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We give some bounds on the numbers of rational points on abelian varieties and jacobians varieties over finite fields. The main result is that we determine the maximum and minimum number of rational points on jacobians varieties of dimension 2.

Introduction

We are interested in the number of rational points over finite felds on particular abelian varieties, namely jacobian varieties. In particular, for given integers q = p e (p prime and e ≥ 1) and g ≥ 1, we consider the quantities J q (g) = max X #J X (F q ) and j q (g) = min X #J X (F q ) where X runs over the set of (absolutely irreducible, smooth, projective, algebraic) curves of genus g defined over the finite field F q and J X is the jacobian of X.

After giving some general bounds for these quantities, we determine the values of J q (2) and j q (2).

Let A be an abelian variety defined over F q of dimension g. The characteristic polynomial f A (t) of A is defined to be the characteristic polynomial of its Frobenius endomorphism. This is a polynomial with integer coefficients and its set of roots has the form {ω 1 , ω 1 , . . . , ω g , ω g } with |ω i | = √ q (Riemann Hypthesis for abelian varieties proved by Weil). For 1 ≤ i ≤ g, we set x i = -(ω i + ω i ) and we refer the sum g i=1 (ω i + ω i ) = -g i=1 x i as the trace of A.

The data of the x i 's is equivalent to the data of the isogeny class of A (by the Honda-Tate Theorem); we will say that A has type [x 1 , . . . , x g ]. The type of an absolutely irreducible, smooth, projective, algebraic curve over F q (as defined in [START_REF] Lauter | The maximum or minimum number of rational points on genus three curves over finite fields[END_REF]) is the type of its jacobian.

The number of rational points on A is given by #A(F q ) = f A (1), and since

f A (t) = g i=1 (t -ω i )(t -ω i ) = g i=1 (t 2 + x i t + q),
we obtain #A(F q ) = g i=1 (q + 1 + x i ). (1)

Abelian varieties

Let A be an abelian variety over F q of dimension g and of type [x 1 , . . . , x g ]. Since each x i has an absolute value less than or equal to 2 √ q by the Riemann Hypothesis, we obtain from (1) the well-known Weil bounds for abelian varieties:

(q + 1 -2 √ q) g ≤ #A(F q ) ≤ (q + 1 + 2 √ q) g .
We can derive an upper bound for #A(F q ) which depends on the trace of A. Indeed, recall that, if c 1 , . . . , c n are non negative real numbers, the arithmeticgeometric mean states that

n √ c 1 . . . c n ≤ 1 n (c 1 + • • • + c n )
with equality if and only if the c i 's are equal. Applying this inequality to (1), we get the following proposition, independently shown by Quebbemann [START_REF] Quebbemann | Lattices from curves over finite fields[END_REF] and Perret [START_REF] Perret | Number of points of Prym varieties over finite fields[END_REF]:

Proposition 1 (Perret-Quebbemann). We have

#A(F q ) ≤ q + 1 + g i=1 x i g g
with equality if and only if the x i 's are equal.

We set m = [2 √ q]. Using the arithmetic-geometric mean, Serre [START_REF] Serre | Sur le nombre des points rationnels d'une courbe algébrique sur un corps fini[END_REF] proved that g i=1

x i ≤ gm, (2) 
and so Proposition 1 implies that #A(F q ) ≤ (q + 1 + m) g .

It is natural to ask whether #A(F q ) has a lower bound of this kind, and the answer turns out to be yes. Theorem 2. Let A be an abelian variety defined over F q of dimension g. Then

(q + 1 -m) g ≤ #A(F q ) ≤ (q + 1 + m) g .
The first inequality is an equality if and only if the x i 's are equal to -m and the second if and only if they are equal to m.

Proof. Only the first inequality has to be proved (note the similarity of the following proof with the one of ( 2)).

For k = 0, . . . , g let t k be the kth symmetric function of the (m + 1

+ x i )'s, for i = 1, . . . , g (i.e. g i=1 (t + (m + 1 + x i )) = g k=0 t k t g-k ). Let k ∈ {1, . .

. , g} and define the quantity

T k = {i1,...,i k }⊆{1,...,g} k j=1 (m + 1 + x ij ).
T k is a non zero integer (since it is an algebraic integer invariant by Q-automorphisms of C). Thus

T k ≥ 1. (3)
On the other hand, using the arithmetic-geometric mean, we obtain

T 1/( g k ) k ≤ 1 g k {i1,...,i k }⊆{1,...,g} k j=1 (m + 1 + x ij ) = 1 g k t k . (4) 
Combining ( 3) and (4), we find

g k ≤ t k . (5) 
Moreover, (5) remains true for k = 0.

Multiplying both sides of ( 5) by (qm) g-k and adding the inequalities obtained for k = 0, . . . , g we obtain

g k=0 g k (q -m) g-k ≤ g k=0 t k (q -m) g-k
from which the result follows.

Jacobians

Since jacobians are particular cases of abelian varieties, the bounds of the previous section can be applied. Using Theorem 2, we have:

Corollary 3.
(q + 1m) g ≤ j q (g) ≤ J q (g) ≤ (q + 1 + m) g .

Since the number of rational points on a curve X of genus g and of type [x 1 , . . . , x g ] is related to the trace of its Frobenius by

#X(F q ) = q + 1 + g i=1 x i , Proposition 1 gives us #J X (F q ) ≤ q + 1 + #X(F q ) -(q + 1) g g (6) 
and we find again the bound proved by Quebbemann [START_REF] Quebbemann | Lattices from curves over finite fields[END_REF] and Perret [START_REF] Perret | Number of points of Prym varieties over finite fields[END_REF]. These bounds should be compared with those of Lachaud and Martin-Deschamps [START_REF] Lachaud | Nombre de points des jacobiennes sur un corps fini[END_REF]:

( √ q -1) 2 q g-1 -1 g #X(F q ) + q -1 q -1 ≤ #J X (F q ).
Moreover if X admits a map of degree d onto P 1 , we have

#J X (F q ) ≤ e(2g √ e) d-1 q g
where e is the base of the natural logarithm. The bound [START_REF] Mumford | Abelian varieties[END_REF] is better than the Lachaud-Martin-Deschamps bound when g is large and q is fixed, except when X has a small gonality with respect to the genus.

Let N q (g) = max X #X(F q ) where X runs over the set of (absolutely irreducible, smooth, projective, algebraic) curves of genus g defined over F q . Then the bound (6) can be applied to give the following proposition.

Proposition 4. We have J q (g) ≤ q + 1 + N q (g) -(q + 1) g g with equality if and only if there exists an optimal curve (i.e. with N q (g) points) with only one Frobenius eigenvalue (with its conjugate).

Remarks.

1. A curve that reaches the Serre-Weil bound, i.e. such that #X(F q ) = q + 1 + m must have x i = m for all i (see [START_REF] Lauter | Geometric methods for improving the upper bounds on the number of rational points on algebraic curves over finite fields[END_REF]). Thus, by Corollary 3, its jacobian is optimal i.e. has J q (g) points.

2. When g = 2, a jacobian with J q (g) points is the jacobian of an optimal curve (i.e. with N q (g) points) but the jacobian of an optimal curve doesn't always have J q (g) points. For example, when q = 3, there exist genus 2 curves with N 3 (2) = 8 points whose jacobian have 36, 35, 34 and 33 points (it follows from the results of [START_REF] Howe | Jacobians in isogeny classes of abelian surfaces over finite fields[END_REF]).

The case of jacobians of dimension 1 corresponds to elliptic curves. The values of J q (1) and j q (1) where calculated by Waterhouse [START_REF] Waterhouse | Abelian varieties over finite fields[END_REF].

Recall that q = p e .

Proposition 5.

(1) J q (1) is equal to

• (q + 1 + m) if e = 1, e is even or p |m • (q + m) otherwise. (2) j q (1) is equal to • (q + 1 -m) if e = 1, e is even or p |m • (q + 2 -m) otherwise.

Abelian surfaces over finite fields

In order to determine J q (2), we focus on abelian varieties of dimension 2. Let A be an abelian surface over

F q of type [x 1 , x 2 ].
Its characteristic polynomial f A (t) has the form

f A (t) = t 4 + a 1 t 3 + a 2 t 2 + qa 1 t + q 2
with a 1 and a 2 integers. We consider the real Weil polynomial of A:

fA (t) = (t + x 1 )(t + x 2 ) = t 2 + a 1 t + a 2 -2q.
By elementary computations, we can show that (see [START_REF] Rück | Abelian surfaces and Jacobian varieties over finite fields[END_REF] or [START_REF] Maisner | Abelian surfaces over finite fields as jacobians[END_REF]) the fact that the roots of f A (t) are q-Weil numbers (i.e. algebraic integers such that their images under every complex embedding have absolute value √ q) is equivalent to

|a 1 | ≤ 2m and 2|a 1 | √ q -2q ≤ a 2 ≤ a 2 1 4 + 2q. (7) Moreover, #A(F q ) = q 2 + 1 + (q + 1)a 1 + a 2 . ( 8 
)
Table 1 gives all the possibilities for (a 1 , a 2 ) such that a 1 ≥ 2m -2.

The numbers of points are classified in decreasing order and an abelian variety with (a 1 , a 2 ) not in the table has a number of points strictely less than the values of the table. Indeed, if -2m ≤ a 1 < 2m -2, we have 1. Couples (a 1 , a 2 ) maximizing the number of points on A

a 1 a 2 Type Nb of pts 2m m 2 + 2q [m, m] (q + 1 + m) 2 2m -1 m 2 -m + 2q [m, m -1] (q + 1 + m)(q + m) m 2 -m -1 + 2q [m + -1+ √ 5 2 , m + -1- √ 5 2 ] (q + 1 + m + -1+ √ 5 2 )(q + 1 + m + -1- √ 5 2 ) 2m -2 m 2 -2m + 1 + 2q [m -1, m -1] (q + m) 2 m 2 -2m + 2q [m, m -2] (q + 1 + m)(q -1 + m) m 2 -2m -1 + 2q [m -1 + √ 2, m -1 - √ 2] (q + m + √ 2)(q + m - √ 2) m 2 -2m -2 + 2q [m -1 + √ 3, m -1 - √ 3] (q + m + √ 3)(q + m - √ 3) Table
(q + 1)a 1 + a 2 ≤ [(q + 1)a 1 + a 1 2 4 + 2q] ≤ [(q + 1)(2m -3) + (2m -3) 2 4 + 2q] = (q + 1)(2m -3) + m 2 -3m + 2 + 2q = (q + 1)(2m -2) + (m 2 -2m -2 + 2q) + (3 -(q + m)) < (q + 1)(2m -2) + (m 2 -2m -2 + 2q).
For the second inequality, note that the function x → (q + 1)x + x 2 4 is increasing on the interval [-2m, 2m -3].

In the same way, we build the table of couples (a 1 , a 2 ) with a 1 ≤ -2m + 2 (note that the extremities of the interval containing a 2 given by ( 7) depend only on the value of a 1 , hence the a 2 's are the same as in the previous table ).

a 1 a 2 Type Nb of pts -2m m 2 + 2q [-m, -m] (q + 1 -m) 2 -2m + 1 m 2 -m -1 + 2q [-m + 1+ √ 5 2 , -m + 1- √ 5 2 ] (q + 1 -m + 1+ √ 5 
2

)(q + 1 -m + 1- √ 5 
2 ) 2. Couples (a 1 , a 2 ) minimizing the number of points on A Again, the numbers of points are classified in increasing order and an abelian variety with (a 1 , a 2 ) not in the following table has a number of points strictly greater than the values of the table. Indeed, if -2m + 2 < a 1 ≤ 2m, we have

m 2 -m + 2q [-m, -m + 1] (q + 1 -m)(q + 2 -m) -2m + 2 m 2 -2m -2 + 2q [-m + 1 + √ 3, -m + 1 - √ 3] (q + 2 -m + √ 3)(q + 2 -m - √ 3) m 2 -2m -1 + 2q [-m + 1 + √ 2, -m + 1 - √ 2] (q + 2 -m + √ 2)(q + 2 -m - √ 2) m 2 -2m + 2q [-m, -m + 2] (q + 1 -m)(q + 3 -m) m 2 -2m + 1 + 2q [-m + 1, -m + 1] (q + 2 -m) 2 Table
(q + 1)a 1 + a 2 ≥ (q + 1)a 1 + 2|a 1 | √ q -2q ≥ (q + 1)(-2m + 3) + 2(2m -3) √ q -2q = (q + 1)(-2m + 2) + 2(2m -3) √ q -q + 1 = (q + 1)(-2m + 2) + (m 2 -2m + 1 + 2q) -(m 2 -2m + 1 + 2q) + 2(2m -3) √ q -q + 1 = (q + 1)(-2m + 2) + (m 2 -2m + 1 + 2q) -(m -1) 2 + 4(m -1) √ q -4q + q + 2 √ q + 1 = (q + 1)(-2m + 2) + (m 2 -2m + 1 + 2q) -(m -1 -2 √ q) 2 + ( √ q + 1) 2 > (q + 1)(-2m + 2) + (m 2 -2m + 1 + 2q).
For the second inequality, note that the function x → (q + 1)x+ 2|x| √ q is increasing on [-2m + 3, 2m] .

Jacobians of dimension 2

In this section, we determine J q (2) and j q (2). Theorems 6 and 7 will be proved in the following way:

(1) We look at the highest row of Table 1 or 2 (depending on the theorem being proved). ( 2) Then we check if the corresponding polynomial is the characteristic polynomial of an abelian variety.

(3) When it is the case, we check if this abelian variety is isogenous to a jacobian variety. (4) When it is not the case, we look at the following row and we come back to the second step. For the second step, we use the results of Rück [START_REF] Rück | Abelian surfaces and Jacobian varieties over finite fields[END_REF] and Maisner-Nart-Howe [START_REF] Maisner | Abelian surfaces over finite fields as jacobians[END_REF] who solved the problem of describing characteristic polynomials of abelian surfaces, in particular the fact that if (a 1 , a 2 ) satisfy ( 7) and p does not divide a 2 then the corresponding polynomial is the characteristic polynomial of an abelian surface.

For the third step, we use [START_REF] Howe | Jacobians in isogeny classes of abelian surfaces over finite fields[END_REF] where we can find a characterization of isogeny classes of abelian surfaces containing a jacobian.

The determination of J q (2) in Theorem 6 is closely related to that of N q (2) as was done by Serre [START_REF] Serre | Rational points on curves over finite fields[END_REF].

In order to simplify the proof of Theorem 7, we use the fact that given a curve of genus 2, if we denote by (a 1 , a 2 ) the coefficients of its characteristic polynomial, there exists a curve (its quadratic twist) whose coefficients are (-a 1 , a 2 ). This allows us to adapt the proof of Theorem 6.

Let us recall the definition of special numbers introduced by Serre. An odd power q of a prime number p is special if one of the following conditions is satisfied (recall that m = [2 √ q]): (1) m is divisible by p, (2) there exists x ∈ Z such that q = x 2 + 1, (3) there exists x ∈ Z such that q = x 2 + x + 1, (4) there exists x ∈ Z such that q = x 2 + x + 2. In [START_REF] Serre | Nombre de points des courbes algébriques sur Fq[END_REF], Serre asserts that if q is prime then the only possible conditions are conditions (2) and (3). When q is not a prime then condition (2) is impossible, condition (3) is possible only if q = 7 3 and condition (4) is possible only if q = 2 3 , 2 5 or 2 13 . Moreover, using basic arithmetic, it can be shown (see [START_REF] Lauter | The maximum or minimum number of rational points on genus three curves over finite fields[END_REF] for more details) that conditions (2), ( 3) and ( 4) are respectively equivalent to m 2 -4q = -4, -3 and -7.

The complete set of possible values of J q (2) is given in the following theorem. Theorem 6.

a) If q is a square, then J q (2) equals:

• (q + 1 + m) 2 if q = 4, 9 • 55 if q = 4 • 225 if q = 9 b) If q is not
a square, then J q (2) equals:

• (q + 1 + m) 2 if q is not special • (q+1+m+ -1+ √ 5 2 )(q+1+m+ -1- √ 5 2 ) if q is special and {2 √ q} ≥ √ 5-1 2 • (q + m) 2 if q is special, {2 √ q} < √ 5-1 2 , p = 2 or p|m • (q + 1 + m)(q -1 + m) otherwise.
Proof. a) If q is a square.

• Let q = 4, 9. Since N q (2) is the Serre-Weil bound (see [START_REF] Serre | Nombre de points des courbes algébriques sur Fq[END_REF]), by Proposition 4 a curve reaching this bound has type [m, m] (see [START_REF] Serre | Rational points on curves over finite fields[END_REF] for an explicit construction).

• Let q = 4. First we prove that J 4 (2) ≤ 55. We have m = 4 and q + 1 + 2m = 13. Every curve X of genus 2 over F q is hyperelliptic and therefore the number of rational points is at most 2(q + 1) = 10 = 13 -3. Since #X(F q ) = q + 1 + a 1 , we deduce that a jacobian of dimension 2 over F 4 must have a 1 ≤ 2m -3 = 5.

If a 1 = 5 then by [START_REF] Perret | Number of points of Prym varieties over finite fields[END_REF] we have: a 2 ≤ 14. The real Weil polynomial fA (t) of an abelian variety A over F 4 with a 1 = 5 and a 2 = 14 is fA

(t) = t 2 + a 1 t + a 2 -2q = t 2 + 5t + 6 = (t + 3)(t + 2) = (t + (m -1))(t + (m -2)).
This kind of polynomial is never the real Weil polynomial of a jacobian (because (m -1) -(m -2) = 1, see [START_REF] Howe | Jacobians in isogeny classes of abelian surfaces over finite fields[END_REF]). Thus we have a 2 ≤ 13 and a jacobian surface over F 4 with a 1 = 5 has at most q 2 + 1 + 5(q + 1) + 13 = 55 points by relation [START_REF] Quebbemann | Lattices from curves over finite fields[END_REF]. If a 1 < 5, we have

q 2 + 1 + (q + 1)a 1 + a 2 ≤ q 2 + 1 + (q + 1)a 1 + a 1 2 4 + 2q = 25 + 5a 1 + a 1 2 4 ≤ 25 + 5 × 4 + 4 2 4 = 49
(for the third row, note that the function x → 5x + x 2 4 is increasing on [-8, 4] (and a 1 ≥ -8)). Thus an abelian surface over F 4 with a 1 < 5 has less than 55 points, hence J 4 (2) ≤ 55.

It remains to prove that J 4 (2) ≥ 55. It is enough to prove that there exists a jacobian with (a 1 , a 2 ) = (5, 13) (because such a jacobian will have q 2 +1+5(q +1)+ 13 = 55 points). There exists an abelian surface with (a 1 , a 2 ) = (5, 13) (because p = 2 does not divide 13). Its real Weil polynomial is fA (t) = t 2 + 5t + 13 -2q = t 2 + 5t + 5

= (t + 5 + √ 5 2 )(t + 5 - √ 5 2 ) = (t + (m - 3 + √ 5 2 
)

)(t + (m - 3 - √ 5 2 
)).

Therefore its x i 's are not integers and thus this abelian surface is simple. Finally, using [START_REF] Howe | Jacobians in isogeny classes of abelian surfaces over finite fields[END_REF], we find that it is isogenous to a jacobian.

• If q = 9, we have m = 6 and q + 1 + 2m = 22. Moreover, 2(q + 1) = 20 = 22 -2.

Hence, we must have a 1 ≤ 2m-2. The highest row of Table 1 such that a 1 = 2m-2 is that with type [m-1, m-1]. By [START_REF] Waterhouse | Abelian varieties over finite fields[END_REF] there exists an elliptic curve of trace -(m-1) and by [START_REF] Howe | Jacobians in isogeny classes of abelian surfaces over finite fields[END_REF] the product of two copies of this curve is isogenous to a jacobian and has (q + m) 2 = 225 points.

b) If q is not a square.

In [START_REF] Serre | Rational points on curves over finite fields[END_REF], Serre proved the following facts:

• There exists a jacobian of type [m, m] if and only if q is not special.

• An abelian surface of type [m, m -1] is never a jacobian.

• If q is special, then there exists a jacobian of type

[m + -1+ √ 5 2 , m + -1- √ 5 2 ] if and only if {2 √ q} ≥ √ 5-1 2 . Note that {2 √ q} ≥ √ 5-1 2 is equivalent to m+ -1+ √ 5 2 ≤ 2
√ q, thus it is obvious that this condition is necessary.

• If q is special, {2 √ q} < √ 5-1
2 , p = 2 or p|m, then there exists a jacobian of type

[m -1, m -1]. • If q is special, {2 √ q} < √ 5-1
2 , p = 2 and p |m, that is, q = 2 5 or 2 13 (for

q = 2 3 , we have {2 √ q} ≥ √ 5- 1 
2 ), then there exists a jacobian of type [m, m -2].

It remains to prove that for q = 2 5 and 2 13 , there does not exist a jacobian of type [m -1, m -1]. In fact, when q = 2 5 and 2 13 , an abelian variety with all the x i 's equal to (m -1) must have a dimension respectively multiple of 5 and 13 (see [START_REF] Maisner | Abelian surfaces over finite fields as jacobians[END_REF], Prop. 2.5).

The complete set of possible values of j q (2) is given in the following theorem.

Theorem 7.

a) If q is a square, j q (2) equals:

• (q + 1 -m) 2 if q = 4, 9 • 5 if q = 4
• 25 if q = 9 b) If q is not a square, j q (2) equals:

• (q + 1m) 2 if q is not special

• (q + 1 -m + 1+ √ 5 
2

)(q + 1 -m + 1- √ 5 
2 ) if q is special and {2 √ q} ≥ √ 5-1 2

• (q + 2 -m - √ 2)(q + 2 -m + √ 2) if q is special and √ 2 -1 ≤ {2 √ q} < √ 5-1 2 • (q + 1 -m)(q + 3 -m) if q is special, {2 √ q} < √ 2 -1, p |m and q = 7 3 • (q + 2 -m) 2 otherwise.
Proof. a) If q is a square.

• Using twisting arguments and the proof of Theorem 6, we see that if q = 4, 9, there exists a jacobian of type [-m, -m].

• Let q = 4 (and m = 4). First we prove that j 4 (2) ≥ 5. We have a 1 ≥ -5 since the quadratic twist of a curve with a 1 < -5 would have a 1 > 5 which is not possible (see the proof of Theorem 6).

If a 1 = -5 then by [START_REF] Perret | Number of points of Prym varieties over finite fields[END_REF] we have a 2 ≥ 12. The real Weil polynomial of an abelian variety A over F 4 with a 1 = -5 and a 2 = 12 is

fA (t) = t 2 + a 1 t + a 2 -2q = t 2 -5t + 4 = (t -4)(t -1) = (t -m)(t -(m -3)).
This is not the real Weil polynomial of a jacobian (it is one of an almost ordinary abelian surface, m 2 = 4q and m -(m -3) is squarefree, see [START_REF] Howe | Jacobians in isogeny classes of abelian surfaces over finite fields[END_REF]). Thus we have a 2 ≥ 13 and a jacobian surface with a 1 = -5 has at least q 2 + 1 -5(q + 1) + 13 = 5 points.

If a 1 > -5, we have

q 2 + 1 + (q + 1)a 1 + a 2 ≥ q 2 + 1(q + 1)a 1 + 2|a 1 | √ q -2q = 9 + 5a 1 + 4|a 1 | ≥ 9 + 5 × (-4) + 4 × 4 = 5
(for the third row, note that the function x → 5x + 4|x| is increasing on [-4, 8]).

Thus an abelian surface with a 1 > -5 has more than 5 points and our result is proved.

It remains to prove that j 4 (2) ≤ 5. There exists a jacobian with (a 1 , a 2 ) = (-5, 13): this is the jacobian of the quadratic twist of the curve with (a 1 , a 2 ) = [START_REF] Maisner | Abelian surfaces over finite fields as jacobians[END_REF][START_REF] Vlȃdut | An exhaustion bound for algebro-geometric "modular" codes[END_REF] in the proof of Theorem 6. This jacobian has q 2 + 1 -5(q + 1) + 13 = 5 points.

• If q = 9 (and m = 6), using the same argument as in the last step, we must have a 1 ≥ -2m + 2. We look at the rows of Table 2, beginning by the rows on the top, for which a 1 = -2m + 2. The first two can be ignored since {2 √ q} = 0 is less than √ 3 -1 and less than √ 2 -1. An abelian surface of type [-m, -m + 2] is not a jacobian (this is an almost ordinary abelian surface, m 2 = 4q and m -(m -2) is squarefree, see [START_REF] Howe | Jacobians in isogeny classes of abelian surfaces over finite fields[END_REF]). The product of two copies of an elliptic curve of trace (m -1) is isogenous to a jacobian (such a curve exists since 3 |(m -1)).

b) If q is not a square.

Using twisting arguments and the proof of Theorem 6, we see that:

• There exists a jacobian of type [-m, -m] if and only if q is not special.

• If q is special, there exists a jacobian of type [-m + 

-m+1+ √ 3, -m+1- √ 3], it is necessary to have m-1+ √ 3 ≤ 2 √ q which is equivalent to {2 √ q} ≥ √ 3-1. When {2 √ q} < √ 5-1
2 , this condition is never satisfied (since

√ 5-1 2 < √ 3 -1) 
.

• In order to have the existence of an abelian surface of type

[-m + 1 + √ 2, -m + 1 - √ 2], it is necessary to have {2 √ q} ≥ √ 2 -1.
Suppose that this condition holds; we will show that there exists an abelian surface of type

[-m + 1 + √ 2, -m + 1 - √ 2]
. We use the same kind of argument as Serre used in [START_REF] Serre | Rational points on curves over finite fields[END_REF]. If p|m, we are done since p

|a 2 = m 2 -2m -1 + 2q. Otherwise, (m -2 √ q)(m + 2 √ q) = m 2 -4q ∈ {-3, -4, -7}, hence {2 √ q} = 2 √ q -m = 4q-m 2 m+2 √ q ≤ 7 2m and if m ≥ 9, 7 2m < √ 2 -1.
It remains to consider by hand the powers of primes of the form x 2 + 1, x 2 + x + 1 and x 2 + x + 2 with m < 9 (i.e. q < 21). These powers of primes are precisely 2, 3, 4, 5, 7, 8, 13 and 17. For q = 2, 8, we have {2 √ q} ≥ √ 5-1 2 . For q = 3, we have p|m. For q = 4, 7, 13, 17, we have {2 √ q} < √ 2 -1. For q = 5, m = 4 and p = 5 do not divide a 2 = m 2 -2m -1 + 2q = 17. So we are done.

Finally, using [START_REF] Howe | Jacobians in isogeny classes of abelian surfaces over finite fields[END_REF], we conclude that this abelian surface is isogenous to a jacobian.

• We suppose that q is special, {2 √ q} < √ 2-1, p |m and q = 7 3 . Then p |(m-2). To see this, we take p = 2 (if p = 2, it is obvious) and we use the remark after the definition of "special". Suppose that p divides (m -2), then it also divides m 2 -4 -4q = (m + 2)(m -2) -4q. Since p = 2, we must have m 2 -4q ∈ {-3, -4}. If m 2 -4q = -3, p divides -3 -4 = -7 thus p = 7; q is not prime (since for q = 7, p |(m -2) = 5) therefore we must have q = 7 3 and this case is excluded. If m 2 -4q = -4, p divides -4 -4 = -8 thus p = 2 which contradicts our assumption. Thus the result is proved.

Finally, by [START_REF] Waterhouse | Abelian varieties over finite fields[END_REF] there exist elliptic curves of trace m and (m -2) and by [START_REF] Howe | Jacobians in isogeny classes of abelian surfaces over finite fields[END_REF] their product is isogenous to a jacobian.

• We suppose that q is special, {2 √ q} < √ 2 -1 and p|m, or q = 7 3 . By [START_REF] Waterhouse | Abelian varieties over finite fields[END_REF], if p|m, there does not exist an elliptic curve of trace m (q = 2 and 3 are excluded since in those cases, {2 √ q} ≥ √ 2 -1). If q = 7 3 (thus (m -2) = 35) there does not exist an elliptic curve of trace (m -2). Therefore, in both cases, an abelian surface of type [-m, -m + 2] cannot exist.

• If q is special, {2 √ q} < √ 2 -1 and p|m or q = 7 3 , then there exists a jacobian of type [-m + 1, -m + 1]: this is the jacobian of the quadratic twist of the curve of type [m -1, m -1] in the proof of Theorem 6.

Asymptotic parameters for jacobians

Let us consider the following aymptotic quantities: J q (∞) = lim sup g→∞ (#J q (g)) 1/g and j q (∞) = lim inf g→∞ (#J q (g)) 1/g . Proposition 8. We have q ≤ j q (∞) ≤ J q (∞) ≤ q + √ q ≤ q + 2 √ q + 1.

Proof. The first inequality comes from the lower bound of Lachaud-Martin-Deschamps, the third one from Proposition 1 and the last one is the Weil bound.

For q square, we have the following bound proved by Vlȃdut ¸ [START_REF] Vlȃdut | An exhaustion bound for algebro-geometric "modular" codes[END_REF].

Proposition 9. If q is a square, q( q q -1 ) √ q-1 ≤ J q (∞).

However, for q ≫ 0, we have q( q q -1 ) √ q-1 = q + √ q -1 2 + o(1).

Hence, for q large q + √ q -1 2 + o(1) ≤ J q (∞) ≤ q + √ q, which raises to the following question.

Question. What are the values between q + √ q -1 2 and q + √ q which are attained by a sequence of curves reaching the Drinfeld-Vlȃdut ¸bound?

  In order to have the existence of an abelian surface of type [

	1-2 , -m + 1+ √ 5 2 ] if and √ 5 • An abelian surface of type [-m, -m + 1] is never a jacobian. only if {2 √ √ 5-1 2 . q} ≥ Now suppose that q is special and {2 √ q} < √ 5-1 2 .
	•
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