
, (8)

has properties for which Hilbert-Schmidt theorem can be applied in spite of the weak singularity of S on the
boundary of D(t). In particular the set of eigenvalues of T is countable and the corresponding eigenfunctions
exist. The family of the eigenfunctions is complete and the function S can be projected on this family. However,
the eigenfunctions of the operator T cannot be easily obtained in general case and numerical calculations are
required. Moreover, it is not clear how the contact line can be found within formulation (4) - (7).

In order to present the formulation (4) - (7) in a form suitable for numerical calculations, we introduce the
conformal mapping g(ω, t). It transforms the wetted surface D(t), described in the physical plane Z = x + iy,
into a unit disk C1 described in the transformed plane ζ = ξ + iη = ρeiα. A possible expression of g is the
integer series

g(ω, t) =

∞
∑

n=1

bn(t)ωn (9)

where the complex coefficients depend on time t. Besides they verify ℜ(b1) 6= 0 and ℑ(b1) ≡ 0. For mathematical
manipulation, the coefficients bn are ranged in a infinite vector b(t). The convergence of (9) strongly depends
on both the smoothness and the general aspect of the contact line Γ(t). The smoother Γ(t) and the closer
aspect ratio to unity, the smaller the required number of terms in the series (9). Other features regarding the
regularity of Γ(t) must be analyzed. In particular [5] (p 222) analyzed the convexity of D(t) in terms of the
relative importance of the coefficients bn. We can hence expect that elongated shapes with sharp corners will
be the most pathological cases and hence their study will require a large number of terms in the series (9). It
is worth noting that the property of g to be conformal means that dg/dω cannot vanish on the unit disk. Thus
its value at the center of the disk |ω| = 0 can be considered as a length scale of the wetted surface. It is clear
that this quantity will play an important role in the convergence of the series.

By introducing the conformal mapping in the integral equation (5), we obtain

1

2π

∫

C1

s(ρ0, α0, t)dσ0

|g(ω, t) − g(ω0, t)|
= h(t) − f(ℜ(g(ω, t)),ℑ(g(ω, t))), (10)

where the elemental surface is denoted dσ0 = ρ0dρ0dα0. Equations (4)-(7) in the new variables take the forms

∆2ϕ = s(ρ, α, t) (ρ < 1), (11)



ϕ = 0, ∂ϕ/∂ρ = 0 (ρ = 1). (12)

In general case, a solution of the Poisson equation (11) cannot satisfy both Dirichlet and Neumann conditions
(12). It was shown that a solution of the boundary value problem (11), (12) exists if and only if the right-hand
side of equation (11) is such that

∫

C1

s(ρ0, α0, t)(1 − ρ2
0)dσ0

1 + ρ2
0 − 2ρ0 cos[α0 − α]

= 0 (0 ≤ α < 2π). (13)

Therefore, we can consider first equations (10) and (13), solve them and evaluate the velocity potential as the
solution of the boundary value problem (11), (12) at the end. Here equation (13) is used to determine the
conformal mapping (9).

The square root singularity of s as ρ → 1− suggests to represent this function in the form

s(ρ, α, t) =

∞
∑

m=1

Sm(t)
Ψm(ρ, α)
√

1 − ρ2
(14)

where the family of functions Ψm(ρ, α) is complete on the unit circle.
Now we can formulate a differential system for the unknown variables of the problem, namely the coefficients

Sm (ranged in the vector S) and the conformal mapping coefficients b. The differential system is obtained by
differentiation of equations (10) and (13) with respect to time t and the projection of the resulting equations
on the families Ψ(ρ, α) and Ψ(1, α), respectively.











G(b)
dS

dt
= A(b,S, t)

db

dt
= B(b,S, t)

(15)

The vectors A and B are known functions of b,S, t. For theoretical reasons mentioned above, the symmetric
matrix G is invertible. A coefficient of this matrix reads

Gnm(b) =
1

2π

∫

C1

Ψm(ρ, α)
√

1 − ρ2

[

1

2π

∫

C1

Ψn(ρ0, α0)
√

1 − ρ2
0

dσ0

|g(ω,b) − g(ω0,b)|

]

dσ (16)

This means that the best choice for the functions Ψm is such that the matrix G is diagonal. However it does not
seem possible to calculate the family Ψ(ρ, α) since the conformal mapping function g is a part of the solution.
The analysis of the Green function is hence necessary. To this end, we can provide interesting features of
following function

P (ω, ω0, t) =

∣

∣

∣

∣

ω − ω0

g(ω, t) − g(ω0, t)

∣

∣

∣

∣

(17)

First of all, P is perfectly regular on C1; for the limiting case ω → ω0, 1/P tends to |dg/dω| which cannot
vanish since g is conformal. Moreover, P is symmetric since ω and ω0 can permute. Last but not least, by
using the series (9), P can be broken down as

P =
∞

∑

n=0

ρn
0

n
∑

p=0

c(p,n)(b, ρ, α)ei(n−2p)α0 (18)

where the coefficients c(p,n) are easily obtained by recursion for a given vector b and polar coordinates (ρ, α).
It is worth noticing that the exponent of ρ0 and the corresponding Fourier development eiα0 have the same
parity. More the truncation of the Fourier series corresponds to the exponent of the radial coordinate and
similar expansion holds for c(p,n) in terms of (ρ, α).

However, an additional difficulty arises when performing the integration in α0 since the integrand in equation
(16) is not continuous at α = α0. In fact, the integrals in α0 must be calculated as Copson’s integrals and
then the developments can be further pursued. This means that Ψ(ρ, α) must be broken down in Fourier series
while, in the radial direction, one way is to break down Ψ(ρ, α) as local polynomials of low order, in the spirit
of a Spline interpolation. Another way is to find a suitable decomposition of S valid thoughout the unit disk.



At that stage, we cannot define precisely what is the computational effort to arrive at a converged solution.
It is definitely expected that the present algorithm will ”cost” much less than numerical approaches like in
[8]. There is already one difficulty which has been fully studied. It concerns the convergence of function P
broken down in series (18). The following figures illustrate its convergence for a slightly elliptic contact line as
defined in [2]. In that case the coefficients b1 and b3 are non trivially zero. Function P is then calculated for a
given complex number ω = ρeiα while the polar coordinates cover the intervals ρ0 ∈ [0 : 1] and α0 ∈ [−π : π].
The left figure shows the variation of P with (ρ0, α0) for which 16 Fourier modes suffice. The right plot
illustrates the variation of c(p,n) with the indices (p, n). In this example, the coefficients decrease exponentially

as |c(p,n)| ∼ e−3n/2.
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5) Conclusion

Under the assumptions that we can map the wetted surface onto a unit circle, it is shown that the three-
dimensional Wagner problem can be formulated as a time differential system for the planar Laplacian of
the displacement potential and for the conformal mapping function. Some mathematical properties of the
corresponding differential system were established. Alternatively, but maybe of lesser interest, a nonlinear
system of equations for the mapping function can be formulated. Numerical applications are now performing
to test the stability of the proposed algorithms with respect to known solutions of problem (see [7]).
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