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Introduction.

Numerical simulations of multi-scale phenomena are commonly used for modeling purposes in many applications such as combustion, chemical vapor deposition, or air pollution modeling. In general, all these models raise several difficulties created by the high number of unknowns, the wide range of temporal scales due to large and detailed chemical kinetic mechanisms, as well as steep spatial gradients associated with very localized fronts of high chemical activity. Furthermore, a natural stumbling block to perform 3D simulations with all scales resolution is either the unreasonably small time step due to stability requirements or the unreasonable memory requirements for implicit methods. In this context, one can consider various numerical strategies in order to treat the induced stiffness for time dependent problems. The most natural idea is to use dedicated numerical methods and to solve the complete models where diffusion, reaction and eventually convection are coupled together. One aims at solving strongly coupled nonlinear systems with either a fully implicit method, or yet semi-implicit or linearized implicit methods instead (see [START_REF] Angelo | Analyse et Simulation Numérique de Phénomènes liés à la Combustion Supersonique[END_REF] and references therein). However, the strong stability restrictions for the latter when dealing with very fast temporal scales, as well as the computing cost and the high memory requirements of these methods, even if adaptive grids are used, make these strategies difficult to be handled.

An alternative numerical strategy is then to combine implicit and explicit schemes to discretize nonlinear evolution problems in time. Further studies settled the appropriate numerical background for these methods called IMEX, which in particular might be conceived to solve stiff nonlinear problems [START_REF] Verwer | RKC time-stepping for advectiondiffusion-reaction problems[END_REF][START_REF] Shampine | IRKC: An IMEX solver for stiff diffusion-reaction PDEs[END_REF]. These methods are usually very efficient but the feasibility of utilizing dedicated implicit solvers over a discretized domain becomes soon critical when treating large computational domains. On the other hand, the time steps globally imposed over partial regions or the entire domain are strongly limited by either the stability restrictions of the explicit solver or by the fastest scales treated by the implicit scheme. We know though that these fastest time scales do not always play a leading role in the global physics of many multi-scale problems and therefore one might consider the possibility of using reduced models where these chemical scales have been previously relaxed. These simplified models provide reasonable predictions and the associated computing costs are significantly reduced in comparison with comprehensive chemical models. Nevertheless, these reduced models provide only approximate solutions and are usually accessible when the system is well-partitioned and the fastest scales can be identified or isolated [START_REF] Sportisse | Contribution à la modélisation des écoulements réactifs: Réduction des modèles de cinétique chimique et simulation de la pollution atmosphérique[END_REF], a process that in realistic configurations, relies on sensitivity analysis which is most of the time difficult to conduct and justify.

It is then natural to envision a compromise, since the resolution of the fully coupled problem is most of the time out of reach and the appropriate definition of reduced models is usually difficult to establish. In this context, time operator splitting methods have been used for a long time and there exists a large literature showing the efficiency of such methods for evolution problems. A splitting procedure allows to consider dedicated solvers for the reaction part which is decoupled from the other physical phenomena like convection, diffusion or both, for which there also exist dedicated numerical methods. Hence, a completely independent optimization of the resolution of each subsystem might be pursued. In order to guarantee the accuracy of the solution obtained by a splitting scheme, the splitting time steps used for the independent resolution of each subproblem are usually taken of the order of the fastest scales included in the problem. As a matter of fact, several works [START_REF] Verwer | Note on operator splitting in a stiff linear case[END_REF][START_REF]An analysis of operator splitting techniques in the stiff case[END_REF][START_REF] Angelo | Analyse et Simulation Numérique de Phénomènes liés à la Combustion Supersonique[END_REF] showed that the standard numerical analysis of splitting schemes fails in presence of scales much faster than the splitting time step. Nevertheless, more rigorous studies for these stiff configurations [START_REF] Descombes | Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: Singular perturbation and order reduction[END_REF][START_REF] Descombes | Operator splitting techniques for multi-scale reacting waves and application to low Mach number flames with complex chemistry: Theoretical and numerical aspects[END_REF] and in the case where spatial multi-scale phenomena arise as a consequence of steep spatial gradients [START_REF] Descombes | On the local and global errors of splitting approximations of reaction-diffusion equations with high spatial gradients[END_REF], allow to characterize the behavior of splitting schemes with splitting time steps much larger than the fastest scales of the problem.

As a consequence, we introduce in this work a new time operator splitting approach for which the dedicated methods chosen for each subsystem are responsible for dealing with the fast scales associated with each one of them, in a separate manner. The global solution is then reconstructed by the splitting scheme with splitting time steps dictated by the global physical coupling, possibly much larger than the fastest time scales. In this way, the splitting time step is chosen based only on error estimates of the numerical simulation in order to guarantee the description of the physics of the phenomenon within a prescribed accuracy, without being related to the stability constraints of the numerical resolution of each subsystem and with an important improvement of efficiency whenever a broad decoupling of the time scale spectrum is possible.

The operator splitting strategy proposed in this article considers then a high order method like Radau5 [START_REF] Hairer | Solving 0rdinary Differential Equations II[END_REF], based on implicit Runge-Kutta schemes for stiff ODEs, to solve the reaction term; and on the other hand, another high order method like ROCK4 [START_REF] Abdulle | Fourth order Chebyshev methods with recurrence relation[END_REF], based on explicit stabilized Runge-Kutta schemes, to solve the diffusion problem. In this way, the global accuracy of the time integration scheme is mainly set by the splitting scheme through the choice of the splitting time step. This numerical strategy is then complemented by a mesh refinement technique based on Harten's pioneering work on adaptive multiresolution methods [START_REF] Harten | Multiresolution algorithms for the numerical solution of hyperbolic conservation laws[END_REF], being aware of the interest of adaptive mesh techniques for problems exhibiting locally steep spatial gradients. Since a multiresolution technique allows to better control the accuracy of the adapted and compressed spatial representation, both the space and time errors can be regulated for a given semi-discretized problem. The main goal is then to perform computationally very efficient as well as accurate in time and space simulations of the complete dynamics of multi-scale phenomena under study with splitting time steps purely dictated by the physics of the phenomenon and not by any stability constraints associated with mesh size or source time scales. In particular, in the case of propagating wavefronts, we show that a constant splitting time step is good enough to capture the dynamics of the phenomenon even though an adaptive splitting time step technique as the one developed in [START_REF] Descombes | Adaptive time splitting method for multi-scale evolutionary PDEs[END_REF] can be used to compute the appropriate splitting time step whenever the determination of the latter becomes difficult to conduct.

The paper is organized as follows. In section 2, we first recall the standard time operator splitting schemes. Then, we describe the new operator splitting strategy proposed for multi-scale problems, and its coupling with a suitable grid adaptation strategy, the space adaptive multiresolution technique [START_REF] Cohen | Wavelet Methods in Numerical Analysis[END_REF][START_REF] Müller | Adaptive Multiscale Schemes for Conservation Laws[END_REF], which is briefly presented. The implementation of the numerical strategy is detailed in section 3, as well as the algorithm scheme and the choice of the appropriate splitting time step. In section 4, we present 2D and 3D simulations of a three species reaction-diffusion system modeling the Belousov-Zhabotinsky reaction, and we illustrate the potential and performance of the method by conducting 3D numerical simulations of very stiff reaction waves on a 512 3 mesh size within a reasonable time on a workstation, a simulation out of reach of any standard method. We end in section 5 with some concluding remarks and prospects on future applications including other phenomena, and numerical developments on new parallel architecture where we can envision very large scale simulations.

Construction of the Numerical Strategy.

In this section, we first recall some standard operator splitting schemes to then introduce a new splitting strategy for multi-scale waves modeled by stiff reaction-diffusion systems. In the last part, we detail briefly the adaptive multiresolution method that we have implemented as mesh refinement technique for this new resolution technique.

Time Operator Splitting.

Let us first set the general mathematical framework of this work. A class of multi-scale phenomena can be modeled by general reaction-diffusion systems of type:

∂ t u -∂ x (D(u)∂ x u) = f (u) , x ∈ R d , t > 0, (2.1) u(0, x) = u 0 (x), x ∈ R d ,
where f : R m → R m and u : R × R d → R m , with the diffusion matrix D(u), which is a tensor of order d × d × m.

Even though the proposed numerical strategy handles general problem (2.1), in order to simplify the presentation we shall consider problem (2.1) with linear diagonal diffusion. In this case the elements of the diffusion matrix are written as D i1i2i3 (u) = D i3 δ i1i2 for some positive indices i 1 , i 2 , i 3 , so that the diffusion operator reduces to the heat operator with scalar diffusion coefficient D i3 for component u i3 of u, i 3 = 1, . . . , m. Performing a fine spatial discretization, we obtain the semi-discretized initial value problem

d t U -B U = F (U) , t > 0, (2.2) U(0) = U 0 ,
where B corresponds to the discretization of the Laplacian operator with the coefficients D i3 within. U and F (U) are arranged component-wise all over the discretized spatial domain. Considering a standard decoupling of the diffusion and reaction parts of (2.2), we denote X ∆t (U 0 ) as the numerical solution of the diffusion equation

d t U D -B U D = 0, t > 0, (2.3) 
with initial data U D (0) = U 0 after an integration time step ∆t. We also denote by Y ∆t (U 0 ) the numerical solution of the reaction part,

d t U R = F (U R ) , t > 0, (2.4) 
with initial data U R (0) = U 0 . The two Lie approximation formulae of the solution of system (2.2) are then defined by

L ∆t 1 (U 0 ) = X ∆t Y ∆t (U 0 ), L ∆t 2 (U 0 ) = Y ∆t X ∆t (U 0 ), (2.5) 
whereas the two Strang approximation formulae [START_REF] Strang | Accurate partial difference methods. I. Linear Cauchy problems[END_REF][START_REF]On the construction and comparison of difference schemes[END_REF] are given by

S ∆t 1 (U 0 ) = X ∆t/2 Y ∆t X ∆t/2 (U 0 ), S ∆t 2 (U 0 ) = Y ∆t/2 X ∆t Y ∆t/2 (U 0 ), (2.6) 
where ∆t is now the splitting time step. It is well known that Lie formulae (2.5) (resp. Strang formulae (2.6)) are approximations of order 1 (resp. 2) of the exact solution of (2.2) in the case where X ∆t and Y ∆t are the exact solutions X ∆t and Y ∆t of problems (2.3) and (2.4). Then, appropriate numerical approximations of X ∆t and Y ∆t are required in order to compute Lie and Strang formulae with the prescribed order. Higher order splitting schemes are also possible. Nevertheless, the order conditions for such composition methods state that either negative time substeps or complex coefficients are necessary (see [START_REF] Hairer | Structure-Preserving Algorithms for Odinary Differential Equations[END_REF]). The last ones imply usually important stability restrictions and more sophisticated numerical implementations. In the particular case of negative time steps, they are completely undesirable for PDEs that are ill-posed for negative time progression.

Time Integration Strategy.

The standard orders achieved with a Lie or Strang scheme are no longer valid when we consider very stiff reactive or diffusive terms (see [START_REF] Descombes | Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: Singular perturbation and order reduction[END_REF]). Furthermore, if the fastest time scales play a leading role in the global physics of the phenomenon, then the solution obtained by means of a operator splitting scheme will surely fail to capture the global dynamics of the phenomenon, unless we consider splitting time steps small enough to solve such scales.

In the opposite case when these fast scales are not directly related to the physical evolution of the phenomenon, larger splitting time steps might be considered, but order reductions may then appear due to short-life transients associated to fast variables. This is usually the case for propagating reaction waves where for instance, the speed of propagation is much slower than some of the chemical scales. In this context, it has been proved in [START_REF] Descombes | Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: Singular perturbation and order reduction[END_REF] that better performances are expected while ending the splitting scheme by the time integration of the reaction part (2.4) or in a more general case, the part involving the fastest time scales of the phenomenon (see a numerical study with convection and complex chemistry in [START_REF] Descombes | Operator splitting techniques for multi-scale reacting waves and application to low Mach number flames with complex chemistry: Theoretical and numerical aspects[END_REF]). In particular, in the case of stiff reaction-diffusion systems with linear diagonal diffusion, no order loss is expected for the L ∆t 2 and S ∆t 2 schemes when fast scales are present in the reactive term. However, one must also take into account possible order reductions coming this time from space multi-scale phenomena due to steep spatial gradients whenever large splitting time steps are considered, as analyzed in [START_REF] Descombes | On the local and global errors of splitting approximations of reaction-diffusion equations with high spatial gradients[END_REF].

These theoretical studies allow to depict more precisely the numerical behavior of the splitting techniques and thus, help us to select among the various splitting alternatives, depending on the nature of the problem. Nevertheless, the choice of suitable time integration methods for each subsystem is mandatory not only to guarantee such theoretical estimates but also to take advantage of the particular features of each independent subproblem in order to solve them with reasonable resources as accurately as possible. In particular, our splitting technique considers high order dedicated integration methods for each subproblem in order to properly solve the fastest time scales associated with each one of them, and in such a way that the main source of error is led by the operator splitting error. Then, the control of the accuracy of the time integration is ruled by the splitting scheme by means of the splitting time step needed to describe the global physical phenomenon within a required level of accuracy.

Time Integration of the

Reaction: Radau5. Radau5 [START_REF] Hairer | Solving 0rdinary Differential Equations II[END_REF] is a fifth order implicit Runge-Kutta method for which order conditions proven by Butcher [START_REF] Butcher | Implicit Runge-Kutta processes[END_REF] are satisfied up to the order 5, whereas its stability function is generated by a collocation procedure with Radau quadrature formulae [START_REF] Ehle | A-stable methods and Padé approximations to the exponential[END_REF] that guarantees A-and L-stability properties, so that very stiff systems of ODEs might be solved without any stability problem.

Nevertheless, nonlinear systems must be solved throughout the time integration process because of this implicit character. Even if the system resolution tools are highly optimized (which are based on modified Newton's methods), these procedures become very expensive for large systems and important memory requirements are needed in order to carry out these computations. As a consequence, the size of the system of equations to be solved is strongly limited by the computing resources. However, in a splitting scheme context, we easily overcome this difficulty because the reactive term of (2.2) is a system of ODEs without spatial coupling. Therefore, a local approach node by node is adopted where the memory requirements are only set by the number of local unknowns, which usually does not exceed conventional memory resources. Even more, this approach is posed as an embarrassingly parallel problem where no data exchange is needed among nodes, that therefore yields optimal load balancing on shared memory architectures (see for example the numerical implementations achieved in [START_REF] Dumont | Simulation of human ischemic stroke in realistic 3D geometry: A numerical strategy[END_REF]).

A very important feature of the Radau5 solver is that precious computing time is saved because it considers an adaptive time stepping strategy which guarantees a requested accuracy of the numerical integration and at the same time, allows to discriminate stiff zones from regular ones so that small time steps are only considered for stiff behaviors. In a splitting context, the reaction time integration step ∆t R will be adapted only at nodes where the reaction phenomenon takes place, yielding local reaction time steps much smaller than the splitting time step so that the global time advancement of the resolution given by the splitting time step ∆t will not be limited by these fast time scales. For multi-scale reaction waves, this adaptation happens in a very low percentage of the spatial domain, usually only in the neighborhood of the wavefront. On the other hand, larger time steps are considered at nodes with a chemistry at (partial) equilibrium. This local time stepping without data exchange nor reconstruction of intermediary values would not be possible if we integrated the entire reaction-diffusion system (2.2) at once.

Time Integration of the Diffusion: ROCK4.

One of the most important advantages of ROCK4 [START_REF] Abdulle | Fourth order Chebyshev methods with recurrence relation[END_REF] is its explicit character, hence the simplicity of its implementation. In fact, no sophisticated Linear Algebra tools are needed (no resolution of linear systems required) and thus, the resolution is based on simple matrix-vector products. Nevertheless, the computation cost relies directly on the requested quantity of such products, that is the number of internal stages s needed within one time integration step of the diffusion problem, ∆t D , inside each splitting time step ∆t. The memory requirements are also reduced as a consequence of its explicit scheme, nevertheless we must keep in mind that these requirements increase proportionally with the number of nodes considered over the spatial domain.

The ROCK solver [START_REF] Abdulle | Fourth order Chebyshev methods with recurrence relation[END_REF] features also dynamic time step adaptation so that ∆t D is chosen in order to guarantee a prescribed accuracy of computations. ROCK4 is formally a fourth order stabilized explicit Runge-Kutta method and such methods feature extended stability domain along the negative real axis [START_REF] Verwer | Explicit Runge-Kutta methods for parabolic partial differential equations[END_REF]. Therefore, considering a general problem such as v = g(v), in order to guarantee the stability of computations for a given time step ∆t D , the number of stages s needed is directly related to the spectral radius ρ(∂g/∂v), as long as the latter is dominated by real negative eigenvalues. Hence, for a given ∆t D needed to guarantee the accuracy of the integration, the minimum number of stages s needed to guarantee the stability is computed by the ROCK4 solver through

0.35 • s 2 ≥ ∆t D ρ ∂g ∂v (v) , ( 2.7) 
which extends quadratically on s the stability domain of the method along the negative axis. Considering the construction of the ROCK4 scheme [START_REF] Abdulle | Fourth order Chebyshev methods with recurrence relation[END_REF], at least s = 5 internal stages are required. The method is then very appropriate for diffusion problems because of the usual predominance of negative real eigenvalues for which the method is efficiently stable. A very suitable example is the linear diagonal diffusion problem (2.3) with only negative real eigenvalues and constant spectral radius ρ(B). An important gain of efficiency is obtained in this case because the discretized diffusion operator has a sparse matrix structure that yields more performing matrix-vector products. In our particular applications, the diffusive phenomenon has a leading role of propagator of perturbations over the (partial) equilibrium nodes that result on excitation of the reactive schemes and thus, the propagation of the reaction wave. The resulting self-similar character implies that the number of stages needed will remain practically constant throughout the evolution of the phenomenon. The spectral radius must be previously estimated (for example, using the Gershgoring theorem or even numerically, as proposed by the ROCK4 solver by means of a nonlinear power method).

Once again, the implementation of this diffusion solver over the entire reactiondiffusion system (2.2) will not be appropriate under neither theoretical nor practical considerations, and highlights the inherited advantages of the time operator splitting. In particular, solving within a prescribed tolerance the diffusion problem may also yield ∆t D much smaller than the splitting time step ∆t, and thus, the global time advancement of the solution given by ∆t will not be necessarily limited by the diffusive time scales but by the global features of the coupled problem.

Mesh Refinement Technique.

We are concerned with the propagation of reacting wavefronts, hence important reactive activity as well as steep spatial gradients are localized phenomena. This implies that if we consider the resolution of the reactive problem (2.4), a considerable amount of computing time is spent on nodes that are practically at (partial) equilibrium. We show for instance in [START_REF] Dumont | Simulation of human ischemic stroke in realistic 3D geometry: A numerical strategy[END_REF] that for a numerical simulation with complex source mechanisms on a uniform grid, 60 % of the computing time is spent on nodes with very reduced chemical activity. Moreover, there is no need to represent these quasi-stationary regions with the same spatial discretization needed to describe the reaction front, so that the diffusion problem (2.3) might also be solved over a smaller number of nodes. An adapted mesh obtained by a multiresolution process which discriminates the various space scales of the phenomenon, turns out to be a very convenient solution to overcome these difficulties; the basis of this strategy is presented in the following. For further details on adaptive multiresolution techniques, we refer to the books of Cohen [START_REF] Cohen | Wavelet Methods in Numerical Analysis[END_REF] and Müller [START_REF] Müller | Adaptive Multiscale Schemes for Conservation Laws[END_REF].

Basis of Multiresolution Representation.

Let us consider nested finite volume discretizations of general problem (2.1) with only one component, m = 1. For j = 0, 1, • • • , J from the coarsest to the finest grid, we build regular disjoint partitions (cells) (Ω γ ) γ∈Sj of an open subset Ω ⊂ R d , such that each Ω γ , γ ∈ S j , is the union of a finite number of cells Ω µ , µ ∈ S j+1 , and thus, S j and S j+1 are consecutive embedded grids. We denote U j := (u γ ) γ∈Sj as the representation of U on the grid S j where u γ represents the cell-average of u :

R × R d → R in Ω γ , u γ := |Ω γ | -1 Ωγ u(t, x) dx. (2.8)
Data at different levels of discretization are related by two inter-level transformations which are defined as follows: (1), the projection operator P j j-1 , which maps U j to U j-1 . It is obtained through exact averages computed at the finer level by

u γ = |Ω γ | -1 |µ|=|γ|+1,Ωµ⊂Ωγ |Ω µ |u µ , ( 2.9) 
where |γ| := j if γ ∈ S j . As far as grids are nested, this projection operator is exact and unique [START_REF] Cohen | Wavelet Methods in Numerical Analysis[END_REF]. And (2), the prediction operator P j-1 j , which maps U j-1 to an approximation Ûj of U j . There is an infinite number of choices to define P j-1 j , but at least two basic constraints are usually imposed [START_REF] Cohen | Fully adaptive multiresolution finite volume schemes for conservation laws[END_REF]:

1. The prediction is local, i.e., ûµ depends on the values u γ on a finite stencil R µ surrounding Ω µ , where |µ| = |γ| + 1. 2. The prediction is consistent with the projection in the sense that

u γ = |Ω γ | -1 |µ|=|γ|+1,Ωµ⊂Ωγ |Ω µ |û µ ;
(2.10)

i.e., P j j-1 • P j-1 j = Id. In the case where P j-1 j is linear, we have

ûµ := γ c µ,γ u γ , (2.11)
and if the prediction has some prescribed order r > 0 of accuracy, then it is exact for polynomials of degree r -1, i.e., if u ∈ r-1 , then u γ = ûγ for all γ [START_REF] Harten | Multiresolution algorithms for the numerical solution of hyperbolic conservation laws[END_REF][START_REF] Cohen | Fully adaptive multiresolution finite volume schemes for conservation laws[END_REF].

With these operators, we define for each cell Ω µ the prediction error or detail as the difference between the exact and predicted values:

d µ := u µ -ûµ , (2.12)
or in terms of inter-level operations:

d µ = u µ -P |µ|-1 |µ| • P |µ| |µ|-1 u µ . ( 2.13) 
The consistency assumption (2.10), the definitions of the projection operator (2.9) and of the detail (2.12) yield

|µ|=|γ|+1,Ωµ⊂Ωγ |Ω µ |d µ = 0. (2.14)
We can then construct as shown in [START_REF] Cohen | Fully adaptive multiresolution finite volume schemes for conservation laws[END_REF] a detail vector defined as D j = (d µ ) µ∈∇j , where the set ∇ j ⊂ S j is obtained by removing for each γ ∈ S j-1 one µ ∈ S j such that Ω µ ⊂ Ω γ in order to avoid redundancy from expressions (2.12) and (2.10), and to get a one-to-one correspondence:

U j ←→ (U j-1 , D j ), (2.15) 
issued by operators P j j-1 and P j-1 j

. By iteration of this decomposition, we finally obtain a multi-scale representation of U J in terms of

M J = (U 0 , D 1 , D 2 , • • • , D J ): M : U J -→ M J .
(2.16)

Compression and Time Evolution on Graded

Tree-structured Data. One of the main interests of carrying on such a multi-scale decomposition is that this new representation defines a whole set of regularity estimators all over the spatial domain and thus, a data compression might be achieved as follows.

Given a set of index Λ ⊂ ∇ J where ∇ J := J j=0 ∇ j , we define a truncation operator T Λ , that leaves unchanged the component d λ if λ ∈ Λ and replaces it by 0, otherwise. In practice, we are interested in sets Λ obtained by thresholding:

λ ∈ Λ if |d λ | ≥ ε j , j = |λ|, (2.17)
with the level-dependent threshold values:

ε j = 2 d 2 (j-J) ε, j = |λ|, j ∈ [0, J], (2.18)
where ε is the threshold value for the finest level J. A data compression is then obtained by discarding the cells whose details are not into Λ according to (2.17), whereas the conservativity of the multiresolution scheme remains guaranteed by expression (2.14) as it can be shown in [START_REF] Müller | Adaptive Multiscale Schemes for Conservation Laws[END_REF].

Nevertheless, allegedly useless details can not be deliberately deleted because a certain data structure must be respected in order to perform the different computations associated with the multi-scale transformation itself, mainly the prediction operator. The set Λ must then exhibit a graded tree structure in order to guarantee the availability of cell values within the local prediction stencil (see [START_REF] Cohen | Fully adaptive multiresolution finite volume schemes for conservation laws[END_REF][START_REF] Roussel | A conservative fully adaptive multiresolution algorithm for parabolic PDEs[END_REF] for more details on the definition and construction of such structures). In this paper, we will not conduct the analysis of such data structures, but we present the following terminology related to a tree representation that we will adopt throughout this paper:

• If Ω µ ⊂ Ω λ with |µ| = |λ| + 1, we say that Ω µ is a child of Ω γ and that Ω γ is the parent of Ω µ .
• Moreover, we define the leaves L(Λ) of a tree Λ as the set of Ω λ with λ ∈ L(Λ) such that Ω λ has no children in Λ.

• Finally, we define Ω λ as a root when it belongs to the coarsest grid, that is λ ∈ S 0 or |λ| = 0, in which case, we denote λ as λ 0 . An effective data compression is accomplished because U is not represented on the finest grid S J as U J anymore, but on Λ ε , where Λ ε is the smallest graded tree containing Λ defined by (2.17). More precisely, the numerical solution U n at time n∆t can be represented on an adapted grid by the set (u n λ ) λ∈L(Λ n ε ) . The time evolution is then performed only on the leaves of a fixed adapted grid. A refinement operator R is therefore defined in order to generate a set Λn+1 ε containing Λ n ε , on which the time integration is computed, such that Λn+1 ε is adapted for describing the solution at both n∆t and (n + 1)∆t. Operator R refines the adapted grid usually based on the values of the details, as in the classical Harten's refinement criteria [START_REF] Harten | Multiresolution algorithms for the numerical solution of hyperbolic conservation laws[END_REF]. The latter introduces for all λ ∈ L(Λ n ε ): \Λ n ε can be constructed by applying the inverse operation of (2.16): M -1 . The same refining procedure is adopted in our implementation but with a more conservative second criterion which adds the 2 d children of all λ ∈ L(Λ n ε ) such that |d λ | ≥ ε |λ| . In the practice, this adds one more grid level all over Λ n ε which defines an often called security or safety layer (see e.g. [START_REF] Roussel | A conservative fully adaptive multiresolution algorithm for parabolic PDEs[END_REF][START_REF] Bürger | Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension[END_REF]). On the other hand, Harten related the k cells in each direction to the support of the numerical flux evaluation and in the practice k = 1 was adopted since the time step is limited by a standard CFL condition [START_REF] Harten | Multiresolution algorithms for the numerical solution of hyperbolic conservation laws[END_REF]. In our numerical strategy, there is no such stability restriction on the splitting time step and the k cells are rather used to allow larger time evolution steps while ensuring an appropriate spatial representation as we will discuss in § 3.2.

These refinement criteria are rather conservative, nevertheless they are simple and completely avoid unrefined resolution taking into account the choice of the time evolution steps detailed in § 3.2 and the propagating nature of reaction waves at finite speed. The latter feature guarantees that a given adapted grid propagates along with the waves and no more that one grid level needs to be added at each time iteration. For more general cases, a more sophisticated refinement criteria might be required, as the one introduced in [START_REF] Cohen | Fully adaptive multiresolution finite volume schemes for conservation laws[END_REF], that allow to add more than one refined level during one time step in order to properly describe new structures in the forthcoming solution. On the other hand, a dynamic time step adaptation strategy for highly unsteady problems such as the one developed in [START_REF] Duarte | A new numerical strategy with space-time adaptivity and error control for multi-scale streamer discharge simulations[END_REF], shows that a high frequency of remeshing given by the adaptive time step allows also to rapidly capture the spatial dynamics of the problem within a prescribed tolerance of the adapted spatial representation.

An important theoretical result is that if we denote by V n J := (v n λ ) λ∈SJ , the solution fully computed on the finest grid, and denote by U n J , the solution reconstructed on the finest grid that used adaptive multiresolution (keeping in mind that the time integration was really performed on the leaves L( Λn ε ) of a compressed representation of U n ); then, for a fixed time T = n∆t, it can be shown that the error introduced by the compressed spatial representation is given by:

U n J -V n J ∝ nε. (2.19)
This result was first stated by Harten in [START_REF] Harten | Multiresolution algorithms for the numerical solution of hyperbolic conservation laws[END_REF] for hyperbolic problems in a L 1 -norm, where the multiresolution decomposition was used to accelerate the flux evaluations for a time integration performed on the finest uniform grid. Later on, (2.19) was mathematically proven in [START_REF] Cohen | Fully adaptive multiresolution finite volume schemes for conservation laws[END_REF] under more rigorous constraints for the refinement criteria and the computation of the fluxes also for hyperbolic problems in a L 1 -norm, this time for a fully multiresolution scheme where all operations were performed on the adapted grid. In the same spirit of these works, in this study we will consider (2. [START_REF] Epstein | An Introduction to Nonlinear Chemical Dynamics[END_REF]) but with a L 2 -norm, more suited for parabolic problems, as it was also previously considered for instance in [START_REF] Roussel | A conservative fully adaptive multiresolution algorithm for parabolic PDEs[END_REF][START_REF] Bürger | Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension[END_REF]. Even though a fully mathematical proof is still required for this case, a numerical demonstration will be provided. Finally, the latest error estimate of the compressed spatial representation as well as the numerical behavior of the time operator splitting schemes, allow one to properly choose the simulation parameters in order to predict the expected level of accuracy of the resolution.

Summary of the Numerical Strategy.

The resolution strategy can be summarized as follows:

(u n λ ) λ∈L( Λn ε ) M -→ (u n λ0 , d n λ ) λ∈ Λn ε (2.20) (u n λ0 , d n λ ) λ∈ Λn ε T Λ n ε -→ (u n λ0 , d n λ ) λ∈Λ n ε (2.21) (u n λ0 , d n λ ) λ∈Λ n ε R -→ (u n λ0 , d n λ ) λ∈ Λn+1 ε (2.22) (u n λ0 , d n λ ) λ∈ Λn+1 ε M -1 -→ (u n λ ) λ∈L( Λn+1 ε ) (2.23) (u n λ ) λ∈L( Λn+1 ε ) S ∆t -→ (u n+1 λ ) λ∈L( Λn+1 ε ) (2.24)
The set (u n λ0 ) is defined as the set of roots of Λn ε , that is all λ ∈ Λn ε such that |λ| = 0 or λ ∈ S 0 .

For n = 0, the initial condition should be represented on L( Λ0 ε ) in step (2.20), which can usually be the finest grid, that is all Ω λ such that |λ| = J or λ ∈ S J . Nevertheless, this is not possible for large domains simulations, in which case, the initial condition is computed on an intermediate grid level j: all Ω λ such that |λ| = j or λ ∈ S j , then the solution is refined and recomputed over the next finer level after a thresholding process. This procedure is recursively applied until the pre-established finest level J is reached; the general procedure is explained in details in [START_REF] Müller | Adaptive Multiscale Schemes for Conservation Laws[END_REF].

The algorithm can schematically be represented as ) in order to obtain slightly higher data compression. In what follows, the key aspects of the implemented algorithm are detailed.

U n+1 = S ∆t (M -1 RT Λ n ε MU n ), ( 2 

Algorithm Implementation.

A dynamic graded tree structure is used in this implementation to represent data in the computer memory. This kind of data structure has been used in other multiresolution applications [START_REF] Roussel | A conservative fully adaptive multiresolution algorithm for parabolic PDEs[END_REF] and other dedicated data structures have also been developed [START_REF] Brix | A hash data structure for adaptive PDE-solvers based on discontinuous Galerkin discretizations[END_REF]. The adapted grid corresponds to a set of nested dyadic grids generated by refining recursively a given cell, depending on the local regularity of the solution. The chosen data structure can handle 1D, 2D and 3D Cartesian geometries, whereas the basic element of the structure is the cell itself, which consists of a set of geometric and physical values, plus pointers to its parent, their children and the contiguous cells in each dimension, the neighbors. The roots correspond to the basis of the tree, Ω λ0 , whereas the leaves are the upper elements with no children in the tree. In d dimensions, a parent-cell at a level j has at most 2 d children cells at level j + 1. In this particular implementation, we impose that all 2 d children issued from the same parent-cell are simultaneously present if at least one child among them is needed. When there is only one root in the tree, the maximal number of leaves N on which the solution might be represented is given by N = 2 dJ , which is exactly the number of cells on the finest grid. The maximal number of cells M in the tree is given by M = (2 d(J+1) -1)/(2 d -1). Additionally, although there is no rigorous mathematical analysis, it was shown in [START_REF] Cohen | Fully adaptive multiresolution finite volume schemes for conservation laws[END_REF][START_REF] Müller | Adaptive Multiscale Schemes for Conservation Laws[END_REF] that a much more efficient alternative to fully evaluate the fluxes at the finest level considers the flux evaluations directly on the adapted mesh with essentially the same accuracy. Nevertheless, we consider in this work the intermediary case, also detailed in [START_REF] Müller | Adaptive Multiscale Schemes for Conservation Laws[END_REF] and [START_REF] Roussel | A conservative fully adaptive multiresolution algorithm for parabolic PDEs[END_REF], that takes into account virtual cells called phantoms that are locally added to the tree in order to always compute the numerical fluxes of diffusion and convection operators at the highest grid level between two neighboring cells, following the procedure introduced in [START_REF] Roussel | A conservative fully adaptive multiresolution algorithm for parabolic PDEs[END_REF] for finite volume discretizations.

The implemented code represents the tree-structured data as a set of cells linked by pointers. In a FORTRAN 90/95 environment, a pointer is just an alias to the target; nevertheless, we take advantage of the fact that each pointer has a different state, depending on whether it is associated or not with another object. We work then with cells that are at different grids and that are not necessarily arranged in a contiguous way. Hence, we must conceive the mechanisms to navigate through the tree structure. In this implementation, we adopt a recursive strategy in which one moves from one cell to another passing by the child of the first, and by the consecutive children, until one gets to the desired cell. At each step, the state of the pointers tells us whether the target exists or not. In this recursive way, we are able to locate leaves or any cell and the same kind of procedure is conducted in the opposite direction, from leaves towards roots when necessary. Pointers to neighbors as well as other flags or indicators are not strictly necessary but eases considerably the searching process for certain routines.

Prediction Operator.

To obtain the approximated values ûµ by P j-1 j according to (2.11), we consider centered linear polynomial interpolations of order 2l, i.e. accuracy order r = 2l + 1, computed with the l nearest neighbors in each direction. For instance, in a 1D configuration for l = 1, the prediction operator is explicitly given by:

ûj+1,2k = u j,k + 1 8 (u j,k-1 -u j,k+1 ), (3.1) ûj+1,2k+1 = u j,k + 1 8 (u j,k+1 -u j,k-1 ),
where the first index denotes the grid level and the second, the indexation of the cell into the tree. Higher order formula can be found in [START_REF] Müller | Adaptive Multiscale Schemes for Conservation Laws[END_REF]. Since a Cartesian mesh is used, extension to multidimensional polynomial interpolations is easily obtained by a tensorial product of the 1D operator [START_REF] Bihari | Multiresolution schemes for the numerical solution of 2-D conservation laws I[END_REF][START_REF] Roussel | A conservative fully adaptive multiresolution algorithm for parabolic PDEs[END_REF]. More accurate interpolations (higher r) yield better predicted values and thus, lower values of details following (2.12). Therefore, the thresholding process should also yield higher data compression according to (2.17). Nevertheless, this is not necessarily the case because larger stencils (higher l) and consequently more cells are needed to perform these interpolations so that the optimal choice of these parameters depends finally on the application. In the numerical illustrations we will restrict the different analysis to l = 1, unless otherwise noted.

Choice of the Splitting Time

Step. The splitting time step is set by the desired level of accuracy in the resolution of the wave speed, the wave profile, both, or any other parameter, depending on the problem and considering that each subsystem is perfectly solved. It is thus only depending on the global physics of the phenomenon we want to describe and therefore, on the degree of decoupling we can achieve between the various subsystems within a prescribed error tolerance. Considering the semidiscretized problem (2.2) with a sufficiently fine spatial discretization, if an accurate reference wave solution U or the corresponding wavefront speed v, can be computed either numerically or based on theoretical/analytical estimates, then the approximated solution U split of speed v split , computed with a splitting time step ∆t and an operator splitting technique with exact integration of the subsystems, must verify:

E p = U -U split L 2 ≤ η p , E v = |v -v split |/v ≤ η v , ( 3.2) 
where η p and η v are accuracy tolerances for the profile and velocity errors: E p and E v , respectively. The profile error E p should be evaluated superposing both U and U split . However, a simpler and more practical strategy would just evaluate the L 2 -error at a fixed time t :

E = U(t ) -U split (t ) L 2 ≤ η, ( 3.3) 
in which case, both profile and velocity errors are simultaneously considered. For problems with more than one variable with different orders of magnitude, all these L 2 -norms (E p and E) that are independently performed for each variable, should be normalized by considering an appropriate scaling factor for the corresponding evaluated variable 1 . Notice that in order to remain coherent with the previous constraints and also to guarantee an accurate resolution of the reaction and diffusion problems, the corresponding accuracy tolerances η Radau5 and η ROCK4 of these solvers must verify:

η Radau5 , η ROCK4 < min{η p , η v , η}. (3.4)
In this way, we can isolate the various integration errors and guarantee that the overall time integration error is practically given by the splitting scheme approximation. In particular, an evaluation of the sole splitting error allows to decouple the time scale spectrum of the problem whenever this is possible, contrary to classical applications of time operator splitting methods for which the splitting time step is directly settled by the fastest time scale of the phenomenon. In our strategy, we therefore extend the use of these methods to splitting time steps given by the global coupling scales, potentially larger than the fastest physical or numerical scales. This is a direct consequence of previous mathematical studies [START_REF] Descombes | Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: Singular perturbation and order reduction[END_REF][START_REF] Descombes | On the local and global errors of splitting approximations of reaction-diffusion equations with high spatial gradients[END_REF] that demonstrate that even though there will possibly be a loss of order of these methods for time or space stiff problems and large splitting time steps, the splitting schemes will still consistently approximate the coupled resolution with an error piloted by the splitting time step.

We have established so far the criteria to handle time integration errors given by the splitting procedure. Nevertheless, the proposed strategy combines this splitting approach with a space multiresolution adaptive technique so that the approximation error introduced by the latter must be also taken into account. According to (2.19) and even though a rigorous mathematical demonstration is not yet available for parabolic problems, we consider as in previous studies [START_REF] Roussel | A conservative fully adaptive multiresolution algorithm for parabolic PDEs[END_REF][START_REF] Bürger | Fully adaptive multiresolution schemes for strongly degenerate parabolic equations in one space dimension[END_REF] the following error bound for a fixed time T = n∆t:

U M R split -U J split L 2 ≤ Cnε, ( 3.5) 
for some positive C, where U M R split is the MR/splitting solution at n∆t reconstructed on the finest grid J, which corresponds to the spatial discretization of the semidiscretized problem (2.2). A basic constraint to assume the validity of (3.5), as in the hyperbolic case, is that the propagating locally refined spatial gradients remain into the corresponding fine regions during each time step evolution ∆t. In order to guarantee this for a given spatial discretization (∆x, ∆y, ∆z) corresponding to the maximum J level, the splitting time step must be bounded by a maximum splitting time step ∆t max computed by:

∆t ≤ ∆t max = min k∆x v x , k∆y v y , k∆z v z , ( 3.6) 
for the directional components (v x , v y , v z ) of the wavefront speed and where k = 2 + k stands for the refined region in which the gradients might propagate without losing spatial resolution. The refined region is thus defined according to the refinement criteria detailed in § 2.3.2 for which one finer level is added everywhere (2 cells at J in each direction since the corresponding 2 d children are simultaneously present in the safety layer) and k cells on the same level. We remark that the refined region k might be even larger in the practice because if one cell is a leaf, the remaining 2 d -1 "brother-cells" issued from the same parent-cell are also leaves, even if some of them might not be necessary according to the threshold criterion (2.18).

We recall that there are no stability restrictions on the splitting time ∆t since the internal time integration solvers deal independently with these issues, and thus the splitting time step is uniquely associated with the numerical accuracy of the computations. In this context, the bound ∆t max is necessary only for adapted grids and allows simply to ensure an appropriate spatial representation of the steepest gradients and to decouple time and space approximation errors. That is, without this bound the propagating front might considerably leave the refined regions and the time integration performed on the resulting coarser cells might thus introduce complementary numerical errors into the numerical time integration process. Furthermore, the latter coupling of space and time features results usually into qualitatively different behaviors of the wave for instance in the velocity of propagation, which in the practice allows to identify an inappropriate choice of the splitting time step in the context of adapted grids. Finally, increasing the parameter k in the refinement criteria allows then to further enlarge the refined regions if larger splitting time steps are desired.

In the case of propagating wavefronts, a constant splitting time step based on a prescribed accuracy of the global time integration process as described in this section is more than reasonable, whereas the bound (3.6) guarantees a proper coupling of the space and time numerical methods. If no theoretical hints of the wave profile or velocity exist, the computation of a reference solution is usually very expensive but still feasible for one-dimensional or relatively small computational domains, which might give some insights in the behavior of the numerical methods in order to extrapolate these results to larger or multi-dimensional problems according to a standard numerical procedure. On the other hand, the speed of the wavefront needed to compute (3.6) can be always approximated by one-dimensional measurements taken either from fully coupled 1D configurations or for instance from feasible multi-dimensional MR/splitting resolutions for which the accuracy tolerances are tightened.

However, either if a more precise information on the accuracy of the time integration to choose the splitting time step is required, or if we are faced with highly unsteady problems, an adaptive splitting scheme introduced in [START_REF] Descombes | Adaptive time splitting method for multi-scale evolutionary PDEs[END_REF] allows to properly estimate the local error of the splitting time integration without any need to compute a reference solution. Hence, based on these local error estimates, the splitting time steps are dynamically computed within a prescribed accuracy tolerance η ∆t . Nevertheless, this procedure introduces naturally an overhead which might not be justified in the simplified case of propagating waves so that a hybrid strategy that allows to consider a constant splitting time step issued from the local error estimates of the adaptive splitting procedure can be seen as the most convenient solution. In this work we are focused on the propagation of reaction waves, therefore the previously mentioned adaptive splitting scheme [START_REF] Descombes | Adaptive time splitting method for multi-scale evolutionary PDEs[END_REF] is partially used only to justify and validate the chosen constant splitting time step and the proposed numerical strategy for this kind of problems.

Algorithm Scheme.

The global algorithm can be summarized as:

1. INITIALIZATION:

• Initialization of parameters: e.g. maximum and minimum grid levels, domain size, number of roots. • Initialization of the mesh structure:

creation of the different grids; initialization of parameters of each cell from the roots, e.g. position, coordinates, level threshold value ε j ; definition of children and neighbors from the roots.

• Computation of initial solution at an intermediary grid level and recursive refinement and computation up to the maximum level.

LOOP IN TIME:

• Computation of cell values: projection operator P j j-1 from leaves towards roots.

• Computation of details: operator M from roots towards leaves.

• Thresholding and graduation: operator T Λε throughout the tree.

• Refinement of the tree: operator R throughout the tree.

• Computation of cell values from details: operator M -1 from roots towards leaves. • Creation of phantom cells: needed for diffusion time step.

• Time integration: Strang operator splitting S ∆t 2 applied only on leaves: reaction half time step, time integration by Radau5 cell by cell; diffusion time step, time integration by ROCK4 considering phantoms cells at grid level boundaries, computed by prediction operator; reaction half time step, time integration by Radau5 cell by cell.

OUTPUT:

Save adapted grid with the corresponding cell values represented on it. Let us remark that during the thresholding process, cells are only labeled according to (2.17), but no cell is neither removed nor its detail set to zero, because a particular cell might be retained afterwards under the refinement or graduation criteria. On the other hand, the phantoms cells are created before the time integration process in order to separate the multiresolution and time integration operations in the code for this particular implementation. The values on the phantoms are nevertheless computed at each internal stage of ROCK4 by the prediction operator after locally updating their prediction stencils with the projection operator.

Numerical Simulations.

In this last section, we present some numerical illustrations of the proposed strategy. A problem coming from nonlinear chemical dynamics is described and treated. The performance of the method is discussed in the context of 2D and 3D simulations. All simulations were performed on an AMD-Shanghai processor of 2.7 GHz with memory capacity of 32 GB.

Mathematical Model of Study.

We are concerned with the numerical approximation of a model of the Belousov-Zhabotinski reaction, a catalyzed oxidation of an organic species by acid bromated ion (see [START_REF] Epstein | An Introduction to Nonlinear Chemical Dynamics[END_REF] for more details and illustrations). We thus consider the model detailed in [START_REF] Gray | Chemical Oscillations and Instabilites[END_REF] and coming from the classic work of [START_REF] Field | Oscillations in chemical systems. II. Thorough analysis of temporal oscillation in the bromate-cerium-malonic acid system[END_REF] which takes into account three species: hypobromous acid HBrO 2 , bromide ions Br - and cerium(IV). Denoting by a = [Ce(IV)], b = [HBrO 2 ] and c = [Br -], we obtain a very stiff system of three PDEs:

∂ t a -D a ∆a = 1 µ (-qa -ab + f c), ∂ t b -D b ∆b = 1 (qa -ab + b(1 -b)) , ∂ t c -D c ∆c = b -c, ( 4.1) 
with diffusion coefficients D a , D b and D c , and some real positive parameters f , small q, and small , µ, such that µ . The dynamical system associated with this system models reactive excitable media with a large time scale spectrum (see [START_REF] Gray | Chemical Oscillations and Instabilites[END_REF] for more details). Moreover, the spatial configuration with addition of diffusion generates propagating wavefronts with steep spatial gradients. Hence, this model presents all the difficulties associated with a stiff multi-scale configuration. The advantages of applying a splitting strategy to this problem have already been studied and presented in [START_REF] Descombes | Operator splitting for stiff nonlinear reactiondiffusion systems: Order reduction and application to spiral waves[END_REF]. In what follows, we will consider 2D and 3D configurations of problem (4.1).

2D BZ Equation.

We first consider the 2D application of problem (4.1) with homogeneous Neumann boundary conditions and the following parameters, taken from [START_REF] Jahnke | Chemical vortex dynamics in the Belousov-Zhabotinsky reaction and in the two-variable Oregonator model[END_REF] and a preliminary study [START_REF] Descombes | Operator splitting for stiff nonlinear reactiondiffusion systems: Order reduction and application to spiral waves[END_REF]: = 10 -2 , µ = 10 -5 , f = 1.6 and q = 2 × 10 -3 , with diffusion coefficients D a = 2.5 × 10 -3 , D b = 2.5 × 10 -3 and D c = 1.5 × 10 -3 . The phenomenon is studied over a time domain of [0, 4] and a space region of [0, 1] 2 . The initialization of the problem is based on [START_REF] Jahnke | Chemical vortex dynamics in the Belousov-Zhabotinsky reaction and in the two-variable Oregonator model[END_REF] for the two-variable model of (4.1) with b and c, and it is given by where θ is a polar coordinate angle considering as origin (0.5, 0.5

a = f c q + b , ( 4 
) into [0, 1] 2 . b ss = c ss = q f + 1 f -1 (4.5)
is an approximation of the steady state values of the dynamical system associated with the two-variable problem obtained by taking (4.2) into the evolution equations of b and c. (4.2) is obtained by taking µ → 0 into the evolution equation of a.

In the following, we will first consider a 2D computational domain with a uniform mesh of 256 2 for which the coupled and split resolutions of the semi-discretized problem derived from (4.1) are rather expensive but still feasible. The idea is to compare these solutions with the ones computed by the proposed MR/splitting procedure in order to analyze the splitting and multiresolution errors regarding the corresponding accuracy tolerances detailed in § 3.2 and to evaluate the computational performance of each approach. In a second step and based on these results we will study larger computational domains and 3D problems.

We thus consider 8 nested dyadic grids with N = 2 2×8 = 65536 = 256 2 cells on the finest grid J = 8 and define a reference or quasi-exact solution U J qe as the solution of the semi-discretized coupled reaction-diffusion problem (4.1) on the finest mesh J performed by ROCK4 with very fine tolerances, η ROCK4 = 10 -14 . For this problem and with the previous parameters, the spectral radius of the Jacobian of the reaction term into (4.1) is usually dominated by the negative real parts of the associated eigenvalues even though the imaginary parts are also present. Therefore only fine tolerances that yield sufficiently small time steps allow to fully guarantee the stability of the ROCK4 scheme whenever the imaginary part appears, considering the reduced stability domains of these methods along the imaginary axis. The main limitation to directly perform such computation with the Radau5 solver comes from its important memory requirements. The split solution U J split uses the RDR Strang S ∆t 2 scheme as time integration method of the semi-discretized problem (4.1) with Radau5 for the time integration of the reaction term and ROCK4 for the diffusive part, η Radau5 = η ROCK4 = 10 -5 . In order to choose the appropriate splitting time step ∆t, we set an accuracy tolerance of η = 10 -2 considering for simplicity the normalized L 2 -errors (3.3) as explained in § 3.2. Figure 4.1 shows these errors evaluated at final time t = 4 for all three variables. A rounded value of splitting time step of ∆t = 4/1024 ≈ 3.91 × 10 -3 is finally chosen for which L 2 -errors are close to η for all three variables and times t ∈ [0, 4] into (3.3). In this work, we have computed several split solutions with different time steps for the whole time domain in order to analyze the different aspects of the scheme. Nevertheless, in a practical situation and for the simulation of propagating waves, we can consider a much less expensive procedure that evaluates the local errors after one splitting time step starting from an intermediary solution for which the waves are fully developed.

A rather large accuracy tolerance η was considered in order to show the decoupling of time steps for reaction, diffusion and the time operator splitting needed to solve the problem within the prescribed tolerance. The imposed tolerances for the reaction resolution imply time steps varying from 8.88 × 10 -5 to ∆t/2 ≈ 1.95 × 10 -3 for points located respectively in the neighborhood of the reactive front and the reduced chemical activity regions. On the other hand, the selected tolerances for ROCK4 yield time steps ∆t D relatively constant of about 6.5 -8 × 10 -4 , that is 5 -6 diffusion time steps within each splitting time step ∆t. For the spatial discretization of 2562 , the spectral radius ρ(B) estimated by ROCK4 is about 1400, so that no more than the minimum number of stages s = 5 is required according to (2.7). As a consequence, a CPU time of 1029 s is needed compared with the coupled resolution with ROCK4 that takes 23967 s. The latter considers time steps of about 2.4 × 10 -6 given by the fine tolerances and 5 internal stages for a larger spectral radius of 95000, that considers both reaction-and diffusion-associated eigenvalues. Even though this coupled resolution should be more accurate than a splitting technique, it will be no longer feasible for larger computational domains and moreover not appropriate for more complex chemical terms We consider now the proposed strategy that combines the previous splitting solver with the multiresolution adaptive technique. Figure 4.2 shows the spiral waves and the four different levels of spatial discretization on which they have been simulated with ε = 10 -2 for the stiffest variable a. Whenever we consider grid adaptation the bound (3.6) on the splitting time step ∆t must be taken into account. We need then to estimate the speed of propagation v of the wavefront. This can be done by computing the propagating speed of each variable along each direction as it is shown in Figure 4.3 for variable a along the y-axis. For the BZ waves, we have estimated a maximum speed of v x = v y ≈ 0.7, which yields a maximum splitting time step ∆t max = 1.6 × 10 -2 for ∆x = ∆y = 1/256 and k = 3, considering one enlarging cell in each direction k = 1 in the refinement criteria. In this particular case, we can also compute the speed relative error E v following (3.2) between the quasi-exact and a splitting solution with ∆t = 4/1024. These errors remain practically lower than 0.2 % as seen in Figure 4.3, which imply an accuracy tolerance of η v = 2 × 10 -3 considering the speed resolution. The proposed MR/splitting strategy represents and computes solutions only on adapted grids, the leaves of the tree structure, throughout the time domain. Therefore, we define the data compression (DC) as one minus the ratio between the number of cells on the adapted grid (AG) and those on the finest uniform grid (F G), expressing the whole as a percentage:

DC = 1 - AG F G × 100. ( 4.6) 
Figure 4.4 shows different data compression rates for several threshold values. Smaller threshold values ε imply more refinement and thus, compressions are less important. The whole finest grid is necessary for ε < 10 -5 . The corresponding CPU times for each one of these computations are included in Table (4.1) along with the quasi-exact and the splitting solution without any grid adaptation.

A more precise analysis of the CPU time consumption summarized in Table (4.2) shows that, as it was expected, an adapted grid allows to significantly reduce the time cost of the reaction integration as a consequence of the important reduction of the number of points without any chemical activity. On the other hand even though for ε = 10 -2 we consider only 25 % of the 256 2 points, an important overhead is introduced in the time integration of the diffusion because the introduction of phantoms cells yield denser matrix representations of the discretized diffusion operator and thus more expensive matrix-vector products. For these stiff problems, the MR operations represent less than 15 % of the total time, whereas the construction of the diffusion matrix takes over 6 % since it has to be recomputed at each splitting time step contrary to a uniform grid representation for which this matrix is constant. From a practical point of view, we can see that a more efficient strategy will directly consider the adaptive grid for the flux evaluations as detailed in [START_REF] Müller | Adaptive Multiscale Schemes for Conservation Laws[END_REF] without the introduction of any phantoms cells. Nevertheless, in this work we will keep the previous approach for being more accurate and taking into account that better performances are expected for larger computational domains for which grid adaptation is mandatory for the feasibility of simulations. An overhead is introduced in the CPU times in Table (4.2) coming from the profiling of the codes. We consider now the numerical accuracy of the MR/splitting strategy U M R split , discussed in § 3.2, with respect to the reference solution, U J qe , for the semi-discretized problem (4.1) on a uniform mesh J given by 256 2 points. The accuracy of the splitting scheme U J split applied to (4.1) discretized on the same uniform mesh J, is given by an accuracy tolerance η according to (3.3) through the proper choice of the splitting time step ∆t (see Figure 4.1) regardless the possible loss of order for the Strang S ∆t 2 scheme [START_REF] Descombes | Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: Singular perturbation and order reduction[END_REF][START_REF] Descombes | On the local and global errors of splitting approximations of reaction-diffusion equations with high spatial gradients[END_REF]. On the other hand, a multiresolution decomposition yields a compressed spatial representation whose accuracy to approximate the corresponding uniform mesh representation is related to the threshold value ε through (3.5). At some fixed time t the overall numerical accuracy of the MR/splitting resolution is then set by the previous splitting and multiresolution errors: and depend proportionally on the imposed threshold value ε according to (3.5). For this time multi-scale phenomenon, the accuracy of the MR/splitting strategy should be fixed by the time integration process in order to guarantee an appropriate resolution of the time scale spectrum of the stiff problem, whereas the multiresolution procedure allows to compress the spatial representation by retaining the desired level of refinement only wherever it is necessary, taking into account the space multi-scale features of the physical problem. In this case, these error estimates show that for ε ≤ 10 -2 , the multiresolution errors become negligible compared with the operator splitting ones so that the overall accuracy is indeed given by η. given by the splitting technique on a uniform grid of 256 2 according to (3.3) for different accuracy tolerances η ∆t for the time adaptive strategy [START_REF] Descombes | Adaptive time splitting method for multi-scale evolutionary PDEs[END_REF] and with ∆t = 4/1024. Figure 4.5 shows the adaptive splitting time steps corresponding to different accuracy tolerances η ∆t for the local error of the splitting time integration, according to the time adaptive procedure introduced in [START_REF] Descombes | Adaptive time splitting method for multi-scale evolutionary PDEs[END_REF]. In all cases, the splitting time step is adapted from a chosen initial value of ∆t = 10 -7 to a roughly constant value that depends on the prescribed accuracy due to the self-similar character of the wave. The global error is indeed controlled by the local error accuracy tolerance η ∆t as it is shown by the normalized L 2 errors at t = 4 according to (3.3). We see thus that for this kind of propagating phenomena a constant splitting time step computed based on an accuracy criterion as detailed in § 3.2, is appropriate to describe accurately the multi-scale phenomenon. Furthermore, a splitting time step of ∆t = 4/1024 yields practically the same results as the adaptive splitting strategy with η ∆t = 10 -3 , so that the overhead of estimating the local errors of the adaptive scheme can be saved, even though this overhead implies no more than 25 % of additional CPU time considering the embedded procedure developed in [START_REF] Descombes | Adaptive time splitting method for multi-scale evolutionary PDEs[END_REF]. Just like before, the same time integration and thus global errors are found for η ∆t = 10 -3 and different adapted meshes as long as ε ≤ 10 -2 .

U J qe -U M R split L 2 ≤ U J qe -U J split L 2 + U J split -U M R split L 2 . ( 4 
L 2 error ε ||a J qe -a J split || L 2 ||a J split -a MR split || L 2 ||b J qe -b J split || L 2 ||b J split -b MR split || L 2 ||c J qe -c J split || L 2 ||c J split -c MR split || L 2
We have analyzed so far the numerical behavior of the proposed numerical strategy in terms of the splitting time integration method, the computational costs and the numerical errors for a computational domain of 256 2 points, that allows to represents accurately enough the multi-scale phenomenon and furthermore, it allows to conduct several computations with reasonable computational resources. Let us now consider a more challenging configuration with larger computational domain in order to complete the present study. We therefore consider the semi-discretized problem (4.1) discretized this time over 10 nested dyadic grids with N = 2 2×10 = 1048576 = 1024 2 cells on the finest grid J = 10.

In order to take into account the memory requirements of each resolution strategy, we estimate the array size of the working space needed by Radau5 and ROCK4:

1. Radau5: [START_REF] Abdulle | Fourth order Chebyshev methods with recurrence relation[END_REF]); where W 1 and W 2 are the number of unknowns solved by Radau5 and ROCK4. In the case of a uniform mesh, the total number of unknowns is W = 3 × 1024 2 ≈ 3.15 × 10 6 and thus, the global size L required for each solver is:

L 1 = 4 × W 1 × W 1 + 12 × W 1 + 20 (from [23]); 2. ROCK4: L 2 = 8 × W 2 (from
1. Quasi-exact with Radau5: W 1 = W ≈ 3.15 × 10 6 and L = L 1 ≈ 4 × 10 13 . 2. Splitting:

W 1 = 3, W 2 = W ≈ 3.15 × 10 6 and L = L 1 + L 2 ≈ 2.5 × 10 7 .
3. MR/splitting with ε = 10 -2 : W 1 = 3, W 2 = 0.09 × W ≈ 2.9 × 10 5 and L = L 1 + L 2 ≈ 2.3 × 10 6 ; with an average data compression of 91 %. Considering a standard platform on which each double precision value is represented by 64 bits, we shall require 2.3 Pb, 1.5 Gb and 140.4 Mb respectively, for each solver. For standard computational resources, an implicit resolution with Radau5 is completely out of reach. These expensive memory requirements are strongly reduced with a splitting strategy but further reductions are achieved by adding a multiresolution adaptive procedure. Figure 4.6 (top) shows the spatial representation of variable a on the finest level corresponding to a 1024 2 spatial discretization of problem (4.1) at an intermediary time t = 2 and after one revolution at final time t = 4. The corresponding data compressions DC are respectively of 92.3 % and 89.9 %, while the steepest spatial gradients of the front are always solved within the finest region taking into account that the splitting time step ∆t = 4/1024 remains bounded by ∆t max = 4.2 × 10 -3 for ∆x = ∆y = 1/1024 according to (3.6). For this case, six levels of grid discretization were used 3 from 5 to the finest grid 10.

Bottom of Figure 4.6 shows the corresponding reaction time steps averaged within ∆t/2 for each point. We have the same distribution as in the previous 256 2 case with reaction time steps going from ∆t/2 to time steps almost 22 times smaller depending of the local chemical activity. On the other hand, the spectral radius ρ(B) estimated by ROCK4 is larger because of the finer spatial discretization of the Laplacian operator and it is of the order of 23000, so if we consider a diffusion time step ∆t D equal to the splitting time step, s = 16 stages will be needed according to (2.7)4 . However, for a given tolerance of η ROCK4 = 10 -5 , an initial time step given by ∆t D = ∆t is rejected to finally reach a relatively constant value of 2.5 -3.5 × 10 -4 for which 5 stages instead of 16 are enough to guarantee the stability of the method. Finally, 11 -15 diffusion time steps ∆t D are computed inside each splitting time step ∆t. [START_REF] Descombes | Adaptive time splitting method for multi-scale evolutionary PDEs[END_REF] with an accuracy tolerance of η ∆t = 10 -3 . This is shown to be almost equivalent to the constant splitting time step ∆t = 4/1024 as in the previous 256 2 spatial discretization case, where this splitting error is measured for a given semi-discretized problem. In general and for this kind of propagating phenomena, the adaptive scheme can be used to initially compute the corresponding constant splitting time step for a given accuracy.

In all these illustrations, the finest grid of computation is previously settled and it is basically limited by the computational resources so that the multiresolution error is indicating the numerical approximation of the compressed spatial representation with respect to the semi-discretized problem regardless its spatial discretization as it is shown in Figure 4.7 (top right). The quasi-exact solution was computed with ROCK4 and η ROCK4 = 10 -10 and took over 65072 s compared with 13943 s and 9529 s respectively for the splitting solution and the MR/splitting solution with ε = 10 -2 . 4.7 (bottom) shows the dependence of the data compression on the definition of the prediction operator (2.11) according to § 3.1. For higher order polynomial interpolations that yield more accurate and thus more compressed multiresolution representations according to (2.12), larger stencils are also needed so that the resulting data compression results of both opposite actions. In a general case, this is a problem dependent feature that can be a useful parameter to improve the performance of a multiresolution technique. A more detailed study of this dependence is out of the scope of the present work.
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3D BZ Equation.

We consider now problem (4.1) in a 3D configuration with the same parameters considered in the 2D case for a time domain of [0, 2] and in a space region [0, 1] 3 . Initialization is made in the same way but with the coordinate angle θ given by θ = arctan (x -0.5) sin(πz) + (y -0.5) cos(πz) (x -0.5) cos(πz) -(y -0. In order to explore the feasibility and potential advantages of the method, let us consider 9 nested dyadic grids with N = 2 3×9 = 134217728 = 512 3 cells on the finest grid J = 9. The initialization must take place on a intermediary grid, j = 8 in this example. For this configuration, a two times larger splitting time step of ∆t = 4/512 ≈ 7.8 × 10 -3 , and a threshold value of ε = 10 -1 were chosen in order to have splitting and multiresolution errors potentially of the same order. Smaller threshold values yield larger simulation domains which are not longer feasible with the considered computing resource and the current state of development of the code. Figure 4.9 shows the adapted grid at t = 2 and the corresponding finest regions. Compared with the 256 3 case, finer regions are added at the steepest spatial gradients of the front. On the other hand, in order to globally guarantee (3.5), more refinement is needed at the lower levels according to (2.18) for a given threshold ε, where the multiresolution representation error (3.5) is always measured with respect to the corresponding uniform semi-discretized problem at the finest level. The latter is mainly limited by the computational resources and the desired level of accuracy of the spatial resolution. Data compressions are now of 95.79 % for the initial condition, 91.56 % at t = 1 and 91.20 % for final time t = 2, with a CPU computation time of 159.4 hours. ; with a data compression of 87 %. Therefore, we shall require at least 36.1 Eb, 190.7 Gb and 25.0 Gb of memory capacity, respectively for each solver.

Concluding Remarks and Outlook.

Based on recent mathematical studies [START_REF] Descombes | Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: Singular perturbation and order reduction[END_REF][START_REF] Descombes | On the local and global errors of splitting approximations of reaction-diffusion equations with high spatial gradients[END_REF] that allow to better characterize the behavior of splitting techniques for timespace stiff PDEs and in particular for splitting time steps much larger than the fastest scales present in the problem, this work introduces a new time operator splitting approach that exploits these results with an important gain of efficiency. Contrary to classical splitting strategies that consider splitting time steps set by the fastest time scales, in our strategy the splitting time step is chosen on the sole basis of the physics of the global phenomenon and its decoupling capabilities, but not related to any stability requirement of the numerical methods used to integrate each subsystem, even if strong stiffness is present. Dedicated high order time integration methods are then chosen for the reaction and diffusion problems to properly solve the entire spectrum of temporal scales associated with each independent problem. In this way, an effective decoupling of the time scale spectrum is achieved whenever this is allowed by the physics of the problem, so that different physical or numerical time scales associated with each problem can be isolated and treated independently by each numerical method.

We have shown that in the context of self-similar propagating waves a constant splitting time step is enough to capture the dynamics of the phenomenon. This was confirmed by an adaptive splitting strategy introduced in [START_REF] Descombes | Adaptive time splitting method for multi-scale evolutionary PDEs[END_REF] that yields the same conclusion. Considering the adequate choice of higher order numerical methods with adaptive time stepping based on accuracy criteria such as Radau5 and ROCK4, the main error of the time integration is piloted by the splitting scheme and it is thus settled by the splitting time step even for stiff cases [START_REF] Descombes | Operator splitting for nonlinear reaction-diffusion systems with an entropic structure: Singular perturbation and order reduction[END_REF][START_REF] Descombes | On the local and global errors of splitting approximations of reaction-diffusion equations with high spatial gradients[END_REF]. The latter is then computed based on error estimates of some physical feature such as the profile of the wavefront or its propagation speed. In a standard numerical strategy, this kind of preliminary study can be easily performed in 1D or smaller multidimensional configurations to then extrapolate to larger and more expensive computational domains taking into account that these splitting errors do not consider the spatial discretization error. However, from a practical point of view an adaptive splitting strategy can be used to initialize the splitting time step within the prescribed accuracy.

In order to improve the performance of the time integration strategy an adaptive mesh refinement technique based on spatial multiresolution was also implemented. One of the main advantages of such method is that for a given semi-discretized problem, the error introduced by the corresponding compressed spatial representation can be controlled. Even though a rigorous mathematical proof of multiresolution errors for parabolic problems is not yet available, the numerical results confirm the error estimates. In this way, for a problem represented with a spatial discretization limited mainly by the computational resources, the proposed MR/splitting strategy allows to track the corresponding numerical error of the simulation introduced by the numerical methods of resolution. As a consequence, the resulting highly compressed data representations as well as the accurate and feasible resolution of these stiff phenomena prove that large computational domains previously out of reach can be successfully simulated with conventional computing resources.

For the moment, we have focused our attention on reaction-diffusion systems in order to settle the foundations for simulation of more complex phenomena with fully convection-reaction-diffusion systems and more detailed models such as combustion with complex chemistry [START_REF] Day | Numerical simulation of laminar reacting flows with complex chemistry[END_REF][START_REF] Najm | Modeling low Mach number reacting flow with detailed chemistry and transport[END_REF]. Therefore, an important amount of work is still in progress concerning programming features such as data structures, optimized routines and parallelization strategies for the time integration technique as well as for the multiresolution environment, even though the global CPU time is largely dominated by the time resolution for these stiff problems. For instance, some dedicated and efficient implementations have been recently developed for multiresolution applications [START_REF] Brix | A hash data structure for adaptive PDE-solvers based on discontinuous Galerkin discretizations[END_REF][START_REF] Brix | Parallelisation of multiscale-based grid adaptation using space-filling curves[END_REF]. Finally, when dealing with more complex systems such as complex or more detailed chemistry or stroke modeling in the brain, the source term involves many species (typically 50) and many reactions (typically several hundreds) or complex mechanisms. In such a case the integration of the source term leads to a heavy computational cost, even if it is embarrassingly parallel in the framework of operator splitting and if data compression issued from the multiresolution allows to improve its resolution as shown in [START_REF] Dumont | Simulation of human ischemic stroke in realistic 3D geometry: A numerical strategy[END_REF]. Therefore, this field also requires some further studies in order to obtain high efficiency in terms of load balancing on parallel architectures. These issues constitute particular topics of our current research.

  .25) with the compressed representations of U n+1 and U n given by (u n+1 λ ) λ∈L( Λn+1 ε ) and (u n λ ) λ∈L( Λn ε ) respectively, and the Strang operator splitting S ∆t given by one of the formulae (2.6) as time evolution operator. One might add a last thresholding step to represent the solution on L(Λ n+1 ε ) instead of L( Λn+1
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  Figure 3.1 shows an example of a graded tree structure in 1D.
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 31 Fig. 3.1. Example of 1D graded tree structure. Nodes and links to their corresponding children are indicated (solid lines) as well as the leaves (solid bold lines) and the phantoms (dashed lines).
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 2 b = 0.8, if 0 < θ < arctan(0.3), (4.3) b = b ss , elsewhere, c = c ss + θ 8πf , (4.4)
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 241 Fig. 4.1. 2D BZ spiral waves. Normalized L 2 -errors for several splitting time steps ∆t at final time t = 4 according to (3.3) and prefixed accuracy tolerance of η = 10 -2 . Uniform grid of 256 2 .

Fig. 4 . 3 .

 43 Fig. 4.3. BZ wave speed for splitting time step ∆t = 4/1024. Top left: time evolution of variable a along y-axis (see Figure 4.2); and right, estimated wavefront speed v. Bottom: speed relative errors Ev for all three variables according to (3.2).
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 744 Figure 4.4 shows the corresponding normalized L 2 errors at t = 4 for several threshold values ε and η = 10 -2 for a splitting time step of ∆t = 4/1024. Multiresolution errors are evaluated at the finest grid J after reconstruction from the adapted mesh solution
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 44 Fig. 4.4. 2D BZ spiral waves. Left: time evolution of the data compression DC given by(4.6) in percentage. Right: normalized L 2 errors at t = 4 given by the splitting technique on a uniform grid according to(3.3), and by the MR procedure according to(3.5), for several threshold values ε and splitting time step of ∆t = 4/1024. Finest grid: 256 2 .
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 46 Fig. 4.6. 2D BZ spiral waves. Variable a on the finest grid (top) and local reaction time steps h1 (bottom) at t = 2 (left) and t = 4 (right) with ∆t = 4/1024 and ε = 10 -2 . Finest grid: 1024 2 .
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 47 Figure 4.7 (top left) shows the adaptive splitting time steps obtained by the local error estimate procedure introduced in[START_REF] Descombes | Adaptive time splitting method for multi-scale evolutionary PDEs[END_REF] with an accuracy tolerance of η ∆t = 10 -3 . This is shown to be almost equivalent to the constant splitting time step ∆t = 4/1024 as in the previous 256 2 spatial discretization case, where this splitting error is measured for a given semi-discretized problem. In general and for this kind of propagating phenomena, the adaptive scheme can be used to initially compute the corresponding constant splitting time step for a given accuracy.In all these illustrations, the finest grid of computation is previously settled and
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 47 Fig. 4.7. 2D BZ spiral waves. Top left: time evolution of splitting time steps with η ∆t = 10 -3 and finest grids of 256 2 and 1024 2 , with ∆t = 4/1024. Top right: normalized L 2 errors at t = 4 given by splitting technique on a uniform grid according to (3.3), and MR procedure according to (3.5) for several threshold values ε, splitting time step ∆t = 4/1024 and a finest grid of 1024 2 . Bottom: time evolution of data compression DC for prediction operators given by polynomial interpolations of different orders 2l and a finest grid of 1024 2 .

Figure

  Figure 4.7 (bottom) shows the dependence of the data compression on the definition of the prediction operator (2.11) according to § 3.1. For higher order polynomial interpolations that yield more accurate and thus more compressed multiresolution representations according to (2.12), larger stencils are also needed so that the resulting data compression results of both opposite actions. In a general case, this is a problem dependent feature that can be a useful parameter to improve the performance of a multiresolution technique. A more detailed study of this dependence is out of the scope of the present work.
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 49 Fig. 4.9. 3D BZ scroll wave. Adapted grid (left) and finest grid (right) at t = 2 for ε = 10 -1 . Finest grid: 512 3 .

  2 . Bottom: variable a (left) and its representation with four levels of mesh discretization with ε = 10 -2 (right). Finest grid: 256 2 .
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Fig. 4.2. 2D BZ spiral waves. Top: variable b (left) and c (right) at t = 4.

Table 4 .

 4 1 2D BZ. CPU time in seconds for quasi-exact, splitting and MR/splitting solutions with different threshold values ε. Finest grid: 256 2 .

	MR/splitting ε =	10 -1	10 -2	10 -3	10 -4	splitting	quasi-exact
	CPU time (s)	536	886	1233	2402	1029	23967

Table 4 .

 4 2 2D BZ. CPU time in seconds for the reaction and diffusion time integrations for a splitting and a MR/splitting resolution with ε = 10 -2 . Finest grid: 256 2 .

		splitting		MR/splitting ε = 10 -2
		CPU time (s)	%	CPU time (s)	%
	Reaction	963	65.4	486	44.0
	Diffusion	481	32.7	348	31.5
	Total	1472	100.0	1104	100.0

  z equal to zero corresponds to the previous 2D case. First, we take into account 8 nested dyadic grids with N = 2 3×8 = 16777216 = 256 3 cells on the finest grid J = 8. Then, with a threshold value of ε = 10 -2 and a splitting time step ∆t = 4/1024, the proposed numerical strategy features data compressions of 92.61 % for the initial condition, 85.64 % at t = 1 when the scroll waves are fully developed and 81.42 % at final time t = 2. Figure4.8 shows the scroll waves for variable a at two different times and the adapted grid at t = 2. The finest regions correspond to the neighborhood of the wavefront. The adaptive splitting time technique yields also a roughly constant splitting time step after a short initial transient whereas the choice ∆t = 4/1024 corresponds approximatively to η ∆t = 10 -3 . The CPU computation time was of about 41.94 hours with one processor. Fig. 4.8. 3D BZ scroll wave. Top: evolution of variable a at t = 1 (left) and t = 2 (right). Bottom: Adapted grid (left) and finest grid (right) at t = 2 for ε = 10 -2 . Finest grid: 256 3 .
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		5) sin(πz)	,	(4.8)

In the error evaluations conducted in this work, we have considered a scaling factor for each variable given by the corresponding maximum value of the variable.

For instance, for the coupled problem (4.1) ROCK4 starts showing stability problems for η ROCK4 < 10 -5 .

Same performance is obtained by considering 16 roots in each direction and J = 6 levels of discretization.

It is important to notice that ROCK4 needs to save only 8 arrays of the size of the number of unknowns regardless the number of stages. One of these arrays contains the approximate solution used to estimate the local error in order to adapt the time step of integration within the prescribed tolerance.
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