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Introduction

In this paper we investigate, via a Hamilton-Jacobi-Bellmann approach, a final state constrained optimal control problem with a Radon measure term in the dynamics.

Several real applications can be described by optimal control problems involving discontinuous trajectories. For instance, in space navigation area, when steering a multi-stage launcher, the separation of the boosters (once they are empty) lead to discontinuities in the mass variable [START_REF] Bokanowski | Hamilton-Jacobi-Bellman approach for the climbing problem[END_REF]. In resource management, discontinuous trajectories are also used to modelize the problem of sequential batch reactors (see [START_REF] Gajardo | Minimal time sequential batch reactors with bounded and impulse controls for one or more species[END_REF]). Many other applications can be found in the Refs. [START_REF] Baumeister | On optimal control of a fishery[END_REF][START_REF] Brogliato | Nonsmooth impact Mechanics: Models, Dynamics and control[END_REF][START_REF] Clark | The optimal exploitation of renewable stocks[END_REF][START_REF] Dykhta | Optimal impulse control with applications[END_REF].

Consider the controlled system:

dY (t) = M i=1 g i (t, Y (t), α(t))dµ i + g 0 (t, Y (t), α(t))dt for t ∈ (τ, T ] (1.1a) Y (τ -) = X. (1.1b)
where x ∈ R N , the measurable control α : (0, +∞) → R m takes values in a compact set A ⊂ R m , and µ = (µ 1 , . . . , µ M ) is a given Radon measure. Let ϕ : R N → R be a given lower semicontinuous (lsc) function, and consider the control problem:

v(X, τ ) := inf{ϕ(Y α X,τ (T )) : α(•) ∈ L ∞ (0, T ; A), and Y α X,τ satisfies (1.1)}.

(1.2)

Due to the presence of the measure µ, the definition of solution for the state equation (1.1) is not classical. We will refer to the definition introduced by Dal Maso and Rampazzo in [START_REF] Maso | On systems of ordinary differential equations with measures as controls[END_REF] using the technique of graph completion (Definition 2.1 in Section 2 below). Roughly speaking, by a suitable change of variable in both time and the primitive of µ, we can reduce (1.1) to usual controlled ordinary differential equation (ode) with a measurable time-dependent dynamics (see Theorem 2.2 below). Note that several works have been done to study the impulsive control problems, i.e. when the measures appear as controls. We refer to [START_REF] Raymond | Optimal control problems in spaces of functions of bounded variation[END_REF] for existence of optimal trajectories, and to [START_REF] Arutyunov | Necessary conditions for impulsive nonlinear optimal control problems without a priori normality assumptions[END_REF] for first and second necessary optimality conditions.

Here, in problem (1.2), the measure is given by the model and the state equation is controlled by means of a measurable function α. Our main goal is to use the HJB approach in order to characterize the value function v and then to study a numerical method to compute this function.

Since the value function v fulfils a Dynamic Programming Principle (DPP), we can derive, at least formally, the following HJB equation

     -v t (X, t) + sup a∈A -Dv(t, X) • g 0 (t, X, a) + M i=1 g i (t, X, a)µ i = 0; v(X, T ) = ϕ(X). (1.3) 
Clearly, the main difficulty is to give a meaning to the term "Dv • µ" knowing that one can not expect to have a differentiable value function. In order to overcome this problem, following the ideas in [START_REF] Briani | A Hamilton-Jacobi equation with measures arising in Γ-convergence of optimal control problems[END_REF], we define a new value function v such that:

v(X, τ ) = v(X, W(τ )),
where W is the known change of variable coming form the graph completion technique (See Theorem 2.4). The advantage is that now the HJB equation for v has a t-measurable Hamiltonian and not a measure term. More precisely, we can prove that v is a solution of the following equation:

-v s (X, s) + H(s, X, Dv(X, s)) = 0; v(X, 1) = ϕ(X); (1.4) where H(t, x, p) = sup a∈A {-p • F(t, x, a)} and F(t, x, a) is a t-measurable dynamics (see Section 2.2 for the definition of F). Due to the double presence of an only t-measurable Hamiltonian and a lsc final data, the definition of viscosity solution is still not classical.

We recall that, in the case when ϕ is continuous, the definition of viscosity solution for tmeasurable Hamiltonians has been introduced by Ishii in 1985 (see [START_REF] Ishii | Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets[END_REF]) and then studied for the second order case by Nunziante in [START_REF] Nunziante | Uniqueness of viscosity solutions of fully nonlinear second order parabolic equations with discontinuous time dependence[END_REF]- [START_REF] Nunziante | Existence and uniqueness of unbounded viscosity solutions of parabolic equations with discontinuous time-dependence[END_REF](see also the work of Lions-Perthame [START_REF] Lions | Remarks on Hamilton-Jacobi equations with measurable timedependent Hamiltonians[END_REF] and Briani-Rampazzo [START_REF] Briani | A density approach to Hamilton-Jacobi equations with tmeasurable Hamiltonians[END_REF]). Moreover, a very general stability result has been proved more recently by Barles in [START_REF] Barles | A new stability result for viscosity solutions of nonlinear parabolic equations with weak convergence in time[END_REF]. On the other side, to deal with the case when the Hamiltonian H is continuous with respect to the time variable and the final data ϕ is lsc, the definition of bilateral viscosity solution has been introduced by Barron and Jensen in 1990 ( [START_REF] Barron | Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians[END_REF]) and by Frankowska [START_REF] Frankowska | Lower semicontinuous solutions of Hamilton-Jacobi-Bellman equations[END_REF].

In this paper, since we deal with target problem, the function ϕ is lsc and the Hamiltonian in (1.4) is only t-measurable. We introduce a new definition of viscosity solution of (1.4), namely the definition of L 1 -bilateral viscosity solution (Definition 3.2 below). This definition allows to characterize v as the unique L 1 -bilateral viscosity solution of equation (1.4) (Theorem 3.4). It gives also a suitable framework to deal with the numerical approximation of v (and then of v by the change of variable W). More precisely, we prove in Theorem 3.6 a convergence result for monotone, stable and consistent numerical schemes, and give an example of a scheme satisfying these properties. Some numerical tests are presented in Subsection 3.2.

On the other hand, we study the properties of L 1 -bilateral viscosity solution for a general HJB equation. In particular, we derive under classical assumptions on the Hamiltonian (see in Section 4), the consistency of the definition (Theorem 4.7), a general stability result w.r. to the Hamiltonian (Theorem 4.9), a stability result w.r. to the final data (Theorem 4.10), and uniqueness result (Theorem 4.11). This paper is organized as follows. In Section 2 we set the optimal control problem we are considering. Subsection 2.1 is devoted to the definition of solution for the state equation while Subsection 2.2 to the construction of the reparametrised optimal control problem and the definition of v. In Section 3 we consider the optimal control problem for the t-measurable HJB equation, we state the definition of L 1 -bilateral viscosity solution, and we prove that the value function v is the L 1 -bilateral viscosity solution of equation (1.4) in Theorem 3.4. Subsection 3.1 is devoted to the convergence result and to the construction of a good approximating scheme while in Subsection 3.2 we give some numerical test.

Finally in Section 4 we will prove the consistency (Theorem 4.7), stability (Theorem 4.9 and 4.10) and uniqueness (Theorem 4.11) result for L 1 -bilateral viscosity solution.

Notations. For each r > 0, x ∈ R N we will denote by B r (x) the closed ball of radius r centered in x. Given a Radon measure µ we will denote by L 1 µ (R) the space of L 1 -functions with respect to the measure µ. In all the sequel, we will use the classical notations:

f (t + ) := lim s→t + f (s) and f (t -) := lim s→t - f (s).
And finally, we will denote by AC([0, 1]; R N ) the set of absolutely continuous functions from [0, 1] to R N .

The optimal control problem with BV trajectories

In this section we state the final state constrained optimal control problem we consider. First, we recall the definition of solution for the state equation introduced by Dal Maso and Rampazzo in [START_REF] Maso | On systems of ordinary differential equations with measures as controls[END_REF] and we recall the graph completion construction. Then, we define the value function, we construct the reparametrised optimal control problem and we prove that the two value functions are linked by a change of variable.

The state equation

Let us fix 0 ≤ τ < T , an initial data X ∈ R N , a given Radon measure µ = (µ 1 , . . . , µ M ), a control variable α ∈ A, and consider the controlled trajectory Y α X,τ : R + → R N solution of:

     dY (t) = M i=1 g i (t, Y (t), α(t))dµ i + g 0 (t, Y (t), α(t))dt for t ∈ (τ, T ] Y (τ -) = X.
(2.5)

We assume the following:

(Hco) The set of controls is A := L ∞ ((0, T ); A) ∩ L ∞ µ ((0, T ); A) where A is a compact subset of R m , m ≥ 1.
(Hg1) The functions g i (t, Y, α) : R + × R N × A → R N , (i = 0, . . . , M ), are measurable functions in t and continuous in (Y, α). Moreover, for each

Y ∈ R N , α ∈ A we have g 0 (•, Y, α) ∈ L 1 (R + ) and g i (•, y, α) ∈ L 1 µ i (R + ),(i = 1, . . . ,

M ).

(Hg2) There exists a function anda.e t ∈ R + , i = 0, . . . , M.

k 0 ∈ L ∞ (R + ; R + ) such that |g i (t, Y, α) -g i (t, Z, α)| ≤ k 0 (t)|Y -Z| ∀ Y, Z ∈ R N , α ∈ A,
(Hg3) There exist K > 0 such that

|g i (t, Y, α)| ≤ K ∀ Y ∈ R N , α ∈ A,
and a.e t ∈ R + , i = 0, . . . , M.

Following [START_REF] Maso | On systems of ordinary differential equations with measures as controls[END_REF], we introduce the left continuous primitive B of the Radon measure µ, i.e. B ∈ BV -([0, T ]; R M ) and his distributional derivative Ḃ coincides with µ on [0, T [. In all the sequel, we will denote by T := {t i , i ∈ N} the countable subset of [0, T ) which contains 0 and all the discontinuity points of B and by E c the set of all continuity points of B. Furthermore, let (ψ t ) t∈T := (ψ 1 t , . . . , ψ M t ) be a family of Lipschitz continuous maps from

[0, 1] into R M such that t∈T V 1 0 (ψ t ) < ∞, ψ t (0) = B(t -), and ψ t (1) = B(t + ) ∀t ∈ T ; (2.6) 
(if t = 0 we require only ψ t (1) = B(0 + )). We will denote by ξ the solution of: and Y (τ -) = X. Moreover, if τ ∈ T we have Y (τ + ) = ξ(X, ψ τ ).

dξ dσ = M i=1 g i (σ, ξ(σ), α(σ)) dψ i t dσ for σ ∈ (0, 1] ξ(0) = ξ,
In order to prove the uniqueness of this solution we set

a i := V 1 0 (ψ t i ), a := +∞ i=1 a i , w(t) := t + V t 0 (B) T + V T 0 (B) , (2.8) 
and we define W : [0, T ] → [0, 1] as follows:

W(t) := 1 1 + a w(t) + t i <t a i .
(2.9)

The graph completion of B corresponding to the family (ψ t ) t∈T is then defined by:

Φ(s) = (φ 0 ; φ 1 , . . . , φ M )(s) = (t; B(t)) if s = W(t) t ∈ [0, T ] \ T (t i ; ψ t i s-W(t i ) W(t + i )-W(t i ) ) if s ∈ [W(t i ), W(t + i )] t i ∈ T .
(2.10) We are ready now to construct the reparametrisation of system (2.5). Let σ := W(τ ), for each control α ∈ A and initial datum X we denote by

Z α X,σ : [σ, 1] → R N the solution of                  dZ ds (s) = M i=1 g i (φ 0 (s), Z(s), α(φ 0 (s))) µ a (φ 0 (s)) dφ 0 ds (s) + dφ i ds (s) + g 0 (φ 0 (s), Z(s), α(φ 0 (s)) dφ 0 ds (s) for s ∈ (σ, 1] Z(σ) = X (2.11
) where µ a is the absolutely continuous part of the measure µ with respect to the Lebesgue measure, i.e. µ(t) = µ a (t)dt + µ s . Note that the derivatives of φ 0 , φ i are measurable functions, therefore assumptions (Hg1)-(Hg2) ensure the applicability of Caratheodory's Theorem to obtain the existence of a unique solution of (2.11) 

such that Z α X,σ (W(t)) = y(t) ∀t ∈ [τ, T ] (2.12)
where W is given by (2.9). Moreover, for each Radon measure µ and each family (ψ t ) t∈T equation (2.5) has a unique solution (up to a set of zero Lebesgue measure).

Proof. The equivalence (2.12) can be obtained by adapting the proof given for M = N = 1 in [START_REF] Briani | A Hamilton-Jacobi equation with measures arising in Γ-convergence of optimal control problems[END_REF]Theorem 2.8]. On the other hand, the uniqueness of the solution is a consequence of Caratheodory's Theorem applied to equation (2.11).

Remark 2.3. We point out that this definition depends on the family (ψ t ) t∈T we choose. It is now a classical result that under commutativity conditions on the vector fields g i (i = 1, . . . , M ) the solution does not depend on this choice. In the pioneering works of Bressan and Rampazzo [START_REF] Bressan | Impulsive control-systems with commutativity assumptions[END_REF][START_REF] Bressan | Impulsive control-systems without commutativity assumptions[END_REF] the case when the g i do not depend on the control and are continuous in t, have been studied. When the g i depends on the control α we refer to [START_REF] Motta | Nonsmooth multi-time Hamilton-Jacobi systems[END_REF] for a precise discussion.

However, in this paper, the dependency on the choice of ψ t does not imply any specific difficulty in the sequel.

The control problem

Given a lower semicontinuous function ϕ : R N → R and a final time T , our aim is to calculate the following value function v(X, τ

) := inf α∈A ϕ(Y α X,τ (T )) (2.13)
where Y α X,τ is the solution of equation (2.5). It is easy to prove that the following Dynamic Programming Principle holds:

for each τ ≤ h ≤ T we have v(X, τ ) = inf α∈A v(Y α X,τ (h), h). (2.14)
Therefore we can formally derive a HJB equation:

-v t (X, t) + H(t, X, Dv(X, t)) = 0 for (X, t) ∈ R N × (0, T ), v(X, T ) = ϕ(X) for X ∈ R N (2.15)
where the Hamiltonian is

H(t, X, P ) = sup a∈A -P • g 0 (t, X, a) + M i=1 g i (t, X, a)µ i . (2.16) 
As we said before, in the introduction of the paper, the problem is to give a meaning to the term Dv • µ knowing that one can not expect to have a differentiable value function.

In view of Theorem 2.2, it is then natural to consider the trajectories Z α X,σ solution of the the reparmetrised system (2.11). We define then the corresponding value function as follows:

v(X, σ) = inf α∈A ϕ(Z α X,σ (1)). 
(2.17)

The link between the two problems is given by the following result.

Theorem 2.4. Let v and v be respectively defined in (2.13) and (2.17).

For each

X ∈ R N and τ ∈ [0, T ] we have v(X, τ ) = v(X, W(τ )) (2.18)
where W is given by (2.9). Moreover

v ♯ (X, τ ) = v♯ (X, W(τ )) ∀X ∈ R N , ∀τ ∈ [0, T ] \ T (2.19) and v ♯ (X, τ ) ≥ v♯ (X, W(τ )) ∀X ∈ R N , ∀τ ∈ T , (2.20) 
where we respectively denote by v ♯ and v♯ the lower semicontinuous envelope of v and v w.r. to both variable (X, τ ) and (X, s).

Proof. By Theorem 2.2 above we have

Y α X,τ (T ) = Z α X,W(τ ) (W(T )) = Z α X,σ (1) 
then (2.18) follows by the definitions of v and v.

Since, by construction W(τ ) is monotone increasing in [0, T ] and continuous in any τ ∈ T , (2. [START_REF] Gajardo | Minimal time sequential batch reactors with bounded and impulse controls for one or more species[END_REF]) and (2.20) easily follow.

Remark 2.5. In (2.19), (2.20) we stressed the link between the lsc envelopes of v and v because is indeed the function v♯ (X, s) that will be characterized as solution of an HJB equation.

Thanks to Theorem 2.4, it is clear that we turn now our attention to the HJB equation for the function v. The advantage is that we do not have any more measure in the dynamics.

The new value function v satisfies also a DPP:

v(X, σ) = inf α∈A v(Z α X,σ (h), h) ∀σ ≤ h ≤ 1, and ∀X ∈ R N . (2.21)
From this DPP, one could expect to characterize v through the following HJB equation:

-v s (X, s) + H(s, X, Dv(X, s)) = 0 for (X, s) ∈ R N × (0, 1), v(X, 1) = ϕ(X) for X ∈ R N (2.22)
where the Hamiltonian is

H(s, X, P ) = sup a∈A -P • g 0 (φ 0 (s), X, a) dφ 0 ds (s)+ + M i=1 g i (φ 0 (s), X, a)) µ a (φ 0 (s)) dφ 0 ds (s) + dφ i ds (s) . (2.23) 
Note that, by definition (2.10), the graph completion (φ 0 , φ i ) is a Lipschitz function, therefore we can not expect to have a time continuous Hamiltonian. Moreover, our final condition ϕ is only lower semicontinuous. Thus, we should first give a precise meaning to the definition of the viscosity solution of the equation (2.22).

Optimal control problems with measurable time-dependent dynamics

In this Section we prove that the value function v is the unique L 1 -bilateral viscosity solution of (2.22), and that the latter can be solved numerically. For the sake of generality we will prove our results in the following more general framework.

The set of controls is

A := L ∞ (R + ; A), where A is a compact subset of R m (m ≥ 1).
Fix a final time T , given x ∈ R N , τ ≥ 0 and a control a ∈ A, we consider the trajectory y a x,τ , solution of the following system:

ẏ(t) = F(t, y(t), a(t)), for t ∈ (τ, T ) y(τ ) = x. (3.24)
For each initial point and time (x, τ ) ∈ R N × R + we set:

ϑ(x, τ ) := inf a∈A ϕ(y a x,τ (T )). (3.25)
We assume the following :

(HF1) F(t, x, a) : R + × R N × A → R N is measurable in t and continuous in x and a. Moreover, for each (x, a) ∈ R N × A we have F(•, x, a) ∈ L 1 (R + ). (HF2) There exists k 0 ∈ L ∞ (R + ; R + ) such that |F(t, x, a) -F(t, z, a)| ≤ k 0 (t)|x -z| ∀x, z ∈ R N , a ∈ A, t ∈ R + .
(HF3) There exists a K > 0 such that

|F(t, x, a)| ≤ K ∀x ∈ R N , a ∈ A, t ∈ R + .
(Hid) The function ϕ : R N → R is lower semi continuous and bounded.

Remark 3.1. Let us point out that if we assume (Hg1)-(Hg3), then the function

F(s, x, a) := M i=1 g i (φ 0 (s), x, a) µ a (φ 0 (s)) dφ 0 ds (s) + dφ i ds (s) + g 0 (φ 0 (s), x, a) dφ 0 ds (s)
fulfils (HF1)-(HF3). Therefore, all the results in this section will apply, in particular, to the value function v defined in (2.17).

In all the sequel, we denote V the lower semicontinuous envelope of ϑ defined by:

V(x, t) := lim inf y→x,s→t ϑ(y, s). (3.26) 
Our first aim is then to prove that we can characterize the function V in (3.26) as the unique L 1 -bilateral viscosity solution (see the definition below) of the following HJB equation:

-V t (x, t) + H(t, x, DV(x, t)) = 0 for (x, t) ∈ R N × (0, T ), V(x, T ) = ϕ(x) x ∈ R N (3.27)
where the Hamiltonian is

H(t, x, p) = sup a∈A {-p • F(t, x, a)} . (3.28) Definition 3.2. L 1 -bilateral viscosity solution (L1Bvs) Let u : R N ×(0, T ) → R be a bounded lsc function. We say that u is a L 1 -bilateral viscosity solution (L1Bvs) of (3.27) if: for any b ∈ L 1 (0, T ), φ ∈ C 1 (R N ) and (x 0 , t 0 ) local minimum point for u(x, t) - t 0 b(s)ds -φ(x) we have lim δ→0 + ess sup |t-t 0 |≤δ sup x∈B δ (x 0 ), p∈B δ (Dφ(x 0 )) {H(t, x, p) -b(t)} ≥ 0 (3.29)
and lim

δ→0 + ess inf |t-t 0 |≤δ inf x∈B δ (x 0 ), p∈B δ (Dφ(x 0 )) {H(t, x, p) -b(t)} ≤ 0. (3.30)
Moreover, the final condition is satisfied in the following sense:

ϕ(x) = inf lim inf n→∞ u(x n , t n ) : x n → x , t n ↑ T .
Remark 3.3. For the sake of clarity, we will state and prove, in Section 4, the consistency, stability and uniqueness result for the viscosity sense (L1Bvs) defined in Definition 3.2.

Let us now prove the characterization of the value function. Proof. This proof follows the ideas of Barron and Jensen in [START_REF] Barron | Optimal control and semicontinuous viscosity solutions[END_REF]. First, it is easy to verify that V fulfills the final condition V(x, T ) = ϕ(x) in the sense given by Definition 3.2. Moreover, consider (ϕ n ) n a monotone increasing sequence of continuous functions, from R N to R, pointwise converging to ϕ. For each n ∈ N we set V n (x, τ ) := inf a∈A ϕ n (y a

x,τ (T )) . The proof will be divided in two steps.

Step 1. We first remark that by definition we have V n (x, T ) = ϕ n (x), thus the final condition is fulfilled. Moreover, V n is the unique continuous solution of (3.27), with final condition V n (•, T ) = ϕ n (•), in the sense of Definition 4.6. By the consistency result of Theorem 4.7, we get that V n is solution of (3.27) also in the sense of Definition 3.2.

Step 2. By using the same arguments as in [START_REF] Barron | Optimal control and semicontinuous viscosity solutions[END_REF], we can prove that V n converges pointwise to V. Therefore, the conclusion follows from the stability with respect to the final condition proved in Theorem 4.10. Furthermore, the uniqueness follows by Theorem 4.11.

3.1

Numerical approximations of (3.27).

In the case when the Hamiltonian is continuous (both in time and in space), numerical discretization of Hamilton-Jacobi equations has been studied by many authors. The general framework of Barles-Souganidis [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF] ensures that the numerical scheme is convergent (to the viscosity solution) whenever this scheme is consistent, monotone and stable and the HJB equation satisfies a strong comparison principle. The class of schemes satisfying these properties is very large and includes upwind finite differences, Semi-Lagrangian methods, Markov-Chain approximations.

In this section, we extend the result of [START_REF] Barles | Convergence of approximation schemes for fully nonlinear second order equations[END_REF] to the case of equation (3.27), where the Hamiltonian is only t-measurable, and show that the t-measurable viscosity notion is still a good framework to analyze the convergence of numerical approximations. We give also an example of a monotone, stable and consistent scheme of (3.27) based on finite differences approximations. Finally, a numerical example is given in Subsection 3.2.

Let G be a space grid on R N with a uniform mesh size ∆x > 0 (of course a nonuniform grid could also be considered), and let ∆t > 0 be a time step (we assume that T /∆t belongs to N). In the sequel, we will use the following notations:

∆ := (∆x, ∆t), t n := n∆t, x j is a node in G, N T := T ∆t (3.31)
Consider an approximation scheme of the following form:

S ∆ (t n , x j , v n j , v n+1 ) = 0 ∀x j ∈ G, n = 0, • • • , N T -1; v N T j = ϕ(x j ) ∀x j ∈ G. (3.32)
Thus if v is a continuous function defined on [0, T ] × R N , the approximation scheme reads

S ∆ (t, x, v(x, t), v(•, t + ∆t)) = 0 in (0, T ) × R N . (3.33) On S ∆ : (0, T ) × R N × R × L ∞ (R N )
we assume the following:

(M) Monotonicity. For each u ≥ v we have

S ∆ (t, x, r, u) ≤ S ∆ (t, x, r, v) ∀t ∈ (0, T ), x ∈ R N , r ∈ R. (3.34) (S) Stability. There exists K > 0 such that, if v ∆ is solution of (3.33) then v ∆ L ∞ ≤ K ϕ L ∞ , (3.35) 
K being independent of ∆x, ∆t.

(C) Consistency. For every point (x 0 , t 0 ), for any b ∈ L 1 (0, T ) and any function φ(x) such that:

φ ∈ C 1 (R N ), by setting ψ(x, t) := t 0 b(s) ds + φ(x), we have: ess sup |t-t 0 |≤∆t sup x∈B ∆x (x 0 ), p∈B ∆x (Dφ(x 0 ))) {-b(t) + H(t, x, p)} ≥ ≥ S ∆ (t 0 , x 0 , ψ(x 0 , t 0 ), ψ(•, t 0 + ∆t)) + o ∆x (1) ≥ ≥ ess inf |t-t 0 |≤∆t inf x∈B ∆x (x 0 ), p∈B ∆x (Dφ(x 0 )) {-b(t) + H(t, x, p)}. (3.36)
An example of scheme fulfilling the above assumptions, when the Hamiltonian is given by (3.28), is the following

S ∆ (t, x, u(x, t), u(•, t + ∆t)) := u(x, t) -u(x, t + ∆t) ∆t + + 1 ∆t t+∆t t sup a∈A (-F) + (s, x, a) • u(x, t + ∆t) -u(x -∆x, t + ∆t) ∆x + +(-F) -(s, x, a) • u(x + ∆x, t + ∆t) -u(x, t + ∆t) ∆x ds, (3.37) 
where we classically denoted g + := max(g, 0) and g -:= min(g, 0).

Proposition 3.5. Assume that F fulfills assumptions (HF1)-(HF3), and consider the Hamiltonian in (3.28). Let ∆ = (∆x, ∆t) be mesh sizes satisfying:

∆t ∆x |F(s, x, a)|ds ≤ 1 for a.e s ∈ (0, T ), ∀x ∈ R N , a ∈ A. (3.38)
Then, the scheme S ∆ given in (3.37) satisfies conditions (M), (S) and (C).

Proof. Fist remark that the Stability condition (S) easily follows from the boundedness of F and (HF3). Moreover, the monotonicity (M) follows from condition (3.38) by standard arguments.

To prove consistency, we fix (x 0 , t 0 ) and consider a function ψ(x, t) = t 0 b(s) ds + φ(x) for b ∈ L 1 (0, T ) and φ ∈ C 1 (R N ). By using the regularity of ψ and assumption (HF3) on F, we get:

S ∆ (t 0 , x 0 , ψ(x 0 , t 0 ), ψ(•, t 0 + ∆t)) = 1 ∆t t 0 +∆t t 0 {-b(s) + H(s, x 0 , Dφ(x 0 ))} ds + o ∆x (1). Condition (C) follows.
The general convergence result is the following.

Theorem 3.6. Assume (HF1)-(HF3). Let V be defined as in (3.26) with ϕ fulfilling assumption (Hid). Consider a sequence of continuous and bounded functions ϕ m : R N → R (for m ≥ 1) such that (ϕ m ) m∈N is monotone increasing and

lim m→∞ ϕ m (x) = ϕ(x) ∀x ∈ R N .
Let ∆ = (∆x, ∆t) be a mesh size such that the scheme S ∆ fulfills conditions (M), (S) and (C), and let v ∆,m := (v n j ) n,j be the solution of :

S ∆ (t n , x j , v n j , v n+1 ) = 0 ∀x j ∈ G, n = 0, • • • , N T -1; v N T j = ϕ m (x j ) ∀x j ∈ G. (3.39)
Then, as ∆t → 0, ∆x → 0 and m → +∞, v ∆,m converges pointwise to the function V.

Proof. The proof will be given in two steps.

Step 1. We first suppose that the final data is continuous (ϕ m ≡ ϕ). We consider a ∆ k = (∆x k , ∆t k ) and denote by v ∆ k the solution of (3.39) corresponding to ∆ k and ϕ m ≡ ϕ. We will prove that, as k → 0, the sequence v ∆ k converges locally uniformly to the unique L 1 -viscosity solution of (3.27).

For the sake of simplicity for each k we will set (x k , t k ) := (x j k , t n k ) where (x j k , t n k ) are the point defined in (3.31) when ∆ is ∆ k .

Let us first observe that by the stability assumption (S) the sequence v ∆ k is bounded, therefore the following weak semi-limits are well defined:

v * (x, t) := lim inf k→0 lim x k →x,t k →t v ∆ k (x k , t k ) v * (x, t) := lim sup k→0 lim x k →x,t k →t v ∆ k (x k , t k ). (3.40) 
Note that both v * and v * trivially satisfy the final condition in (3.27). Therefore, the convergence result will follows once we prove that v * and v * are respectively a L 1 -viscosity supersolution and a L 1 -viscosity subsolution of (3.27). Indeed, if this is true, by the comparison result [20, Theorem 8.1], we have v * ≤ v * . Since the reverse is true by definition, the two weak semi limits coincide and the thesis follows.

Let us now prove that v * is a L 1 -viscosity subsolution of (3.27). (The proof of v * being a L 1 -viscosity supersolution of (3.27) is completely similar and will not be detailed.) Following Definition 4.6 below, for any b ∈ L 1 (0, T ), φ ∈ C 1 (R N ) and (x 0 , t 0 ) local maximum point of v * (x, t) -t 0 b(s)dsφ(x) we have to prove that lim

δ→0 + ess inf |t-t 0 |≤δ inf x∈B δ (x 0 ), p∈B δ (Dφ(x 0 )) {H(t, x, p) -b(t)} ≤ 0. (3.41)
Note that, without loss of generality, we can assume that (x 0 , t 0 ) is a strict local zero maximum of v * (x, t) -t 0 b(s)dsφ(x). There exists then a sequences of points (x k , t k ) such that

(a) (x k , t k ) → (x 0 , t 0 ) as k → 0. (b) (x k , t k ) is a local maximum point of v ∆ k (x, t) - t 0 b(s)ds -φ(x). (c) ξ k := v ∆ k (x k , t k ) - t k 0 b(s)ds -φ(x k ) → 0 = v * (x 0 , t 0 ) - t 0 0 b(s)ds -φ(x 0 ) as k → 0.
Thanks to (b), we can apply the monotonicity assumption (M)

with v = v ∆ k , u = φ(x) + t 0 b(s)ds + ξ k and r = v ∆ k (x k , t k ) = ξ k + φ(x k ) + t k 0 b(s)ds and obtain S ∆ k t k , x k , ξ k + φ(x k ) + t k 0 b(s)ds, ξ k + φ(•) + t k +∆t k 0 b(s)ds ≤ ≤ S ∆ k (t k , x k , v ∆ k (x k , t k ), v ∆ k (•, t k + ∆t k )) = 0, (3.42)
where we also used that v ∆ k is a solution of (3.32). Fix now a δ > 0, by (a) and the regularity of φ we can always find a

δ k ≤ δ such that min(∆x k , ∆t k ) ≤ δ k , B δ k (t k , x k ) ⊆ B δ (x 0 , t 0 ), and B δ k (Dφ(x k )) ⊆ B δ (Dφ(x 0 )
). Therefore, also by the Consistency assumption (C) and (3.42) we have:

ess inf |t-t 0 |≤δ inf x∈B δ (x 0 ), p∈B δ (Dφ(x 0 )) {H(t, x, p) -b(t)} ≤ ≤ ess inf |t-t k |≤δ k inf x∈B δ k (x k ), p∈B δ k (Dφ(x k )) {H(t, x, p) -b(t)} ≤ ≤ S ∆ k t k , x k , ξ k + φ(x k ) + t k 0 b(s)ds, ξ k + φ(•) + t k +∆t k 0 b(s)ds + o δ k (1) ≤ o δ k (1). (3.43)
Inequality (3.41) follows then by letting δ → 0 + (which implies δ k → 0 + ).

Step 2. For every m ≥ 1, by Step 1, as k → 0, the sequence

(v ∆ k ,m ) k converges to v m the unique L 1 -viscosity solution of -v t (x, t) + H(t, x, Dv) = 0 in R N × (0, T ) v(x, T ) = ϕ m (x) in R N . (3.44)
With the same arguments as in Step 1 of the proof of Theorem 3.4, we conclude the pointwise convergence of v m to V.

Remark 3.7. the case of Eikonal equation with t-measurable velocity function, a similar convergence result is proved, in the recent work of A. Monteillet [START_REF] Monteillet | Convergence of approximation schemes for nonolocal front propagation equations[END_REF], for a particular numerical scheme.

A numerical test.

In this section, we use the scheme given in (3.37) to solve Hamilton-Jacobi equations coming from a simple control problem with BV trajectories. Consider the target C := B(0, r), which is the ball centred at the origin and of radius r = 0.25. Consider also a trajectory Y (α,c) τ X , depending on the control variables α : (0, T ) → A := [0, 2π] and c : (0, T ) → U , and governed by the following dynamics

Ẏ (t) = c(t) cos(α) sin(α) + C 1 1 1 δ 1 + C 2 0 1 δ 2 , Y (τ ) = X
where C1 := 0.5, C2 := 0.2, and δ u (for u = 1, 2) denotes the Dirac measure at time t = u. The control variable c takes its values in a compact set U . Here we will consider two cases:

• Case 1: U ≡ {0.5} which amounts saying that we are allowed to move in any direction in the sphere centred at the origin and with radius 0.5.

• Case 2: U = [0, 0.5], which means that we can move in any direction in the Ball centred at the origin and with radius 0.5.

In both cases, at time t = 1 and t = 2 the trajectories jump. We consider the value function corresponding to the Rendez-Vous problem:

v(t, X) := inf{ϕ(Y α,c τ,X (T )); α ∈ L ∞ (0, T ; A), c ∈ L ∞ (0, T ; U )}
, where T = 3, and ϕ(x) = 0 when x ∈ C and 1 otherwise.

It is not difficult to compute the parametrized function: 15 6 s -1 6 , 0) Fig. 1 shows the numerical solution in the Case 1, while Fig. 2 shows the results corresponding to Case 2. These numerical experiments are performed by using the finite differences scheme with 150 2 grid points. Computations are done on the domain [-1.5, 3] 2 . The final cost function is approximated by a function (with n = 10):

Φ(s) =           (15s, 0, 0) 0 ≤ s ≤ 1 15 ; (1,
ϕ n (X) := 1/n min 1, x -0.5) .

(3.45)

In the two cases, we compute first the value function v corresponding to the parametrized control problem, and then we deduce the original value function by using a change of variable. The latter step is very easy to perform numerically, since v turns to be just the restriction of v on [0, 1 15 ] ∩ [ 7 15 , 8 15 ] ∩ [ 14 15 , 1]. In Figs. 1 &2, we plot only the 0-level sets. 4 Properties of the L 1 -bilateral viscosity solution of HJB equations.

This section is devoted to the main properties of the L 1 -bilateral solutions we have defined in Definition 3.2. First, we give an equivalent formulation of this definition and we prove that it is consistent with the definitions of viscosity solutions given for a more regular HJB equation (Subsection 4.1). The Stability results are given in Subsection 4.2. Fix T > 0, and consider the general Hamilton-Jacobi-Bellman equation

-u t (x, t) + H(t, x, Du) = 0 in R N × (0, T ) u(x, T ) = ϕ(x) in R N . (4.46) 
On the Hamiltonian H : R + × R N × R N → R we assume the following:

(H0) The function H(t, x, p) is measurable in t and continuous in x and p. Moreover, for each

(x, p) ∈ R N × R N we have H(•, x, p) ∈ L 1 (R + ). (H1) For each compact subset K of R N ×R N there exists a modulus m = m(K) : (0, T )×R + → R + such that t → m(t, r) ∈ L 1 (0, T ) for all r ≥ 0, m(t, r) is increasing in r, m(•, r) → 0 in L 1 (0, T ) as r → 0, and |H(t, x, p) -H(t, y, q)| ≤ m(t, |x -y| + |p -q|)
for almost every t and for any (x, p), (y, q) ∈ K.

Moreover:

(H2) There exists a function

k 0 ∈ L ∞ (R + ; R + ) such that |H(t, x, p) -H(t, y, p)| ≤ k 0 (t)(1 + |p|)(|x -y|) for all p ∈ R N , t ∈ R + , x, y ∈ R N .
(H3) For each (t, x) the function H(t, x, •) is convex and there exists a constant L > 0 such that

|H(t, x, p) -H(t, x, q)| ≤ L|p -q| for all p, q ∈ R N , t ∈ R + , x ∈ R N .
On the final data we suppose:

(Hid) The function ϕ : R N → R is lower semi continuous and bounded. In order to give an equivalent formulation of the definition of L 1 -bilateral viscosity solution we need to introduce the following sets of functions. Fix (x 0 , t 0 ) and a function φ

∈ C 1 (R N × R + ) we set H -(t 0 , x 0 , Dφ(x 0 , t 0 )) := = G(t, x, p) ∈ C(R + × R N × R N ), convex in p , b(t) ∈ L 1 (R + ) such that G(t, x, p) + b(t) ≤ H(t, x, p) for all x ∈ B δ (x 0 ), p ∈ B δ (Dφ(x 0 , t 0 )), a. e. t ∈ B δ (t 0 ) and some δ > 0} H + (t 0 , x 0 , Dφ(x 0 , t 0 )) := = G(t, x, p) ∈ C(R + × R N × R N ), convex in p , b(t) ∈ L 1 (R + ) such that G(t, x, p) + b(t) ≥ H(t, x, p)
for all x ∈ B δ (x 0 ), p ∈ B δ (Dφ(x 0 , t 0 )), a. e. t ∈ B δ (t 0 ) and some δ > 0} Definition 4.2. L 1 -bilateral viscosity solution (L1Bvs) II Let u : R N × R + → R be a bounded lower semi-continuous function. We say that u is a L 1 -bilateral viscosity solution (L1Bvs) of (4.46) if:

1. for any (x 0 , t 0 ), φ ∈ C 1 (R N × R + ), (G, b) ∈ H -(t 0 , x 0 , Dφ(x 0 , t 0 )) such that (x 0 , t 0 ) is a local minimum point for u(x, t) - t 0 b(s)ds -φ(x, t) we have -φ t (x 0 , t 0 ) + G(t 0 , x 0 , Dφ(x 0 , t 0 )) ≤ 0, (4.47) 2. for any (x 0 , t 0 ), φ ∈ C 1 (R N × R + ), (G, b) ∈ H + (t 0 , x 0 , Dφ(x 0 , t 0 )) such that (x 0 , t 0 ) is a local minimum point for u(x, t) - t 0 b(s)ds -φ(x, t) we have -φ t (x 0 , t 0 ) + G(t 0 , x 0 , Dφ(x 0 , t 0 )) ≥ 0. (4.48)
Moreover, the final condition is satisfied in the following sense:

ϕ(x) = inf lim inf n→∞ u(x n , t n ) : x n → x , t n ↑ T .
Remark 4.3. Note that in fact, there are many more formulations. We can take the test function φ(x, t) ∈ C 1 (R N × (0, T )), (i.e. C 1 -depending also on t in Definition 3.2) and φ ∈ C 1 (R N ), (i.e. depending only on the x-variable) in Definition 4.2. We can replace φ ∈ C 1 (R N ) by φ ∈ C 2 (R N ), ..., C ∞ (R N ). Moreover, by classical arguments in the theory of viscosity solutions, we may replace the local minimum by global, or local strict or global strict. Proof. We first remark that for any b ∈ L 1 (0, T ), φ ∈ C 1 (R N ) and (x 0 , t 0 ) local minimum point for u(x, t) - G(t 0 , x 0 , Dφ(x 0 )).

The equivalence of the two definitions follows then by observing that in Definition 4.2 we can consider test functions φ depending only on the x-variable. (See also Remark 4.3.)

Consistency

We prove now that our definition is consistent with the definitions of viscosity solutions given for a more regular HJB equation. In particular we consider the case of a time-continuous Hamiltonian and/or a continuous initial data. For the sake of completeness let us recall here the definition of viscosity solution in those cases.

Definition 4.5 (bilateral viscosity solution (Bvs), See [START_REF] Barron | Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians[END_REF]). Assume that H is continuous w.r. to the time variable. Let u ∈ LSC(R N × (0, T )) be a bounded function. We say that u is a bilateral viscosity solution (Bvs) of (4.46) if: for any φ ∈ C 1 (R N × (0, T )) and (x 0 , t 0 ) local minimum point of u(x, t)φ(x, t) we have -φ t (x 0 , t 0 ) + H(t 0 , x 0 , Dφ(x 0 , t 0 )) = 0.

Moreover, the final condition is satisfied in the following sense: [START_REF] Ishii | Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets[END_REF][START_REF] Lions | Remarks on Hamilton-Jacobi equations with measurable timedependent Hamiltonians[END_REF]). Assume that the final condition ϕ is a continuous function on R N . We say that u ∈ LSC(R N × (0, T )) is a L 1 -viscosity supersolution (L1vsp) of (4.46) if: for any b ∈ L 1 (0, T ), φ ∈ C 1 (R N ) and (x 0 , t 0 ) local minimum point of u(x, t) - We say that u ∈ U SC(R N × (0, T )) is a L 1 -viscosity subsolution (L1vsb) of (4.46) if: for any b ∈ L 1 (0, T ), φ ∈ C 1 (R N ) and (x 0 , t 0 ) local maximum point of u(x, t) -t 0 b(s)dsφ(x) we have

ϕ(x) = inf lim inf n→∞ u(x n , t n ) : x n → x , t n ↑ T Definition 4.6 (L 1 -viscosity solution (L1vs),
lim δ→0 + ess inf |t-t 0 |≤δ inf x∈B δ (x 0 ), p∈B δ (Dφ(x 0 )) {H(t, x, p) -b(t)} ≤ 0.
We say that u ∈ C(R N × (0, T )) is a L 1 -viscosity solution (L1vs) if it is both a L 1 -viscosity subsolution and a L 1 -viscosity supersolution and the final condition is satisfied pointwise: Proof of (a).

u(x, T ) = ϕ(x) in R N .
The key tool to prove this equivalence is a Lemma introduced in the [START_REF] Barron | Semicontinuous viscosity solutions for Hamilton-Jacobi equations with convex Hamiltonians[END_REF] to prove the equivalence between a Bvs and a Cvs. For the sake of completeness we recall here this result. Lemma 4.8. [6, Theorem 1.1] Let W be a continuous function on [0, ∞) × R n such that W has a zero maximum (minimum) at (τ, ξ). Let ε > 0. Then there is a smooth function ψ, a finite set of numbers α k ≥ 0 summing to one, and a finite collection of points 

(t k , x k ) such that 1. W -ψ has a zero minimum (maximum) at (t k , x k ); 2. (t k , x k ) ∈ B oε(1) √ ε (s, y) for some (s, y) ∈ B oε(1) (τ, ξ); 3. |D t,x ψ(t k , x k )| = oε(1) √ ε ; 4. k α k D t,x ψ(t k , x k ) = 0. Proof of u is a L1vs ⇒ u is a L1Bvs. Following Definition 3.2 we have to show that fix b ∈ L 1 (0, T ), φ ∈ C 1 (R N )
η (x k , t k ) ⊂ B δ (t 0 , x 0 ), B η (Dφ(x k ) + Dψ(x k , t k )) ⊂ B δ (Dφ(x 0 )). (4.51) Thus ess inf |t-t 0 |≤δ inf x∈B δ (x 0 ), p∈B δ (Dφ(x 0 )) {H(t, x, p) -b(t)} ≤ ≤ ess inf |t-t k |≤η inf x∈Bη(x k ), p∈Bη(Dφ(x k )+Dψ(x k ,t k )) {H(t, x, p) -b(t)} . (4.52)
Since u is a L1vs, in particular is a L 1 -viscosity subsolution therefore in each point (t k , x k ) we have lim

η→0 + ess inf |t-t k |≤η inf x∈Bη(x k ), p∈Bη(Dφ(x k )+Dψ(x k ,t k )) {H(t, x, p) -b(t)} ≤ 0.
Letting δ going to 0 + (⇒ η → 0 + ) in (4.52) we obtain (4.50) and conclude the proof.

Proof of u is a L1Bvs ⇒ u is a L1vs. We first remark that, by Definition 3.2 if u is a L1Bvs, is in particular a L 1 -viscosity supersolution. Therefore, to prove that u is a L 1 -viscosity subsolution fix b ∈ L 1 (0, T ), φ ∈ C 1 (R N ) and (x 0 , t 0 ) local maximum point of u(x, t) -t 0 b(s)dsφ(x) our thesis is

lim δ→0 + ess inf |t-t 0 |≤δ inf x∈B δ (x 0 ), p∈B δ (Dφ(x 0 )) {H(t, x, p) -b(t)} ≤ 0. ( 4 

.53)

As above, for each δ > 0 we apply Lemma 4.8 choosing ε small enough the ensure the existence of an η > 0 such that oε( {H(t, x, p)b(t)} ≤ 0.

(x k , t k ) such that u - t 0 b -(φ + ψ) has a zero minimum at (x k , t k ) and for each k B η (x k , t k ) ⊂ B δ (t 0 , x 0 ), B η (Dφ(x k ) + Dψ(x k , t k )) ⊂ B δ (Dφ(x 0 )). ( 4 
Letting δ going to 0 + (⇒ η → 0 + ) in (4.55) we obtain (4.53) and conclude the proof.

Proof of (b). Proof of u is a L1Bvs ⇒ u is a Bvs. Thanks to the continuity of H for any φ ∈ C 1 (R N × R + ) and (x 0 , t 0 ) local minimum point of u(x, t)φ(x, t) we can choose G = H and b ≡ 0 in Definition 4.2. Since the couple (H, 0) is in both H -(t 0 , x 0 , Dφ(x 0 , t 0 )) and H + (t 0 , x 0 , Dφ(x 0 , t 0 )) the two inequalities (4.48) and (4.47) are fulfilled. Therefore -φ t (x 0 , t 0 ) + H(t 0 , x 0 , Dφ(x 0 , t 0 )) = 0 and the thesis follows.

Proof of u is a Bvs ⇒ u is a L1Bvs. Fix b ∈ L 1 (0, T ), φ ∈ C 1 (R N
) and (x 0 , t 0 ) local minimum point of u(x, t) -t 0 b(s)dsφ(x). By standard mollification's arguments we can approximate b in L 1 (0, T ) by a sequence (b ε ) ε>0 ∈ C ∞ ((0, T )) and we have the existence of a sequence of points (x ε , t ε ) such that as ε → 0, (x ε , t ε ) → (x 0 , t 0 ) and fix ε, (x ε , t ε ) is a local minimum point for u(x, t) + Therefore, letting δ → 0, we respectively obtain (3.30) and (3.29) and this ends the proof.

Stability

We will prove here the stability with respect to the final datum and the one with respect to the Hamiltonian. The latest will be proved under a very weak convergence in time that as been proved for L 1 -viscosity solution by Barles in [START_REF] Barles | A new stability result for viscosity solutions of nonlinear parabolic equations with weak convergence in time[END_REF]. (Our proof is indeed an adaptation to L1Bvs of the proof of [3, Theorem 1.1]). Note that in this proof we only need assumptions (H0)-(H1) on the Hamiltonian.

Theorem 4.9. Stability w.r.to H. For each n ∈ N let u n be a L 1 -bilateral viscosity solution of -u t (x, t) + H n (t, x, Du) = 0 in R N × (0, T ) u(x, T ) = ϕ(x) in R N .

(4.56)

We assume that:

Our aim is to use the fact that the function u δ n is a L1Bvs of (4.60) by testing with the function φ(x, t)+ t 0 b-t 0 ψ n . To do this we first observe that the convergence assumption ii) implies t 0 ψ n → 0 locally uniformly in (0, T ) therefore, for each (x δ , t δ ) local minimum point of u δ (x, t) -t 0 b(s)dsφ(x, t), there exists a a sequence (x n δ , t n δ ) → (x δ , t δ ) as n → ∞ of local minimum points of u δ n (x, t)φ(x, t) -t 0 b(s)ds + t 0 ψ n (s)ds. (Recall that u δ (x, t) := inf (xn,tn)→(x,t) lim inf n→∞ u δ n (x n , t n )). Let (G, b) ∈ H -(t 0 , x 0 , Dφ(x 0 , t 0 )) we state now that there exists a n big enough and a δ small enough such that we can find a η > 0 for which 

ψ n (t) + G(t

  For a function f : [a, b] → R N we will denote by V b a (f ) the classical variation on [a, b] and by BV ([0, T ]; R N ) the set of functions f : [0, T ] → R N with bounded variation on [0, T ]. Moreover, we will denote by BV -([0, T ]; R N ) the set of left continuous functions of BV ([0, T ]; R N ) which are continuous at 0.
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 34 Assume (HF1)-(HF3) and (Hid). The function defined in(3.26) is the unique L 1 -bilateral viscosity solution of (3.27) when the Hamiltonian is given in (3.28).
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 1 Figure 1: Case 1: Numerical solutions with 150 2 grid nodes.
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 2 Figure 2: Case 2: Numerical solutions with 150 2 grid nodes.

Remark 4 . 1 .

 41 It is easy to check that if the dynamics F fulfils assumptions (HF1)-(HF3), then the Hamiltonian defined in (3.28) satisfies assumptions (H0)-(H3).
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 44 Assume (H0) and (H1). Then, Definition 3.2 and Definition 4.2 are equivalent.
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  0 b(s)dsφ(x) we have lim δ→0 + ess sup |t-t 0 |≤δ sup x∈B δ (x 0 ), p∈B δ (Dφ(x 0 )) {H(t, x, p)b(t)} = = inf (G,b)∈H + (t 0 ,x 0 ,Dφ(x 0 )) G(t 0 , x 0 , Dφ(x 0 )) and lim δ→0 + ess inf |t-t 0 |≤δ inf x∈B δ (x 0 ), p∈B δ (Dφ(x 0 )) {H(t, x, p)b(t)} = = sup (G,b)∈H -(t 0 ,x 0 ,Dφ(x 0 ))

t 0 b

 0 (s)dsφ(x) we have lim δ→0 + ess sup |t-t 0 |≤δ sup x∈B δ (x 0 ), p∈B δ (Dφ(x 0 )) {H(t, x, p)b(t)} ≥ 0.
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 4 7. (Consistency). Assume (H0)-(H3) and (Hid).

( a )

 a If the final condition ϕ is a continuous function, thenu is a L 1 -bilateral viscosity solution ⇐⇒ u is a L 1 -viscosity solution.(b) If the Hamiltonian H is continuous also in the t-variable, then u is a L 1 -bilateral viscosity solution ⇐⇒ u is a bilateral viscosity solution.

t0

  b ε (s)dsφ(x). Since u is a Bvs we have -b ε (t ε ) + H(t ε , x ε , Dφ(x ε )) = 0.Note that for each δ > 0 fixed we can find an ε small enough to have ess inf|t-t 0 |≤δ inf x∈B δ (x 0 ), p∈B δ (Dφ(x 0 )) {H(t, x, p)b(t)} ≤ -b ε (t ε ) + H(t ε , x ε , Dφ(x ε )) = 0 and 0 = -b ε (t ε ) + H(t ε , x ε , Dφ(x ε )) ≤ ess sup |t-t 0 |≤δ sup x∈B δ (x 0 ), p∈B δ (Dφ ( x 0 )){H(t, x, p)b(t)} .

Theorem 4 .

 4 [START_REF] Bressan | Impulsive control-systems with commutativity assumptions[END_REF]. (Stability w.r.to ϕ.) For each n ∈ N let u n be a L 1 -bilateral viscosity solution of equation (4.46) with final conditionu(x, T ) = ϕ n (x) in R N .Assume that, for each n ∈ N, the function ϕ n ∈ C(R N ) and is bounded, moreover the sequence (ϕ n ) n∈N is monotone increasing andlim n→∞ ϕ n (x) = ϕ(x) ∀x ∈ R N .Then, the function u(x, t) := lim n→∞ u n (x, t), is a L 1 -bilateral viscosity solution of equation (4.46) with final condition u(x, T ) = ϕ(x) in R N .

  in AC([σ, 1]; R N ).

	Theorem 2.2. Assume (Hco) and (Hg1)-(Hg3). Let µ be a Radon measure and (ψ t ) t∈T be a
	family fulfilling (2.6). Then Y α X,τ ∈ BV ([τ, T ]; R N ) is a solution of (2.5) if and only if there exists a solution Z α X,σ ∈ AC([σ, 1]; R N ) of (2.11) corresponding to the graph completion Φ defined in (2.10)

  Let us notice that in Case 2, the value function v corresponding to the parametrized problem is lsc.

	1 15 < s < 7 15 ; 7 15 < s < 8 15 ; 8 15 < s < 14 15 ; (15s -12, 2, 1) 14 (15s -6, 1, 0) (2, 1, 15 6 s -8 6 ) 15 < s < 1.

  Therefore, there exists a smooth function ψ and a finite set of points (x k , t k ) such that ut 0 b -(φ + ψ) has a zero maximum at (x k , t k ) and for each k B

	and				
	lim δ→0 +	ess inf |t-t 0 |≤δ	inf x∈B δ (x 0 ), p∈B δ (Dφ(x 0 ))	{H(t, x, p) -b(t)} ≤ 0.	(4.50)
	Since u is a L1vs, in particular is a L 1 -viscosity supersolution therefore inequality (4.49) is satisfied.
	To prove (4.50), for each δ > 0 we apply Lemma 4.8 above choosing ε small enough the ensure the existence of an η > 0 such that oε(1) √ ε + o ε (1) + η ≤ δ and o ε (1) √ ε + o ε (1) + η ≤ δ (and with W (t, x) = u(x, t) + t 0 b(s)ds -φ(x, t)).
	minimum point for u(x, t) -	t 0 b(s)ds -φ(x) we have		and (x 0 , t 0 ) local
	lim δ→0 +	ess sup |t-t 0 |≤δ	sup x∈B δ (x 0 ), p∈B δ (Dφ(x 0 ))	{H(t, x, p) -b(t)} ≥ 0	(4.49)

  Since u is a L1Bvs we have (3.30) at each point (t k , x k ), i.e.

		lim η→0 +	ess inf |t-t k |≤η	inf x∈Bη(x k ), p∈Bη(Dφ(x k )+Dψ(x k ,t k ))
				.54)
	Thus,		
	ess inf |t-t 0 |≤δ	inf x∈B δ (x 0 ), p∈B δ (Dφ(x 0 ))	{H(t, x, p) -b(t)} ≤
				≤ ess inf |t-t k |≤η	inf x∈Bη(x k ), p∈Bη(Dφ(x k )+Dψ(x k ,t k ))	{H(t, x, p) -b(t)} . (4.55)

  , x, p) + b(t) ≥ H n (t, x, p)m n (t, δ)m(t, δ) ∀t ∈ B η (t n δ ), x ∈ B η (x n δ ), p ∈ B η (Dφ(x n δ , t n δ )). (4.61) Indeed, since (G, b) ∈ H -(t 0 , x 0 , Dφ(x 0 , t 0 )) there exists a β such that ψ n (t) + G(t, x, p) + b(t) ≥ H n (t, x, p)m n (t, δ)m(t, δ) ∀t ∈ B β (t 0 ), x ∈ B β (x 0 ), p ∈ B β (Dφ(x 0 , t 0 ))(where we used also the definition of m, m n .) Thus (4.61) follows from (x n δ , t n δ ) → (x δ , t δ ) as n → ∞, (x δ , t δ ) → (x 0 , t 0 ) as δ → 0 and the regularity of φ.By definition of L1Bvs, condition (4.61) and the fact that (x n δ , t n δ ) is a local minimum point of u δ (s)ds imply that -φ t (x n δ , t n δ ) + G(x n δ , t n δ , Dφ(x n δ , t n δ )) ≤ 0. Therefore letting n → ∞ and δ → 0 by the continuity of G we obtain (4.58) and conclude the proof of 1.Point 2 can be proved with the same argument by remarking that the functions u δ

n (x, t)φ(x, t) -t 0 b(s)ds + t 0 ψ n n (x, t) := u n (x, t) -t 0 [m n (s, δ) + m(s, δ)] ds.

are L1Bvs of -w t + H n (t, x, Dw) + m n (t, δ) + m(t, δ) = 0.

* Partially supported by the grant DGA-ENSTA No 06 60 037, 2009

i) For each n ∈ N the Hamiltonian H n fulfils hypotheses (H0)-(H1) for some modulus m n = m n (K) such that m n (•, r) L 1 (0,T ) → 0 as r → 0 uniformly with respect to n, for any compact subset K.

ii) There exists a function H fulfilling hypotheses (H0)-(H1) such that, for any (x, p) ∈ R N × R N , lim n→∞ t 0 H n (s, x, p)ds → t 0 H(s, x, p)ds locally uniformly in (0, T ).

iii) The final condition ϕ fulfils (Hid),

Then the function u(x, t) := inf

(4.57)

Proof. Following Definition 4.2 we have to prove that

2. for any (x 0 , t 0 ), φ ∈ C 1 (R N × R + ), (G, b) ∈ H + (t 0 , x 0 , Dφ(x 0 , t 0 )) such that (x 0 , t 0 ) is a local minimum point for u(x, t) -t 0 b(s)dsφ(x, t) we have

In order to prove 1, let us fix a (x

Fix now a small δ > 0, we consider a large compact subset K of R N × R N and the functions m, m n given by assumptions i),ii). We construct a new sequence (u δ n ) n defined by

Note that for each n, δ the function u δ n is a L1Bvs of [START_REF] Arutyunov | Necessary conditions for impulsive nonlinear optimal control problems without a priori normality assumptions[END_REF]. Therefore, by classical results, since (x 0 , t 0 ) is a strict local minimum point of u(x, t) -t 0 b(s)dsφ(x, t), for δ small enough there exists a local minimum point of u δ (x, t) -t 0 b(s)dsφ(x, t), that we will denote (x δ , t δ ). Note that (x δ , t δ ) → (x 0 , t 0 ) as δ → 0. We set now ψ n (s) := H n (s, x δ , Dφ(x δ , t δ )) -H(s, x δ , Dφ(x δ , t δ )).

Proof. By definition of L1Bvs our we have to prove that ∀x ∈ R N ,

Note that, since [START_REF] Ishii | Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets[END_REF]Corollary 1.10]). Therefore, for each sequence (x n , t n ) → (x, T ), we have

and the proof is completed.

Uniqueness

We finally prove the uniqueness result.

Theorem 4.11. Assume (H0)-( H3) and (Hid). Then there exists at most one L 1 -bilateral viscosity solution of (4.46).

Proof. This proof will follow the idea of G.Barles of using the inf-convolution in the proof of uniqueness for bilateral viscosity solution [START_REF] Barles | Solutions de viscosité des équations de Hamilton-Jacobi[END_REF]Theorem 5.14].

Suppose that there exist v and u two L 1 -bilateral viscosity solution of (4.46). Since v is in particular a L 1 -viscosity supersolution the main point is to look for a sequence of L 1 -viscosity subsolutions of (4.46) approximating u. The thesis will then follow by comparison result for L 1viscosity solution.

The construction of the approximating sequence can be summarised in the following Lemma. The proof being an adaptation of the proof given in [2, Lemme 5.5] will be not detailed (see also [START_REF] Barron | Viscosity solutions and analysis in L ∞[END_REF]Lemma 19]). Lemma 4.12. Under the assumption of Theorem 4.11, if u is L 1 -bilateral viscosity solution of (4.46), let u ε be defined by

Then, the upper semi continuous envelope (u ε ) * is a L 1 -viscosity subsolution of

for K big enough and where M = 2 u ∞ . Moreover,

2 KT M ε is a L 1 -viscosity subsolution of (4.46), therefore, by the comparison result for L 1 -viscosity solutions (see [START_REF] Ishii | Hamilton-Jacobi equations with discontinuous Hamiltonians on arbitrary open sets[END_REF]Theorem 8.1] or [START_REF] Nunziante | Existence and uniqueness of unbounded viscosity solutions of parabolic equations with discontinuous time-dependence[END_REF]) we obtain

where we used also (4.63). Letting ε → 0 we have u(x, t) ≤ v(x, t) ∀(x, t) ∈ R N × (0, T ), thus, reversing the roles of u and v, the uniqueness follows.