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ADAPTIVE TESTS FOR PERIODIC SIGNAL DETECTION WITH
APPLICATIONS TO LASER VIBROMETRY ∗
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and Céline Lévy-leduc
2

Abstract. Initially motivated by a practical issue in target detection via laser vibrometry, we are
interested in the problem of periodic signal detection in a Gaussian fixed design regression framework.
Assuming that the signal belongs to some periodic Sobolev ball and that the variance of the noise is
known, we first consider the problem from a minimax point of view: we evaluate the so-called minimax
separation rate which corresponds to the minimal l2−distance between the signal and zero so that the
detection is possible with prescribed probabilities of error. Then, we propose a testing procedure which
is available when the variance of the noise is unknown and which does not use any prior information
about the smoothness degree or the period of the signal. We prove that it is adaptive in the sense
that it achieves, up to a possible logarithmic factor, the minimax separation rate over various periodic
Sobolev balls simultaneously. The originality of our approach as compared to related works on the
topic of signal detection is that our testing procedure is sensitive to the periodicity assumption on
the signal. A simulation study is performed in order to evaluate the effect of this prior assumption on
the power of the test. We do observe the gains that we could expect from the theory. At last, we turn
to the application to target detection by laser vibrometry that we had in view.
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Introduction

One of the most topical issues in optronics is the identification of a target through the determination of some
of its vibration parameters such as its vibration period for instance. The use of coherent lasers has provided
some progress in this field. After emission of a continuous coherent laser wave, reflection of it on a target
composed of reflectors vibrating at the same frequency, reception and demodulation, one receives a signal which
consists of a deterministic periodic function corrupted by Gaussian white noise. It turns out that the period of
the deterministic part of the signal is precisely the period of the target vibrations. Estimating this parameter
would hence allow to identify the target. We are interested here in a step which has to precede this estimation
phase, namely the target detection step.
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Taking into account the form of the observed signal in this laser vibrometry context, we consider the following
general periodic fixed design regression model:

Yj = f

(
j

n

)
+ σεj for j ∈ {1, . . . , n}, (1)

where f is some unknown real valued periodic function called the signal, the εj ’s are independent standard
Gaussian random variables and σ is a positive real number. We aim at testing the null hypothesis (H0) :
“f = 0” against the alternative (H1) : “f �= 0”, which amounts in the practical situation of our interest to
detecting the presence of any target.

We particularly want to make the best possible use of the periodicity properties of the signal, keeping in
mind of course that at this stage, we do not have any knowledge of the period itself. To do this, we have to
know accurately the impact of such properties in our signal detection problem.

From a theoretical point of view, when σ is known, the performances of a level α test of (H0) can be evaluated
in terms of uniform separation rates with respect to some prescribed norm ‖.‖ over classes of smooth functions.
Given δ ∈ ]0, 1[, a class of functions S and a level α test Φα with values in {0, 1} rejecting (H0) when Φα = 1,
the uniform separation rate ρ(Φα,S, δ, σ) of Φα over the class S is defined as the smallest number ρ such that
the test guarantees a power at least equal to (1 − δ) for all alternatives f in S at a distance ρ from 0. More
precisely, if Pf denotes the distribution of the observation Y = (Y1, . . . , Yn) defined by (1),

ρ(Φα,S, δ, σ) = inf
{

ρ > 0, inf
f∈S,||f ||≥ρ

Pf [Φα = 1] ≥ 1 − δ

}
= inf

{
ρ > 0, sup

f∈S,||f ||≥ρ

Pf [Φα = 0] < δ

}
.

We equip [0, 1] with the measure µn given by µn = n−1
∑n

j=1 ∆j/n, ∆. being the Dirac measure.
The first purpose of this paper is to evaluate the quantity

ρ̃(S, α, δ, σ) = inf
Φα

ρ(Φα,S, δ, σ), (2)

where the infimum is taken over all level α tests Φα and ρ is the uniform separation rate with respect to the
usual norm of L2([0, 1], µn), S being some periodic Sobolev ball with a known smoothness parameter. This
quantity introduced by Baraud in [1] as the (α, δ)-minimax rate of testing over S or the minimax separation
rate over S is the non-asymptotic version of the (asymptotic) minimax rate of testing usually considered. The
key reference for the computation of minimax rates of testing in various statistical models is the series of papers
due to Ingster [11, 12]. In the Gaussian white noise model, which is originally considered to study the problem
of signal detection, Ingster establishes the minimax rates of testing with respect to the Lr−norm (1 ≤ r ≤ +∞)
over some classes of alternatives like Sobolev, Hölder balls in Lp (p ≥ r if r ≤ 2, p = r if r > 2) or ellipsoids
in lr. In particular, for Sobolev or Hölder balls with smoothness degree s, he obtains a rate with respect to
the L2−norm of order n−2s/(4s+1). Other kinds of alternatives such as Besov balls Bs,p,q(R) with p ∈ ]0, 2[ for
the L2−norm are considered by Lepski and Spokoiny in [15]. Furthermore, Lepski and Tsybakov in [16] extend
Ingster’s study by finding the exact separation constants over Hölder and Sobolev classes for the L∞−norm.
Baraud in [1] focuses on the Gaussian sequence model and gives the minimax separation rates with respect to
the l2−norm over some ellipsoids in lp (with p ∈ ]0, 2]) and some Besov bodies. His results, which allow (as
explained by Spokoiny in [19]) to recover some of the results obtained in the Gaussian white noise model, can
be distinguished by their non-asymptotic characteristic. As for the fixed design regression model, Härdle and
Kneip in [9] state a first minimax result over some particular Sobolev classes. Gayraud and Pouet in [7] consider
the more general problem of testing composite null hypotheses such as “f belongs to some parametric family”.
They give the minimax rates of testing for this problem with respect to the L2−norm over some Hölder classes
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and prove that these rates are of the same order as those obtained for simple hypotheses in the Gaussian white
noise model (see [12]).

The particularity of our work on this topic lies in the fact that we exhibit how the minimax separation rates
in a periodic fixed design regression model depend on the period of the signal.

The second purpose of this paper is to propose a testing procedure which does not use any prior information
on the smoothness of the signal f and which is available when the variance of the noise and the period of f
are unknown. The problem of finding adaptive (assumption free) tests of “f = 0” is studied from a minimax
point of view by Spokoiny [19, 20] in the Gaussian white noise model over some Besov balls and by Baraud [1]
in the Gaussian sequence model when the variance is known over some ellipsoids. They prove that adaptation
is impossible without some loss of efficiency within an extra log log n factor and they propose adaptive testing
procedures which are rate optimal over several classes of alternatives simultaneously. In the fixed design regres-
sion model without any periodicity assumption, various testing procedures using no prior assumption on the
smoothness of the signal f have been proposed. Horowitz and Spokoiny in [10] use kernel smoothing methods to
construct a procedure for the problem of testing that the signal belongs to some parametric family of functions.
This test achieves a rate of order (

√
log log n/n)2s/(4s+1) for the normalized l2−norm over Hölder, Sobolev and

Besov classes of alternatives with smoothness parameter s. Besides, some methods of model selection by mini-
mization of a penalized criterion allow to construct other assumption free testing procedures. The test proposed
by Eubank and Hart in [5] is built from a criterion connected with Mallows’ Cp. It achieves the parametric
rate of testing over directional alternatives. The test developed by Baraud, Huet and Laurent in [2] is based
on a criterion related to the one used by Laurent and Massart in [13] to estimate quadratic functionals in the
regression framework. It consists in a multiple testing procedure which can be described as follows. Introduce
some suitable collection of linear subspaces {Sm, m ∈ M} of Rn based on orthonormal functions of L2([0, 1])
such that for each m, Sm �= {0} and Sm �= Rn, and some collection {αm, m ∈ M} of numbers in ]0, 1[. Consider,
for each m in M, the Fisher test with level αm of the null hypothesis “(f(1/n), . . . , f(1))T = 0” against the
alternative “(f(1/n), . . . , f(1))T ∈ Sm”. One thus obtains a collection of Fisher tests and one decides to reject
the null hypothesis if one of the tests of the collection does. From a theoretical point of view, Baraud, Huet
and Laurent evaluate in [2] the quality of their test by the means of uniform separation rates over some Hölder
balls with respect to the normalized l2−norm. They obtain some results similar to Horowitz and Spokoiny’s
ones, except that they look at the problem from a non-asymptotic angle. From a practical point of view, they
illustrate their results by a simulation study. In the fixed design regression model with a periodic regression
function, we can at least distinguish two kinds of signal detection procedures: some rely on a likelihood ratio
test and others use Bayesian techniques. The ones based on likelihood ratio allow to test the null hypothesis
(H0) against (H1) when the periodic regression function is a trigonometric polynomial with a not necessarily
known degree. Such procedures are developed in the books of Brockwell and Davis [4] p. 337 et seq. or in the
one of Quinn and Thomson [18] p. 73 et seq. They consist in rejecting the null hypothesis if the periodogram
of the observations contains a value substantially larger than the average value, recalling that the periodogram
of Y = (Y1, . . . , Yn) is defined by IY (q) = n−1|∑n

j=1 e−2iπjq/nYj |2 for q ∈ {1, . . . , n−1}. As for the Bayesian
methods, they are detailed by Gregory and Loredo in [8]. The relevance of these different tests is essentially
justified by simulation studies.

Our main concern is to provide a testing procedure which adapts both to the smoothness and the period
of the signal. Our approach consists in fact in using the above procedure due to Baraud, Huet and Laurent
[2] with a precise collection of models {Sm, m ∈ M} which takes into account different possible values of the
periodicity parameter. We evaluate the uniform separation rates of the obtained test over some periodic Sobolev
balls with respect to the usual norm of L2([0, 1], µn). In particular, we point out in Section 2 that they are
of the same order, up to a logarithmic factor, as the minimax separation rates that we establish in Section 1.
An experimental comparison between the powers of the considered test and the one originally investigated by
Baraud, Huet and Laurent in [2] (which does not take any periodicity assumption into account) is presented in
Section 3. In Section 4, we finally focus on the application to target detection by laser vibrometry which has
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initially motivated this work. The proofs of the theorems and the propositions stated in the paper are detailed
in Section 6.

1. Minimax separation rates over periodic Sobolev balls

Throughout this section, we assume that σ is known. Given k ∈ {1, . . . , n}, s ∈ N∗ and R > 0, we consider
the periodic Sobolev ball:

Sk(s, R) =
{

f ∈ Cs([0, 1]), f is periodic with period k/n, ||f (s)||2,k/n ≤ R
}
, (3)

where Cs([0, 1]) denotes the set of functions f from [0, 1] with a continuous s−th order derivative denoted by
f (s), and for θ ∈]0, 1[, for all g in L2([0, 1], dx),

||g||22,θ = θ−1

∫ θ

0

g2(x)dx.

Let us introduce the usual norm ‖.‖n of L2([0, 1], µn) given, for all g in L2([0, 1], µn), by

||g||2n =
1
n

n∑
j=1

g2

(
j

n

)
.

Fixing some levels α ∈]0, 1[ and δ ∈]0, 1−α[, our aim in this section is to evaluate the minimax separation rate
over Sk(s, R) defined by

ρ̃(Sk(s, R), α, δ, σ) = inf
Φα

inf

{
ρ > 0, sup

f∈Sk(s,R),||f ||n≥ρ

Pf [Φα = 0] < δ

}
,

where the infimum is taken over all level α tests Φα rejecting “f = 0” when Φα = 1.

1.1. Lower bound

Following a general idea due to Ingster, we derive in this section a lower bound for ρ̃(Sk(s, R), α, δ, σ).

For all B ⊂ L2([0, 1], µn), we define

β(B) = inf
Φα

sup
f∈B

Pf (Φα = 0). (4)

In the following, for every x, y in R, we set x ∧ y = inf {x, y}. c denotes a constant that may vary from line

to line. The dependency of c with respect to various parameters is specified by the notation c(.).

Theorem 1. Given some levels α ∈]0, 1[ and δ ∈]0, 1 − α[, there exist some absolute constant κ ∈]0, 1] and
some positive constant c(s) such that for every integer k in [κ−1, n/2], setting

ρ2
k(s, R) = c(s) sup

D∈{1,...,[κk]}

(
(1 − α − δ)

√
Dσ2

n
∧ R2D−2s

(
k

n

)2s
)

,

one has, with β defined by (4),
β({f ∈ Sk(s, R), ||f ||2n ≥ ρ2

k(s, R)}) ≥ δ.

This theorem allows us to obtain the following explicit lower bound for ρ̃(Sk(s, R), α, δ, σ).
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Corollary 1. Given some levels α ∈]0, 1[ and δ ∈]0, 1 − α[, there exist some absolute constant κ ∈]0, 1] and
some positive constant c(s, α, δ) such that for every integer k in [κ−1, n/2],

ρ̃2(Sk(s, R), α, δ, σ) ≥ c(s, α, δ)

(
R

2
1+4s

(
k

n

) 2s
4s+1

(
σ2

n

) 4s
4s+1

∧
√

kσ2

n
∧ R2

(
k

n

)2s
)

.

In particular, for all k ∈ [κ−1, n/2], if

σ√
n

(
k

n

)−s

≤ R ≤ σns−1/4

(
k

n

)1/4

,

then

ρ̃(Sk(s, R), α, δ, σ) ≥ c′(s, α, δ)R
1

1+4s

(
k

n

) s
4s+1

(
σ2

n

) 2s
4s+1

.

Proof: It is easy to see that the result

β({f ∈ Sk(s, R), ||f ||2n ≥ ρ2
k(s, R)}) ≥ δ

of Theorem 1 leads to the inequality:

ρ̃2(Sk(s, R), α, δ, σ) ≥ ρ2
k(s, R).

Then, we only need to compute an explicit lower bound for ρ2
k(s, R).

Let us prove that for κ−1 ≤ k ≤ n/2,

sup
D∈{1,...,[κk]}

(
R2

(
k

n

)2s

D−2s∧
√

D

n
σ2

)
≥ 1√

2
R

2
1+4s

(
k

n

) 2s
1+4s

(
σ2

n

) 4s
4s+1

∧
√

[κk]σ2

n
∧ R2

(
k

n

)2s

.

Remark that R2(k/n)2sD−2s ≤ √
Dσ2/n if and only if D ≥ D∗, where D∗ is the smallest integer at least equal

to
(
(k/n)2snR2/σ2

)2/(1+4s)
, that is

D∗ = inf

⎧⎨⎩D ∈ N, D ≥
((

k

n

)2s
nR2

σ2

) 2
1+4s

⎫⎬⎭ .

We can distinguish three cases.
If D∗ = 1, for all D in Dk = {1, . . . , [κk]}, D ≥ D∗, which implies that R2(k/n)2sD−2s ≤ √

Dσ2/n. Hence,

sup
D∈Dk

(
R2

(
k

n

)2s

D−2s ∧
√

D

n
σ2

)
= R2

(
k

n

)2s

.

If D∗ > [κk], for all D in Dk,
√

Dσ2/n < R2(k/n)2sD−2s, and

sup
D∈Dk

(
R2

(
k

n

)2s

D−2s ∧
√

D

n
σ2

)
=

√
[κk]σ2

n
·

Finally, let us see what happens when 2 ≤ D∗ ≤ [κk]. Since in this case (D∗ − 1) ∈ Dk, we have that

sup
D∈Dk

(
R2

(
k

n

)2s

D−2s ∧
√

D

n
σ2

)
≥ R2

(
k

n

)2s

(D∗ − 1)−2s ∧
√

D∗ − 1
n

σ2.
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So, from the definition of D∗ and the fact that D∗ ≥ 2 leads to D∗ − 1 ≥ D∗/2, we derive:

sup
D∈Dk

(
R2

(
k

n

)2s

D−2s ∧
√

D

n
σ2

)
≥

√
D∗

√
2n

σ2 ≥ 1√
2
R

2
1+4s

(
k

n

) 2s
1+4s

(
σ2

n

) 4s
4s+1

,

which concludes the proof.

1.2. Upper bound

We now aim at establishing the optimality of the above lower bound, provided that the radius R of the
periodic Sobolev ball Sk(s, R) belongs to some specified interval. For all θ > 0, we introduce the Fourier basis
on [0, θ] defined as follows: ⎧⎨⎩

ϕθ,1(x) = 1,

ϕθ,2p(x) =
√

2 cos (2πpx/θ) , ∀p ≥ 1,

ϕθ,2p+1(x) =
√

2 sin (2πpx/θ) , ∀p ≥ 1.

(5)

For all D in N∗, we consider the linear subspace SD of Rn spanned by the vectors:{(
ϕk/n,l(1/n), . . . , ϕk/n,l(1)

)T

, l = 1, . . . , D

}
. (6)

Let us denote by ΠSD the orthogonal projection onto SD with respect to the Euclidean norm of Rn and introduce
the norm ||.||Rn given by:

||V ||2Rn =
1
n

n∑
j=1

V 2
j for all V = (V1, . . . , Vn)T ∈ R

n. (7)

Proposition 1. Let α ∈]0, 1[ and δ ∈]0, 1 − α[. Define

D∗
k = k ∧ inf{D ∈ N, D ≥ ((k/n)2snR2/σ2)2/(1+4s)},

and denote by Dk the dimension of the linear space SD∗
k
. Let

Φ∗
α = 1I{

n‖ΠSD∗
k
(Y )‖2

Rn>tDk,ασ2

} ,

where tDk,α is the (1−α) quantile of the χ2 distribution with Dk degrees of freedom. There exists some positive
constant c(α, δ) such that the test Φ∗

α satisfies:

P0(Φ∗
α = 1) ≤ α, and Pf (Φ∗

α = 0) ≤ δ,

for all f ∈ Sk(s, R) such that:

‖f‖2
n ≥ c(α, δ)

(
R

2
1+4s

(
k

n

) 2s
4s+1

(
σ2

n

) 4s
4s+1

+
R2k

n2s
+

σ2

n

)
.

In particular, if
σ√
n

(
k

n

)−s

≤ R ≤ σn
8s2−6s−1

8s

(
k

n

)− 2s+1
8s

, (8)

then

ρ̃(Sk(s, R), α, δ, σ) ≤ c′(α, δ)R
1

1+4s

(
k

n

) s
4s+1

(
σ2

n

) 2s
4s+1

.
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Comments.
(i) Assuming that k belongs to [κ−1, n/2] and that the radius R belongs to the range given by (8), we derive
from Corollary 1 and Proposition 1 that the minimax separation rate ρ̃(Sk(s, R), α, δ, σ) for the considered
problem over Sk(s, R) is of order

R
1

1+4s

(
k

n

) s
4s+1

(
σ2

n

) 2s
4s+1

.

Introducing the larger class S′
k(s, R) = {f, f is periodic with period k/n and f(x) =

∑
l≥1 βl(f)ϕk/n,l(x) with

(2π)2s
∑

l≥2[l/2]2sβ2
l (f) ≤ R2(k/n)2s}, one can easily see that the same result holds for ρ̃(S′

k(s, R), α, δ, σ). Such
a result is in fact comparable to the minimax separation rate that one can obtain in the usual Gaussian white
noise model (see Appendix p. 73 for further details).
(ii) The range defined by (8) for the radius R is not so restrictive when we consider the rates from an asymptotic
point of view. In this case, k/n tends to a fixed period τ as n tends to ∞, and since s is a positive integer, any
positive R is allowed.

2. Adaptive testing procedures with unknown variance

We turn here to the problem of finding adaptive tests of (H0) “f = 0” against (H1) “f �= 0” in L2([0, 1], µn)
when the variance σ2 of the Yj ’s given by (1) is unknown. We consider the following test of “(f(1/n), . . . , f(1))T =
0” against “ (f(1/n), . . . , f(1))T �= 0” proposed by Baraud, Huet and Laurent in [2]. Let us fix some α in ]0, 1[.
Given some finite collection of linear subspaces {Sm, m ∈ M} of Rn, let

Tα = sup
m∈M

{
(n − Dm)‖Πm(Y )‖2

Rn

Dm‖Y − Πm(Y )‖2
Rn

− F
−1

Dm,n−Dm
(uα)

}
(9)

where:
• ‖.‖Rn is the norm defined by (7);
• FDm,n−Dm(u) is the probability for a Fisher with Dm and n − Dm degrees of freedom variable to be

larger than u;
• Πm is the orthogonal projection onto Sm with respect to the Euclidean norm;
• Dm is the dimension of Sm.

The null hypothesis “(f(1/n), . . . , f(1))T = 0” is rejected when the test statistic Tα is positive.
We propose to use this testing procedure by taking particular collections of linear subspaces {Sm, m ∈ M}
which fit the periodicity assumption on the signal. More precisely, when the period of the signal is known,
the chosen collection of subspaces is rather similar to the one studied in details by Baraud, Huet and Laurent.
When the period is unknown, the idea is to take a collection of subspaces corresponding to different values of
the periodicity parameter. Our aim in the following two sections is to evaluate the uniform separation rates of
the consequent tests over some Sobolev balls. We then use a result due to Baraud, Huet and Laurent [2] that we
recall in Section 6 (cf. Th. 2). The proof of this result is based on some deviations inequalities for noncentral
χ2 variables due to Birgé [3] combined with some exponential inequalities for Fisher variables.

2.1. Testing procedure when the period of the signal is known

Throughout this section, we assume that n ≥ 3 and that f is periodic with period k/n for k in {3, . . . , n}.
We recall that {ϕk/n,l, l ≥ 1} denotes the Fourier basis on [0, k/n]. We take

M =
{
1, 2, 22, . . . , 2[log2(k/2)]

}
, (10)

and for D in M, SD as the linear subspace of Rn spanned by the vectors:{(
ϕk/n,l(1/n), . . . , ϕk/n,l(1)

)T
, l = 1, . . . , D

}
. (11)
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The following proposition gives upper bounds for the uniform separation rates of the corresponding testing
procedure over the periodic Sobolev balls Sk(s, R) defined in Section 1.

Proposition 2. Let n ≥ 3 and k ∈ {3, . . . , n}. Given some levels α and δ ∈]0, 1[, let Tα be the test statistic
defined by (9) with M and {Sm, m ∈ M} chosen as in (10) and (11). Assume that n is large enough so that
α ≥ e−n/20 log n/ log 2 and δ ≥ 2e−n/42. For all s in N∗, there exist some positive constants c(α, δ) and c(s, α, δ)
such that for all R > 0, if f belongs to Sk(s, R) and satisfies:

||f ||2n ≥ c(α, δ)

{
R

2
4s+1

(
k

n

) 2s
4s+1

(√
log log kσ2

n

) 4s
4s+1

+
log log k

n
σ2

}
+ c(s, α, δ)

R2k

n2s
,

then

Pf(Tα > 0) ≥ 1 − δ.

In particular, if

σ√
n

(
k

n

)−s

(log log k)s+1/2 ≤ R ≤ σn
8s2−6s−1

8s

(
k

n

)− 2s+1
8s

(log log k)1/4, (12)

then

ρ
(
1I{Tα>0},Sk(s, R), δ, σ

) ≤ c′(s, α, δ)R
1

1+4s

(
k

n

) s
4s+1

(√
log log kσ2

n

) 2s
4s+1

.

Comments.
According to the results of Section 1, this means that the testing procedure is rate optimal, up to a possible
log log k factor, over all the Sobolev balls Sk(s, R) such that (12) holds simultaneously. In view of the results
due to Spokoiny [19] in the Gaussian white noise model for Besov balls and Baraud [1] in the Gaussian sequence
model for families of nested ellipsoids, we can rightfully think that this loss of efficiency is unavoidable when
we deal with an adaptive procedure. However, we have obtained no result which would confirm it.

2.2. Testing procedure when the period of the signal is unknown

We now consider the more realistic case where the period of the signal is unknown. Let us recall that
{ϕθ,l, l ≥ 1} denotes the Fourier basis on [0, θ]. We consider the set

M =
{
(k, D), k ∈ {2, . . . , n}, D ∈

{
1, 2, . . . , 2[log2(k/2)]

}}
. (13)

For m = (k, D) in M, we define Sm as the linear space spanned by{(
ϕk/n,l(1/n), . . . , ϕk/n,l(1)

)T
, l = 1, . . . , D

}
. (14)

In the following result, we establish upper bounds for the uniform separation rates of the corresponding procedure
over some Sobolev balls described below.

Proposition 3. Let n ≥ 3. Given some levels α and δ ∈]0, 1[, let Tα be the test statistic defined by (9) with M
and {Sm, m ∈ M} chosen as in (13) and (14). Introduce for s ∈ N∗, R > 0 and τ1 ∈ [2/n, 1],

S(s, R, τ1) =
{
f ∈ Cs([0, 1]), f is periodic with period τ(f) ∈ [2/n, τ1], ‖f (s)‖2,τ(f) ≤ R

}
.
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Assume that n is large enough so that α ≥ e−n/20 log(n!)/ log 2 and δ ≥ 2e−n/42. For all s in N∗, there exists
some positive constant c(s, α, δ) such that for all R > 0, τ1 in [2/n, 1], if f belongs to S(s, R, τ1) and satisfies:

||f ||2n ≥ c(s, α, δ)

⎧⎨⎩R
2

4s+1 τ
2s

4s+1
1

(√
log(n)σ2

n

) 4s
4s+1

+
log(n)

n
σ2 +

(
R2τ2s

1

nτ2
1

∧ R2τ2s
1

)
log n

⎫⎬⎭ ,

then
Pf(Tα > 0) ≥ 1 − δ.

In particular, if
σ√
n

τ−s
1 (log n)s+1/2 ≤ R ≤ σ√

n
τ−s
1 (nτ2

1 )
4s+1
8s (log n)−

2s+1
8s , (15)

ρ(1I{Tα>0},S(s, R, τ1), δ, σ) ≤ c′(s, α, δ)R
1

1+4s τ
s

4s+1
1

(√
log nσ2

n

) 2s
4s+1

.

Comments.
The upper bound for the uniform separation rate of the test over S(s, R, τ1) when R and τ1 satisfy (15) is similar
to the one obtained when the period of f is known to be equal to k/n (see Prop. 2), but with a loss of efficiency
of order log n instead of log log k. This is technically due to the fact that we choose a collection {Sm, m ∈ M}
which is rich enough to ensure that it contains, for any function f with period τ(f) in [2/n, 1], some subspace
Sm close enough to f . Our choice for {Sm, m ∈ M} essentially relies on the properties of orthogonality of the
family {(ϕk/n,l(1/n), . . . , ϕk/n,l(k/n)), 1 ≤ l ≤ k} with respect to the Euclidean norm of Rk. However, we do
not know if the consequent extra log n factor is optimal or not.

3. Simulation study

We evaluate here the performances of the proposed test from a practical point of view. In particular, we want
to highlight the improvement carried by the periodicity assumption. In the definition (9) of the test statistic
Tα, we have to choose the set M and the collection {Sm, m ∈ M} of linear subspaces onto which Y is projected.
For numerical reasons which are explained below, we do not only consider periods of the form k/n: we propose
to take

M = {(q, D), q ∈ {1, . . . , Q} , D ∈ {2d + 1, 0 ≤ d ≤ d0}} ,

where Q and d0 are some fixed integers with 2d0Q < n, and for m = (q, D) in M, Sm as the linear space
spanned by the vectors {(

ϕq−1,l(1/n), . . . , ϕq−1,l(1)
)T

, l = 1, . . . , D
}

.

With the same notations as in Section 2, we set

Tper = sup
m∈M

{
(n − Dm)‖Πm(Y )‖2

Rn

Dm‖Y − Πm(Y )‖2
Rn

− F
−1

Dm,n−Dm
(uα)

}
,

where

uα = sup
{

u ∈]0, 1[, P0

(
sup

m∈M

{
(n − Dm)‖Πm(Y )‖2

Rn

Dm‖Y − Πm(Y )‖2
Rn

− F
−1

Dm,n−Dm
(u)

}
> 0

)
≤ α

}
.

Without taking the periodicity assumption into account, the corresponding statistic is

Tnper = sup
m∈M′

{
(n − Dm)‖Πm(Y )‖2

Rn

Dm‖Y − Πm(Y )‖2
Rn

− F
−1

Dm,n−Dm
(u′

α)
}

,
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where M′ = {2d + 1, 0 ≤ d ≤ d0}, for m = D in M′, Sm is the linear space spanned by the vectors{
(ϕ1,l(1/n), . . . , ϕ1,l(1))T

, l = 1, . . . , D
}

,

and

u′
α = sup

{
u ∈]0, 1[, P0

(
sup

m∈M′

{
(n − Dm)‖Πm(Y )‖2

Rn

Dm‖Y − Πm(Y )‖2
Rn

− F
−1

Dm,n−Dm
(u)

}
> 0

)
≤ α

}
.

To implement the testing procedures based on Tper and Tnper, the main point is to compute ||Π(q,D)(Y )||2
Rn for

every (q, D) in M. Considering

A(q, D) = (Aj,l(q, D))1≤j≤n,1≤l≤D =
(
ϕq−1,l(j/n)

)
1≤j≤n,1≤l≤D

,

we can see by straightforward calculations that when q is an integer such that 2d0q < n, AT (q, D)A(q, D) = nID

(ID denotes the identity matrix with dimension D). Minimizing the least squares criterion ||Y −A(q, D)C||2
Rn

for C in Rn then leads to Π(q,D)(Y ) = n−1A(q, D)AT (q, D)Y and consequently,

||Π(q,D)(Y )||2Rn =
1
n
‖AT (q, D)Y ‖2

Rn =
1
n2

D∑
l=1

⎛⎝ n∑
j=1

ϕq−1,l(j/n)Yj

⎞⎠2

.

Finally, if D = 2d + 1, it is easy to see that:

||Π(q,D)(Y )||2Rn =
1
n2

d∑
l=−d

∣∣∣∣∣∣
n∑

j=1

e−2iπljq/nYj

∣∣∣∣∣∣
2

.

Such an expression is interesting for two reasons: first, it corresponds to a cumulated periodogram, the peri-
odogram being a quantity frequently used in periodic signal detection, secondly, the values of

∑n
j=1 e−2iπjm/nYj ,

for m in {1, . . . , n}, can be computed by the means of a Fast Fourier Transform, which reduces our computation
time.

For our simulations, we take a level α = 5% and a number of observations n = 100. We choose d0 and Q
both equal to 7. The alternatives that we consider are the following ones:

fa(x) = a sin(12πx),
ga(x) = a(sin(16πx) + sin(8πx)),
ha(x) = a

(
cos

(
16π
15 cos(12πx)

)
+ cos

(
8π
15 cos(4πx)

))
,

ja(x) = a cos
(

16π
15 cos(8πx)

)
.

We present in Table 3 the estimated powers for the tests based on Tper and Tnper under various alternatives.
These powers are evaluated by 5000 simulations.
Comments.
As expected from our theoretical study, the above experimental results show that taking the periodicity as-
sumption into account in the testing procedure improves the power of the test. This is all the more true if the
number of significant Fourier coefficients (or harmonics) in the expansion of the periodic signal is large, as we
can see for alternatives ha and ja.

4. Applications to laser vibrometry

4.1. Presentation of the laser vibrometry technique

Let us consider a target vibrating under the effect of the vibrations of its motor for instance. If these
vibrations are sinusoidal then the vibrations of a point number m of the target can be written as γm cos(2πFst),
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Table 1. Estimated powers for the tests based on Tper and Tnper.

Alternatives fa Alternatives ha

a Tper Tnper a Tper Tnper

1 1 1 1 1 0.23
0.75 0.97 0.89 0.75 0.96 0.15
0.5 0.61 0.42 0.5 0.56 0.09
0.25 0.14 0.10 0.25 0.11 0.06

Alternatives ga Alternatives ja

a Tper Tnper a Tper Tnper

1 1 0.97 1 0.99 0.02
0.75 0.99 0.81 0.75 0.86 0.02
0.5 0.89 0.43 0.5 0.38 0.02
0.25 0.20 0.12 0.25 0.08 0.02

where γm is the amplitude of these vibrations and Fs the vibration frequency (that is 1/Fs is the vibration
period). The identification of a target can be done by estimating the frequency Fs.

To do this, one uses a coherent laser emitting a continuous wave that can be written: e(t) = exp(2iπct/λ),
where c is the light speed and λ is the laser wavelength (namely 1.5 µm). After emission of a continuous laser
wave, reflection of it on the target, reception and demodulation, one receives a complex valued signal of the
form:

Yj = f(j/n) + σ(ε1,j + i ε2,j) for j ∈ {1, . . . , n}, (16)

where i2 = −1, the ε1,j ’s and the ε2,j’s are independent standard Gaussian random variables and

f(t) =
M∑

m=1

am exp
[
4iπγm

λ
cos(2πFst)

]
, (17)

when the target consists of M (which may be large: M ≈ 200) punctual reflectors, am being the amplitude of
the signal reflected by the reflector number m.

A natural preliminary step to the target identification thus consists in testing from the received observations:
“f = 0” against “f �= 0” which amounts to detecting the presence of any target. Of course, at that stage of
detection we do not have any knowledge of the frequency Fs. We hence use the above testing method.

Then we could start the identification step which consists in estimating the frequency Fs (see Lavielle and
Lévy-Leduc [14] and Prenat [17] for more details on this point).

Let us now present a synthetic signal arising in laser vibrometry.

4.2. Presentation of an example

Figure 1a displays the imaginary part of f(j/n) satisfying (17) for j ∈ {1, . . . , 9000} when n = 218, M = 1,
a1 = 0.06, γ1 = 35× 10−6, λ = 1.5× 10−6 and Fs = 48 Hz. Figure 1b displays the periodogram of (f(j/n), j ∈
{1, . . . , n}) defined by

If (q) =
1
n

∣∣∣∣∣∣
n∑

j=1

e−
2iπqj

n f

(
j

n

)∣∣∣∣∣∣
2

for q ∈ {0, . . . , n − 1}.

A zoom of this periodogram is presented in Figure 1c.
We can remark in this example that, with such a definition, f is a periodic function with frequency 48 Hz with
about 330 significant Fourier coefficients of positive index (or positive harmonics).
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Figure 1. A synthetic signal f . (a) the imaginary part of f , (b) the periodogram of f , (c)
zoom of (b).

Following Lavielle and Lévy-Leduc [14], when some noise εj with variance 2σ2 is added to f(j/n), we
characterize the signal to noise ratio by the so-called SNR (in dB) where

SNR = 10 log

(
M∑

m=1

a2
m/2σ2

)
.

Figure 2a displays the imaginary part of the Yj ’s satisfying (16) when f is the above deterministic signal and
SNR = −27 dB for j∈{1, . . . , 9000}. In Figures 2b and 2c, one can see the corresponding periodogram defined
by

IY (q) =
1
n

∣∣∣∣∣∣
n∑

j=1

e−
2iπqj

n Yj

∣∣∣∣∣∣
2

, for q ∈ {0, . . . , n − 1},

and a zoom of it. We can notice in this example that, because of the high level of noise, the original signal and
its harmonics cannot be visually detected.



58 M. FROMONT AND C. LÉVY-LEDUC
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Figure 2. The observed signal f + ε. (a) the imaginary part of f + ε, (b) the periodogram of
f + ε, (c) zoom of (b).

4.3. Application of our testing procedure

Observing some Yj ’s following the model (16) amounts in fact to observing two real data sets given by the
imaginary and real parts of the Yi’s, which both satisfy (1). We can therefore use the procedure described in
Section 2, at the price of slight changes in the definition of the test statistic Tα. More precisely, we replace
the norm ‖.‖Rn by ‖.‖Cn , where ‖V ‖2

Cn = n−1
∑n

j=1 |Vj |2 for all V = (V1, . . . , Vn)T ∈ Cn, and we choose the
collection {Sm, m ∈ M} as follows:

M =
{
(q, D), q ∈ {1, . . . , Q}, D ∈ {2d, d ∈ {1, . . . , d0}}

}
,

and for each (q, D) in M, S(q,D) is the linear space spanned by the vectors{(
e2iπql/n, . . . , e2iπql

)T

, l = −D, . . . , D

}
.

We consider an alternative which corresponds to the signal (17) where M = 1, Fs = 48 Hz, γ1 = 35 × 10−6,
λ = 1.5 × 10−6, with a noise such that σ2 = 1. The computation of the test statistic is conducted in the same
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Table 2. Estimated powers of the test for various SNR.

SNR –34 –33 –32 –31 –30 –29 –28 –27 –26 –25 –24
Power 0.05 0.07 0.10 0.13 0.18 0.29 0.45 0.67 0.85 0.97 0.99

way as in Section 3: with very similar calculations, we actually obtain that when 2d0+1Q < n,

||Π(q,D)(Y )||2Cn =
1
n2

D∑
l=−D

∣∣∣∣∣∣
n∑

j=1

e−2iπljq/nYj

∣∣∣∣∣∣
2

.

For a number of observations n = 218, we have chosen Q = 50 and d0 = 10. We take a level of significance
α = 5%. The quantiles F

−1

Dm,n−Dm
(uα) are estimated by 40 000 simulations. We use 20 000 simulations for

the estimation of F
−1

Dm,n−Dm
(u) for u varying on a regular grid of ]0, α[ with mesh 1/20 000 and 20 000 for the

estimation of the probabilities

P0

(
sup

m∈M

{
(n − Dm)‖Πm(Y )‖2

Rn

Dm‖Y − Πm(Y )‖2
Rn

− F
−1

Dm,n−Dm
(u)

}
> 0

)
.

Table 4.3 presents the estimated powers for various SNR, namely −34,−33, . . . ,−24 dB.

Comments.
Since the minimal SNR needed to perform target detection is directly linked to the power that the laser has
to emit, a SNR about −24 dB is reasonable for the application that we have in view. The results summarized
in Table 4.3 show that, at such a signal to noise ratio, our test is powerful. The classical tests used in periodic
signal detection, such as those developed in the books of Brockwell and Davis [4] or Quinn and Hannan [18],
essentially use a parametric approach. As noticed in [6] on page 298, they are particularly adapted to the
detection of periodic signals having a small number of harmonics such as sinusoids or trigonometric polynomials
with small degrees, which is not the case of the signals of our interest. Therefore, we can think that they will
not be effective in our context. This is furthermore confirmed by an experimental study: by implementing the
test proposed by [4], we found for a SNR of −24 dB a power of 0.06.

5. Conclusion and prospects

In this paper, we propose a testing procedure to detect the presence of a periodic signal corrupted by a
Gaussian noise. The originality of our approach as compared to the other works on adaptive signal detection
lies in its sensitivity to the periodicity of the signal. This leads to significant improvements on the existing
methods from both theoretical and practical points of view.

There are several ways in which the results of this paper can be extended. Indeed, it can be interesting to
perform the same study but in a framework where the errors are not necessarily Gaussian, so that it can handle
a larger field of real world applications. With a view to the laser vibrometry issue, it is also interesting to
extend the present testing method to the case where the regression function is not a unique periodic function
but a sum of several periodic functions with different periods, and to propose in parallel a criterion to estimate
the number of corresponding periodic signals.
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6. Proofs

6.1. Proof of Theorem 1

The idea of the proof is to construct, for each Sobolev ball Sk(s, R), a sphere Ω of maximal radius such that
β(Ω) ≥ δ and Ω ⊂ Sk(s, R). Let k ∈ {1, . . . , n}, s ∈ N∗ and R > 0. As Ingster [12] suggests, we introduce a com-
pactly supported and smooth enough function φ: let φ be some function in C∞(R) supported by ]0, 1[ and positive
on its support (we can take for example the function defined on ]0, 1[ by φ(x) = exp

(−1/x2 − 1/(x − 1)2
)
). For

all D ∈ N∗, we consider

S̃D =

{
f, f(x) =

D∑
l=1

βlφD

(
nDx

k
− l + 1

)
, βl ∈ R

}
,

where φD is the function in C∞(R) which is periodic with period D and which agrees with φ on ]0, D].
Let

κ1 = 1 ∧
∫ 1

0
φ2(x)dx

16‖φφ′‖∞ and κ2 =
1√
6

( ∫ 1

0
φ2(x)dx

4‖φφ′‖∞ +
∫ 1

0 φ2(x)dx

)
. (18)

The following paragraph is devoted to a study of the spheres of the form {f ∈ S̃D, ‖f‖n = ρ}.

• A lower bound for ρ̃(S̃D, α, δ, σ)

Proposition 4. Assume that κ−1
1 ≤ k ≤ n. For all D ∈ {1, . . . , [κ1k]} and for all ρ2 ≤ κ2(1 − α − δ)

√
Dσ2/n,

β
({

f ∈ S̃D, ‖f‖n = ρ
})

≥ δ.

Comments:
This proposition gives a result in terms of minimax separation rates. Indeed, it is easy to see that it implies the
lower bound:

ρ̃2(S̃D, α, δ, σ) ≥ κ2(1 − α − δ)
√

Dσ2/n.

Proof: By homogeneity, we can only consider the case where σ = 1. Let D ∈ {1, . . . , [κ1k]} and for ρ > 0

S̃D[ρ] =
{

f ∈ S̃D, ‖f‖n = ρ
}

.

Recall that Pf denotes the distribution of the observation Y = (Y1, . . . , Yn) defined by (1).
The proof of Proposition 4 is based on the following classical bound on the error of tests : in the notation of
Baraud [1], if

• µρ is a probability measure on S̃D[ρ];
• Pµρ =

∫
Pfdµρ(f);

• Lµρ(y) = dPµρ

dP0
(y);

• E0 is the expectation with respect to P0,
then

β
(
S̃D[ρ]

)
≥ 1 − α − 1

2

(
E0

[
L2

µρ
(Y )

]
− 1

)1/2

.

The main difficulty then consists in finding some µρ such that for all ρ2 ≤ κ2(1 − α − δ)
√

Dσ2/n,

E0

[
L2

µρ
(Y )

]
≤ 1 + 4(1 − α − δ)2.

Let ξ = (ξ1, . . . , ξD) be a sequence of Rademacher random variables that is a sequence of i.i.d. random variables
taking the values +1 or -1 with probability 1/2.
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Let fξ(x) = λ
∑D

l=1 ξlφD (nDx/k − l + 1) where λ is chosen such that ||fξ||n = ρ. By the properties of the
support and the period of φD:

||fξ||2n =
λ2

n
[n/k]

k∑
j=1

(
D∑

l=1

ξlφD

(
Dj

k
− l + 1

))2

+
λ2

n

n−[n/k]k∑
j=1

(
D∑

l=1

ξlφD

(
Dj

k
− l + 1

))2

=
λ2

n
[n/k]

D∑
l=1

∑
j∈Al,D

φ2
D

(
Dj

k
− l + 1

)
+

λ2

n

D∑
l=1

∑
j∈A′

l,D

φ2
D

(
Dj

k
− l + 1

)

=
λ2

n

D∑
l=1

⎛⎝[n/k]
∑

j∈Al,D

φ2
D

(
Dj

k
− l + 1

)
+

∑
j∈A′

l,D

φ2
D

(
Dj

k
− l + 1

)⎞⎠ ,

where Al,D =
{

j ∈
]

(l−1)k
D , lk

D

[}
and A′

l,D = Al,D ∩ {1, . . . , n − [n/k]k}.
Taking

λ2 = nρ2

⎡⎣ D∑
l=1

⎛⎝[n/k]
∑

j∈Al,D

φ2
D

(
Dj

k
− l + 1

)
+

∑
j∈A′

l,D

φ2
D

(
Dj

k
− l + 1

)⎞⎠⎤⎦−1

(19)

implies that fξ ∈ S̃D[ρ], which allows us to take µρ as the distribution of fξ. With such a choice for µρ, we have

Lµρ(y) = Eξ

⎛⎝exp

⎧⎨⎩−1
2

n∑
j=1

[
yj − λ

D∑
l=1

ξlφD

(
Dj

k
− l + 1

)]2

+
1
2

n∑
j=1

y2
j

⎫⎬⎭
⎞⎠

= e−
nρ2

2 Eξ

⎛⎝exp

⎧⎨⎩λ

n∑
j=1

yj

D∑
l=1

ξlφD

(
Dj

k
− l + 1

)⎫⎬⎭
⎞⎠

= e−
nρ2

2 Eξ

⎛⎜⎜⎜⎝exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ

D∑
l=1

ξl

[n/k]−1∑
m=0

mk+k∑
j=mk+1

yjφD

(
Dj
k − l + 1

)
+λ

D∑
l=1

ξl

n∑
j=[n/k]k+1

yjφD

(
Dj
k − l + 1

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠ .

From the properties of the support of φD, we get

Lµρ(y) = e−
nρ2

2 Eξ

⎛⎜⎜⎜⎝exp

⎧⎪⎪⎪⎨⎪⎪⎪⎩
λ

D∑
l=1

ξl

[n/k]−1∑
m=0

∑
j∈Am,l,D

yjφD

(
Dj
k − l + 1

)
+λ

D∑
l=1

ξl

∑
j∈{[n/k]k+1,...,n}∩A[n/k],l,D

yjφD

(
Dj
k − l + 1

)
⎫⎪⎪⎪⎬⎪⎪⎪⎭
⎞⎟⎟⎟⎠ ,

where

Am,l,D =

{
j ∈

]
mk +

(l − 1)k
D

, mk +
lk

D

[}
,

and by independence of the ξl’s, we have

E0(L2
µρ

(Y )) = e−nρ2
E0

⎡⎢⎢⎢⎣
D∏

l=1

cosh2

⎛⎜⎜⎜⎝
λ

[n/k]−1∑
m=0

∑
j∈Am,l,D

YjφD

(
Dj
k − l + 1

)
+λ

∑
j∈{[n/k]k+1,...,n}∩A[n/k],l,D

YjφD

(
Dj
k − l + 1

)
⎞⎟⎟⎟⎠
⎤⎥⎥⎥⎦ .
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Let

Bl = λ

[n/k]−1∑
m=0

∑
j∈Am,l,D

YjφD

(
Dj

k
− l + 1

)
+ λ

∑
j∈{[n/k]k+1,...,n}∩A[n/k],l,D

YjφD

(
Dj

k
− l + 1

)
.

Under the null hypothesis, the Yj ’s are independent Gaussian random variables with mean 0 and variance 1.
Hence, the Bl’s are independent Gaussian random variables with mean 0 and variance λ2Σl where

Σl =
[n/k]−1∑

m=0

∑
j∈Am,l,D

φ2
D

(
Dj

k
− l + 1

)
+

∑
j∈{[n/k]k+1,...,n}∩A[n/k],l,D

φ2
D

(
Dj

k
− l + 1

)
.

By periodicity of φD, we have that

Σl = [n/k]
∑

j∈Al,D

φ2
D

(
Dj

k
− l + 1

)
+

∑
j∈A′

l,D

φ2
D

(
Dj

k
− l + 1

)
.

This implies via (19) that

λ2 = nρ2

(
D∑

l=1

Σl

)−1

,

and we get

E0(L2
µρ

(Y )) = e−nρ2
D∏

l=1

eλ2Σl cosh(λ2Σl)

≤ e−nρ2
exp

(
λ2

D∑
l=1

Σl

)
exp

(
λ4

2

D∑
l=1

Σ2
l

)

≤ exp

(
λ4

2

D∑
l=1

Σ2
l

)
≤ exp

⎛⎜⎜⎜⎝n2ρ4

2

D∑
l=1

Σ2
l(

D∑
l=1

Σl

)2

⎞⎟⎟⎟⎠ . (20)

Let us turn to an evaluation of Σl, which is the object of the following lemma.

Lemma 1. Let 1 ≤ D ≤ k ≤ n and let for l ∈ {1, . . . , D}, Al,D =
{
j ∈

]
(l−1)k

D , lk
D

[}
, and A′

l,D = Al,D ∩
{1, . . . , n − [n/k]k}. The quantity Σl defined by

Σl = [n/k]
∑

j∈Al,D

φ2
D

(
Dj

k
− l + 1

)
+

∑
j∈A′

l,D

φ2
D

(
Dj

k
− l + 1

)

satisfies the two following inequalities:

Σl ≤ 2[n/k]
k

D

(
4‖φφ′‖∞ +

∫ 1

0

φ2(x)dx

)
,

and if 8‖φφ′‖∞ ≤ (k/2D)
∫ 1

0
φ2(x)dx (that is if D ≤ κ1k),

Σl ≥ [n/k]
k

2D

∫ 1

0

φ2(x)dx.
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From Lemma 1, we deduce that for all D ∈ {1, . . . , [κ1k]},

D∑
l=1

Σ2
l

(
D∑

l=1

Σl

)−2

≤ 8
3κ2

2D
·

Hence, as soon as

ρ2 ≤ κ2(1 − α − δ)
√

D

n
≤ κ2

√
3

2

√
log(1 + 4(1 − α − δ)2)D

n
,

from (20), we derive that

E0(L2
µρ

(Y )) ≤ 1 + 4(1 − α − δ)2,

and the result follows.
Proof of Lemma 1: To simplify the expressions, we set xj,l = Dj/k − l + 1. Let us first give a lower bound for
Σl. It is obvious that

Σl ≥ [n/k]
[lk/D]∑

j=[(l−1)k/D]

φ2
D(xj,l) − [n/k]φ2

D

(
x[(l−1)k/D],l

)

≥ [n/k]
k

D

[lk/D]∑
j=[(l−1)k/D]

(
D

k
φ2

D(xj,l) −
∫ xj+1,l

xj,l

φ2
D(x)dx

)

+ [n/k]
k

D

[lk/D]∑
j=[(l−1)k/D]

∫ xj+1,l

xj,l

φ2
D(x)dx − [n/k]φ2

D

(
x[(l−1)k/D],l

)
.

Since φD(0) = 0, this implies that

Σl ≥ [n/k]
k

D

∫ 1

0

φ2
D(x)dx − [n/k]

(
φ2

D(x[(l−1)k/D],l) − φ2
D(0)

)
−[n/k]

k

D

[lk/D]∑
j=[(l−1)k/D]

∫ xj+1,l

xj,l

∣∣φ2
D(xj,l) − φ2

D(x)
∣∣ dx,

which allows us to use the Lipshitz properties of φD. We thus obtain

Σl ≥ [n/k]
k

D

∫ 1

0

φ2
D(x)dx−[n/k]2‖φDφ′

D‖∞|x[(l−1)k/D],l|−2‖φDφ′
D‖∞[n/k]

k

D

(
k

D
+2

)(
D

k

)2

≥ [n/k]
(

k

D

∫ 1

0

φ2
D(x)dx − 8‖φDφ′

D‖∞
)

.

Since φD agrees with φ on ]0, 1[, Σl ≥ [n/k]
(

k
D

∫ 1

0
φ2(x)dx − 8‖φφ′‖∞

)
. So if 8‖φφ′‖∞ ≤ (k/2D)

∫ 1

0
φ2(x)dx,

Σl ≥ [n/k]
k

2D

∫ 1

0

φ2(x)dx.
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The upper bound is obtained by similar arguments. Since D ≤ k ≤ n,

Σl ≤ 2[n/k]
[lk/D]∑

j=[(l−1)k/D]+1

φ2
D(xj,l)

≤ 2[n/k]
k

D

[lk/D]−1∑
j=[(l−1)k/D]+1

(
D

k
φ2

D(xj,l) −
∫ xj+1,l

xj,l

φ2
D(x)dx

)

+ 2[n/k]
k

D

[lk/D]−1∑
j=[(l−1)k/D]+1

∫ xj+1,l

xj,l

φ2
D(x)dx + 2[n/k]φ2

D(x[lk/D],l).

The fact that φD(1) = 0 leads as above to

Σl ≤2[n/k]
k

D

[lk/D]−1∑
j=[(l−1)k/D]+1

∫ xj+1,l

xj,l

(
φ2

D(xj,l) − φ2
D(x)

)
dx

+ 2[n/k]
k

D

∫ 1

0

φ2
D(x)dx + 2[n/k]

(
φ2

D(x[lk/D]) − φ2
D(1)

)
≤4[n/k]

k

D

[lk/D]−1∑
j=[(l−1)k/D]+1

‖φDφ′
D‖∞

(
D

k

)2

+ 2[n/k]
k

D

∫ 1

0

φ2
D(x)dx + 4[n/k]‖φDφ′

D‖∞D

k

≤2[n/k]
k

D

(
4‖φφ′‖∞ +

∫ 1

0

φ2(x)dx

)
,

which completes the proof.

• A lower bound for ρ̃(Sk(s, R), α, δ, σ)
Let k satisfy κ−1

1 ≤ k ≤ n/2. For all D ∈ {1, . . . , [κ1k]}, we introduce

r2
D,k,s =

1
4

∫ 1

0 φ2(x)dx∫ 1

0
φ(s)2(x)dx

R2D−2s

(
k

n

)2s

∧ κ2(1 − α − δ)

√
Dσ2

n
,

and we aim here to obtain the lower bound:

ρ̃2(Sk(s, R), α, δ, σ) ≥ sup
D∈{1,...,[κ1k]}

r2
D,k,s.

The fact that r2
D,k,s ≤ κ2(1 − α − δ)

√
Dσ2/n implies by Proposition 4 that

β
(
{f ∈ S̃D, ‖f‖n = rD,k,s}

)
≥ δ.

Hence, we only need to prove that for every D ∈ {1, . . . , [κ1k]},

{f ∈ S̃D, ‖f‖n = rD,k,s} ⊂ {f ∈ Sk(s, R), ‖f‖n ≥ rD,k,s},

to ensure that
β ({f ∈ Sk(s, R), ‖f‖n ≥ rD,k,s}) ≥ δ,

for all D ∈ {1, . . . , [κ1k]}. The expected lower bound for ρ̃2(Sk(s, R), α, δ, σ) will then directly follow.
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So, fixing D ∈ {1, . . . , [κ1k]}, let us take f in S̃D with

f(x) =
D∑

l=1

βlφD

(
Dnx

k
− l + 1

)
,

and prove that ||f ||n = rD,k,s implies that f belongs to Sk(s, R). It is easy to see that f belongs to Cs([0, 1])
and that f is periodic with period k/n. Furthermore, by the properties of the support of φD,

n

k

∫ k/n

0

f (s)2(x)dx =
n

k

∫ k/n

0

(
D∑

l=1

β2
l

(
Dn

k

)2s

φ
(s)
D

2
(

Dnx

k
− l + 1

))
dx

=
(

Dn

k

)2s 1
D

D∑
l=1

β2
l

∫ 1

0

φ(s)2(y)dy. (21)

From the assumptions on the period and the support of φD, we can see that:

||f ||2n =
1
n

D∑
l=1

β2
l

([n

k

] ∑
j∈Al,D

φ2
D

(
Dj

k
− l + 1

)
+

∑
j∈A′

l,D

φ2
D

(
Dj

k
− l + 1

))
,

with

Al,D =
{
j ∈

] (l − 1)k
D

,
lk

D

[}
and

A′
l,D = Al,D ∩ {1, . . . , n − [n/k]k} .

Lemma 1 then leads to the inequality:

||f ||2n ≥ 1
4D

D∑
l=1

β2
l

∫ 1

0

φ2(x)dx.

Hence, if

||f ||2n = r2
D,k,s ≤ 1

4

∫ 1

0
φ2(x)dx∫ 1

0
φ(s)2(x)dx

R2

(
k

n

)2s

D−2s

we have that
1
D

D∑
l=1

β2
l ≤ R2

(
k
n

)2s
D−2s∫ 1

0
φ(s)2(x)dx

.

From (21), we finally deduce that
n

k

∫ k/n

0

f (s)2(x)dx ≤ R2,

so, f ∈ Sk(s, R). This concludes the proof of Theorem 1.

6.2. Proof of Proposition 1

Let f̄ = (f(1/n), . . . , f(1))T . As in Theorem 2 from Baraud [1], by using some deviations inequalities due to
Birgé [3] and Laurent and Massart [13], since the dimension of SD∗

k
is smaller than D∗

k, we can prove that for
all f satisfying:

‖f‖2
n ≥

{
‖f − ΠSD∗

k
(f)‖2

Rn + 2(
√

5 + 4) log
(

1
αδ

) √
D∗

k

n
σ2

}
, (22)
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then

Pf (Φ∗
α = 0) ≤ δ.

The final result is obtained by computing an upper bound for ‖f − ΠSD∗
k
(f)‖2

Rn when f belongs to Sk(s, R).
This can be derived via the following lemma.

Lemma 2. Let dn be the distance associated with the norm ‖.‖Rn and for D ∈ N∗, consider SD defined by (6).
Let f be some periodic function with period k/n such that for all x ∈ [0, 1], f(x) =

∑
l≥1 βl(f)ϕk/n,l(x). If

(2π)2s
∑
l≥2

[l/2]2sβ2
l (f) ≤ R2

(
k

n

)2s

,

then, there exists some absolute constant C > 0 such that, setting f̄ = (f(1/n), . . . , f(1))T :

d2
n

(
f̄ , SD

) ≤ C

(
R2

(
k

n

)2s

D−2s +
R2k

n2s

)
.

The proof of Lemma 2 is postponed to the end of the section.
Assume that f belongs to Sk(s, R). Then f satisfies the assumptions of Lemma 2 and we deduce from Lemma 2
and (22) that there exists some positive constant c(α, δ) such that if f satisfies

‖f‖2
n ≥ c(α, δ)

{
R2

(
k

n

)2s

D∗
k
−2s +

R2k

n2s
+

√
D∗

k

n
σ2

}
,

Pf (Φ∗
α = 0) ≤ δ.

Recalling that D∗
k = D∗ ∧ k where D∗ is the smallest integer at least equal to (R2(k/n)2sn/σ2)2/(1+4s), we now

distinguish three cases.
If D∗ = 1, then (R2(k/n)2sn/σ2)2/(1+4s) ≤ 1 and D∗

k = 1. Hence

R2

(
k

n

)2s

D∗
k
−2s +

R2k

n2s
+

√
D∗

k

n
σ2 ≤ 3

σ2

n
·

If D∗ > k, (R2(k/n)2sn/σ2)2/(1+4s) ≥ k and D∗
k = k. This implies that

R2

(
k

n

)2s

D∗
k
−2s +

R2k

n2s
+

√
D∗

k

n
σ2 ≤ 3

R2k

n2s
·

Finally, if 2 ≤ D∗ ≤ k, since D∗ − 1 < (R2(k/n)2sn/σ2)2/(1+4s) ≤ D∗ and D∗ ≤ 2(D∗ − 1), we obtain that

R2

(
k

n

)2s

D∗
k
−2s +

R2k

n2s
+

√
D∗

k

n
σ2 ≤ (1 +

√
2)R

2
1+4s

(
k

n

) 2s
1+4s

(
σ2

n

) 4s
4s+1

+
R2k

n2s
·

Furthermore, assuming that (8) holds,

R2

(
k

n

)2s

D∗
k
−2s +

R2k

n2s
+

√
D∗

k

n
σ2 ≤ (7 +

√
2)R

2
1+4s

(
k

n

) 2s
1+4s

(
σ2

n

) 4s
4s+1

,
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which ends the proof of Proposition 1.
Proof of Lemma 2: We have that

d2
n(f, SD) ≤ 1

n

n∑
j=1

(
f(j/n) −

D∑
l=1

βl(f)ϕk/n,l(j/n)

)2

≤ 1
n

([n/k] + 1)
k∑

j=1

⎛⎝ ∑
l≥D+1

βl(f)ϕk/n,l(j/n)

⎞⎠2

.

Hence,

d2
n(f, SD) ≤ 2

n
([n/k] + 1)

k∑
j=1

⎛⎝k∨(D+1)∑
l=D+1

βl(f)ϕk/n,l(j/n)

⎞⎠2

+
2
n

([n/k] + 1)
k∑

j=1

⎛⎝ ∑
l≥(k+1)∨(D+2)

βl(f)ϕk/n,l(j/n)

⎞⎠2

.

We can see by straightforward computations that for l, l′ ∈ {1, . . . , k}, l �= l′:

k∑
j=1

ϕk/n,l(j/n)ϕk/n,l′ (j/n) = 0.

So, we get

d2
n(f, SD) ≤ 4

n
([n/k] + 1)k

∑
l≥D+1

β2
l (f) +

4
n

([n/k] + 1) k
∑

l 
=l′≥(k+1)∨(D+2)

|βl(f)||βl′(f)|.

Therefore,

d2
n(f, SD) ≤ 8

⎛⎜⎝ ∑
l≥D+1

β2
l (f) +

⎛⎝ ∑
l≥k+1

|βl(f)|
⎞⎠2

⎞⎟⎠ .

On the one hand, since

∑
l≥D+1

β2
l (f)

(
l

2
− 1

2

)2s

≤ (2π)−2sR2

(
k

n

)2s

,

then for D ≥ 1,

∑
l≥D+1

β2
l (f) ≤ (2π)−2sR2

(
k

n

)2s (
D

2

)−2s

.
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On the other hand, by the Cauchy-Schwarz inequality,⎛⎝ ∑
l≥k+1

|βl(f)|
⎞⎠2

≤
⎛⎝ ∑

l≥k+1

β2
l (f)[l/2]2s

⎞⎠⎛⎝ ∑
l≥k+1

1
[l/2]2s

⎞⎠
≤ (2π)−2sR2

(
k

n

)2s
⎛⎝ ∑

l≥k+1

(
l

2
− 1

2

)−2s
⎞⎠

≤ (2π)−2sR2

(
k

n

)2s
⎛⎝ ∑

l≥k+1

(
l

4

)−2s
⎞⎠ .

Since s is supposed to be larger than 1,⎛⎝ ∑
l≥k+1

|βl(f)|
⎞⎠2

≤ R2

(
k

n

)2s

k1−2s ≤ R2kn−2s,

and finally,

d2
n(f, SD) ≤ C

(
R2

(
k

n

)2s

D−2s +
R2k

n2s

)
.

6.3. Proof of Proposition 2

The proof of Proposition 2 is based on a result due to Baraud, Huet and Laurent [2] that we recall here.
Let f̄ and dn respectively denote (f(1/n), . . . , f(1))T and the distance associated with the norm ‖.‖Rn .

Theorem 2 (Baraud, Huet, Laurent). Given some levels α and δ in ]0, 1[, let Tα be the test statistic defined
by (9). Assume that n ≥ 2 and that the collection {Sm, m ∈ M} satisfies:

(HM) : ∀m ∈ M,

{
uα ≥ e(

Dm−n
10 ),

δ ≥ 2e(
Dm−n

21 ).

Then,
Pf (Tα > 0) ≥ 1 − δ

for all f satisfying

||f ||2n ≥ inf
m∈M

⎧⎪⎨⎪⎩
[
1 + 10

(
Dm+log(1/uα)

n−Dm

)]
d2

n(f, Sm)

+σ2

n

[
5
(
1 +

√
Dm

n−Dm

)√
Dm log

(
2

uαδ

)
+ 25

2

(
1 + 2 Dm

n−Dm

)
log

(
2

uαδ

)]
⎫⎪⎬⎪⎭ .

Since

P0

(
sup

m∈M

{
(n − Dm)‖Πm(Y )‖2

Rn

Dm‖Y − Πm(Y )‖2
Rn

−F
−1

Dm,n−Dm

(
α

|M|
)}

> 0

)

≤
∑

m∈M
P0

(
(n − Dm)‖Πm(Y )‖2

Rn

Dm‖Y − Πm(Y )‖2
Rn

> F
−1

Dm,n−Dm

(
α

|M|
))

≤ α,
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by the definition of uα, we have that uα ≥ α/|M|. This implies that uα ≥ α log 2/ log k and since k ≤ n, under
the assumptions of Proposition 2, (HM) is satisfied. Following Theorem 2, we then look for an upper bound
for the quantity:

inf
m∈M

⎧⎪⎨⎪⎩
[
1 + 10

(
Dm+log(1/uα)

n−Dm

)]
d2

n(f, Sm)

+σ2

n

[
5
(
1 +

√
Dm

n−Dm

)√
Dm log

(
2

δuα

)
+ 25

2

(
1 + 2 Dm

n−Dm

)
log

(
2

uαδ

)]
⎫⎪⎬⎪⎭ .

From the inequalities uα ≥ α log 2/ log k and Dm ≤ m ≤ n/2 for all m ∈ M, together with (HM), we derive
that we only need to find an upper bound for

inf
D∈M

{
c1d

2
n(f, SD) + c2(α, δ)

√
D

n

√
log log kσ2

}
+ c3(α, δ) log log k

σ2

n
·

Assuming that f ∈ Sk(s, R), Lemma 2 gives:

d2
n(f, SD) ≤ C

(
R2

(
k

n

)2s

D−2s +
R2k

n2s

)
,

and we obtain

inf
D∈M

{
c1d

2
n(f, SD) + c2(α, δ)

√
D

n

√
log log kσ2

}
+ c3(α, δ) log log k

σ2

n

≤ inf
D∈M

{
C1R

2

(
k

n

)2s

D−2s + c2(α, δ)
√

D

n

√
log log kσ2

}
+ c3(α, δ) log log k

σ2

n
+ C1

R2k

n2s
·

We can now compute the expected upper bound by noticing that

R2

(
k

n

)2s

D−2s ≤
√

D

n

√
log log kσ2 and D ∈ M if and only if D ≥ D∗ and D ∈ M,

where D∗ is the smallest dyadic integer at least equal to

R
4

4s+1

(
k

n

) 4s
4s+1

n
2

4s+1

(√
log log k

)− 2
4s+1

σ− 4
4s+1 ,

that is

D∗ = inf
{

2J , J ∈ N, 2J ≥
(
R2(k/n)2sn

√
log log k

−1
σ−2

)2/(4s+1)
}

.

If D∗ ∈ {2, . . . , 2[log2(k/2)]}, then

inf
D∈M

{
C1R

2

(
k

n

)2s

D−2s + c2(α, δ)
√

D

n

√
log log kσ2

}

≤ C1R
2

(
k

n

)2s

D∗−2s + c2(α, δ)

√
D∗

n

√
log log kσ2

≤ (C1 + c2(α, δ))

√
D∗

n

√
log log kσ2.
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Since D∗ ≤ 2
(
R2(k/n)2sn

√
log log k

−1
σ−2

) 2
4s+1

, this leads to

inf
D∈M

{
C1R

2

(
k

n

)2s

D−2s + c2(α, δ)
√

D

n

√
log log kσ2

}
≤ c(α, δ)R

2
4s+1

(
k

n

) 2s
4s+1

(√
log log kσ2

n

) 4s
4s+1

.

If D∗ = 1, then for all D ∈ M,

R2

(
k

n

)2s

D−2s ≤
√

D

n

√
log log kσ2,

and

inf
D∈M

{
C1R

2

(
k

n

)2s

D−2s + c2(α, δ)

√
D

n

√
log log kσ2

}
≤ c′(α, δ)

√
log log k

σ2

n
·

If D∗ > 2[log2(k/2)], then for all D ∈ M,

√
D

n

√
log log kσ2 < R2

(
k

n

)2s

D−2s,

and

inf
D∈M

{
C1R

2

(
k

n

)2s

D−2s + c2(α, δ)
√

D

n

√
log log kσ2

}
≤ c(α, δ)R2

(
k

n

)2s (
2[log2(k/2)]

)−2s

≤ 24sc(α, δ)
R2

n2s
·

So, in all cases

inf
D∈M

{
C1R

2

(
k

n

)2s

D−2s + c2(α, δ)
√

D

n

√
log log kσ2

}
+ c3(α, δ) log log k

σ2

n
+ C1

R2k

n2s

≤ c(α, δ)R
2

4s+1

(
k

n

) 2s
4s+1

(√
log log kσ2

n

) 4s
4s+1

+ c′(α, δ)
√

log log kσ2

n

+ c(s, α, δ)
R2

n2s
+ c3(α, δ)

log log kσ2

n
+ C1

R2k

n2s
,

which gives the result.

6.4. Proof of Proposition 3

As in the proof of Proposition 2, since uα ≥ α/|M|, under the assumptions of Proposition 3, (HM) is satisfied
and we look for an upper bound for

inf
(k,D)∈M

{
c1d

2
n(f, S(k,D)) + c2(α, δ)

√
D log n

σ2

n

}
+ c3(α, δ) log n

σ2

n
,

when f ∈ S(s, R, τ1), for s ∈ N∗, R > 0, τ1 ∈ [2/n, 1].
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Assume that f ∈ S(s, R, τ1). Let k(f) = [τ(f)n] + 1 if τ(f)n �∈ N∗, τ(f)n if τ(f)n ∈ N∗. Then k(f) ∈
{2, . . . , n} and

inf
(k,D)∈M

{
c1d

2
n(f, S(k,D)) + c2(α, δ)

√
D log n

σ2

n

}
≤

inf
D∈{1,...,2[log2(k(f)/2)]}

{
c1d

2
n(f, S(k(f),D)) + c2(α, δ)

√
D log n

σ2

n

}
.

Denote by βl(f) the l-th Fourier coefficient of f . Recall that if f ∈ S(s, R, τ1), for all x ∈ [0, 1], f(x) =
β1(f) +

∑
l≥2 βl(f)ϕτ(f),l(x) with

(2π)2s
∑
l≥2

[l/2]2sβ2
l (f) ≤ R2τ(f)2s, (23)

and
∑

l≥1 |βl(f)| < +∞. By introducing f̃ such that f̃(x) = β1(f) +
∑
l≥2

βl(f)ϕk(f)/n,l(x), we have:

d2
n

(
f, S(k(f),D)

) ≤ 2
(
d2

n

(
f, f̃

)
+ d2

n

(
f̃ , S(k(f),D)

))
,

where f̃ = (f̃(1/n), . . . , f̃(1))T .
On the one hand, since τ(f) ≤ k(f)/n, (23) implies that f̃ satisfies the assumptions of Lemma 2 with k = k(f),
so:

d2
n

(
f̃ , S(k(f),D)

)
≤ C

(
R2(k(f)/n)2sD−2s + R2k(f)n−2s

)
≤ c(s)

(
R2τ(f)2sD−2s + R2τ(f)n1−2s

)
.

On the other hand, using the Cauchy-Schwarz inequality,

d2
n

(
f, f̃

)
=

1
n

n∑
j=1

⎛⎝∑
l≥2

βl(f)
[
ϕτ(f),l(j/n) − ϕk(f)/n,l(j/n)

]⎞⎠2

≤ 8
n

n∑
j=1

⎛⎝∑
l≥2

[l/2]2sβ2
l (f)

⎞⎠⎛⎝∑
l≥2

[l/2]−2s

∣∣∣∣sin(πj[l/2]
nτ(f)

− πj[l/2]
k(f)

)∣∣∣∣2
⎞⎠ .

Let γ ∈ [0, 1[ that will be chosen later. For all x ∈ R, sin2(x) ≤ |x|γ , which implies that:

d2
n

(
f, f̃

)
≤ c(s)

n
R2τ(f)2s

n∑
j=1

⎛⎝∑
l≥2

jγ [l/2]γ−2s 1
(τ(f)n)2γ

⎞⎠
≤ c(s)

R2τ(f)2s−2γ

n2γ+1

⎛⎝ n∑
j=1

jγ

⎞⎠⎛⎝∑
l≥2

[l/2]γ−2s

⎞⎠
≤ c′(s)

2s − γ − 1
R2τ(f)2s−2γ

nγ
·



72 M. FROMONT AND C. LÉVY-LEDUC

Then, we have:

inf
(k,D)∈M

{
c1d

2
n(f, S(k,D)) + c2(α, δ)

√
D log n

σ2

n

}
+ c3(α, δ) log n

σ2

n

≤ inf
D∈{1,...,2[log2(k(f)/2)]}

{
c1(s)R2D−2sτ(f)2s + c2(α, δ)

√
D log n

σ2

n

}
+ c3(α, δ) log n

σ2

n
+

c4(s)
2s − γ − 1

R2τ(f)2s−2γ

nγ
+ c1(s)

R2τ(f)
n2s−1

·

Note again that R2D−2sτ(f)2s ≤ √
D log nσ2/n and D is dyadic if and only if D ≥ D∗(f), where D∗(f) is the

smallest dyadic integer at least equal to
(
R2τ(f)2snσ−2(log n)−1/2

)2/(4s+1)
, that is

D∗(f) = inf
{

2J , J ∈ N, 2J ≥
(
R2τ(f)2sn

√
log n

−1
σ−2

)2/(4s+1)
}

.

If D∗(f) ∈ {2, . . . , 2[log2(k(f)/2)]}, then

D∗(f) ≤ 2
(

R2τ(f)2sn

σ2
√

log n

) 2
4s+1

,

and

inf
D∈{1,...,2[log2(k(f)/2)]}

{
c1(s)R2D−2sτ(f)2s + c2(α, δ)

√
D log n

σ2

n

}

≤ c1(s)R2D∗(f)−2s
τ(f)2s + c2(α, δ)

√
D∗(f) log n

σ2

n

≤ c(s, α, δ)
(
R2τ(f)2s

) 1
4s+1

(√
log n

σ2

n

) 4s
4s+1

.

If D∗(f) = 1, then for all D ∈ {1, . . . , 2[log2(k(f)/2)]}, R2D−2sτ(f)2s ≤ √
D log nσ2/n and

inf
D∈{1,...,2[log2(k(f)/2)]}

{
c1(s)R2D−2sτ(f)2s + c2(α, δ)

√
D log n

σ2

n

}

≤ c′(s, α, δ) inf
D∈{1,...,2[log2(k(f)/2)]}

{√
D log n

σ2

n

}
≤ c′(s, α, δ)

√
log n

σ2

n
·

At last, if D∗(f) > 2[log2(k(f)/2)], for all D ∈ {1, . . . , 2[log2(k(f)/2)]}, R2D−2sτ(f)2s >
√

D log nσ2/n, which leads
to:

inf
D∈{1,...,2[log2(k(f)/2)]}

{
c1(s)R2D−2sτ(f)2s + c2(α, δ)

√
D log n

σ2

n

}
≤ c′′(s, α, δ)R2n−2s.
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Finally,

inf
(k,D)∈M

{
c1d

2
n(f, S(k,D)) + c2(α, δ)

√
D log n

σ2

n

}
+ c3(α, δ) log n

σ2

n

≤ C(s, α, δ)

{(
R2τ2s

1

) 1
4s+1

(√
log n

σ2

n

) 4s
4s+1

+ log n
σ2

n
+

R2τ1

n2s−1

+
R2

n2s
+

1
2s − γ − 1

R2τ2s
1

(nτ2
1 )γ

}
.

Since n−1 ≤ τ1 ≤ 1, we can see that for all γ ∈ [0, 1[, for all s ∈ N∗,

R2

n2s
≤ R2τ1

n2s−1
≤ R2τ2s

1

(nτ2
1 )γ

·

To prove the final result, we need to distinguish between two cases in order to optimize the choice of γ. If
nτ2

1 ≤ 2, by taking γ = 0, we obtain:

1
2s − γ − 1

R2τ2s
1

(nτ2
1 )γ

=
1

2s − 1
R2τ2s

1 =
1

2s − 1

(
2
R2τ2s

1

nτ2
1

∧ R2τ2s
1

)
.

If nτ2
1 > 2, by taking γn = 1 − log 2/ log(nτ2

1 ), we get:

1
2s − 1 − γn

R2τ2s
1

(nτ2
1 )γn

≤ 2
2s − 1 − γn

R2τ2s
1

nτ2
1

≤ 2 logn

log 2
R2τ2s

1

nτ2
1

≤ 2 logn

log 2

(
2
R2τ2s

1

nτ2
1

∧ R2τ2s
1

)
,

which ends the proof.

Appendix: the Gaussian white noise model

In this section, we consider the following ideal Gaussian white noise model instead of our current regression
framework:

dY (t) = f(t)dt +
1√
n

dW (t), t ∈ [0, 1]. (24)

Let τ such that 1/τ is an integer. Assume that f belongs to L2([0, 1]) and that f is periodic with period τ . By
projecting the above model onto the Fourier basis {ϕτ,l, l ≥ 1} defined by (5) on [0, 1], we obtain the Gaussian
sequence model:

Yl = βl(f) +
εl√
n

, l ∈ N
∗, (25)

where

Yl =
∫ 1

0

ϕτ,l(t)dY (t), βl(f) =
∫ 1

0

ϕτ,l(t)f(t)dt, εl =
∫ 1

0

ϕτ,l(t)dW (t).

Testing the null hypothesis “f = 0” against “f �= 0” in the model (24) is equivalent to testing “βl(f) = 0, ∀l ≥ 1”
against “∃l ≥ 1, βl(f) �= 0” in the model (25).
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Let E(τ, R) be the ellipsoid defined by

E(τ, R) =

⎧⎨⎩(βl(f), l ≥ 1) ,
∑
l≥2

β2
l (f)

([l/2]−s)2
≤ (2π)−2sR2τ2s

⎫⎬⎭ .

Considering the problem of testing “βl(f) = 0, ∀l ≥ 1” in the model (25), Baraud has comprehensively studied
the minimax separation rate ρ̄ over such an ellipsoid with respect to the classical norm of l2(N). From his
results, we can deduce the following bounds:

ρ̄2 (E(τ, R), α, δ) ≥ sup
D≥1

{(√
2L(α, δ)D

n

)
∧ (

(2π)−2sR2τ2s[D/2]−2s
)}

where L(α, δ) = log
(
1 + 4(1 − α − δ)2

)
, and if R > τ−sn−1/2,

ρ̄2 (E(τ, R), α, δ) ≤ c(s, α, δ) sup
D≥1

{√
D

n
∧ R2τ2sD−2s

}
≤ 2c(s, α, δ)R

2
4s+1 τ

2s
4s+1 n− 4s

4s+1 .

Since
∑

l≥1 β2
l (f) = τ−1

∫ τ

0
f2(t)dt = ‖f‖2

2,τ , we thus find lower bounds similar to the ones obtained in our
Gaussian periodic fixed design regression framework over the classes S′

k(s, R) = {f, f is periodic with period
k/n and f(x) =

∑
l≥1 βl(f)ϕk/n,l(x) with (2π)2s

∑
l≥2[l/2]2sβ2

l (f) ≤ R2(k/n)2s} (see Th. 1), except that the
supremum over D ≥ 1 is replaced by a supremum over D ∈ {1, . . . , [κk]}. As for the upper bounds, we can see
via Proposition 1, that if R > (k/n)−sn−1/2,

ρ̃2 (S′
k(s, R), α, δ, σ) ≤ 2c(α, δ)

(
R

2
1+4s

(
k

n

) 2s
4s+1

(
σ2

n

) 4s
4s+1

+
R2k

n2s

)
.

The losses that one can observe are essentially due to the fact that the Fourier family {ϕk/n,l, l ≥ 1} is not
orthogonal with respect to the norm ‖.‖n that we consider.
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