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NEW RESOLUTION STRATEGY FOR MULTI-SCALE REACTION
WAVES USING TIME OPERATOR SPLITTING, SPACE ADAPTIVE
MULTIRESOLUTION AND DEDICATED HIGH ORDER
IMPLICIT/EXPLICIT TIME INTEGRATORS*

MAX DUARTE'}, MARC MASSOT', STEPHANE DESCOMBES!, CHRISTIAN TENAUDY,
THIERRY DUMONT/, VIOLAINE LOUVET!, AND FREDERIQUE LAURENT

Abstract. We tackle the numerical simulation of reaction-diffusion equations modeling multi-
scale reaction waves. This type of problems induces peculiar difficulties and potentially large stiffness
which stem from the broad spectrum of temporal scales in the nonlinear chemical source term as well
as from the presence of steep spatial gradients in the reaction fronts, spatially very localized. In this
paper, we introduce a new resolution strategy based on time operator splitting and space adaptive
multiresolution in the context of very localized and stiff reaction fronts. It considers a high order
implicit time integration of the reaction and an explicit one for the diffusion term in order to build a
time operator splitting scheme that exploits efficiently the special features of each problem. Based on
recent theoretical studies of numerical analysis such a strategy leads to a splitting time step which is
not restricted neither by the fastest scales in the source term nor by stability contraints of the diffusive
steps, but only by the physics of the phenomenon. We aim thus at solving complete models including
all time and space scales within a prescribed accuracy, considering large simulation domains with
conventional computing resources. The efficiency is evaluated through the numerical simulation of
configurations which were so far, out of reach of standard methods in the field of nonlinear chemical
dynamics for 2D spiral waves and 3D scroll waves as an illustration. Future extensions of the proposed
strategy to more complex configurations involving other physical phenomena as well as optimization
capability on new computer architectures are finally discussed.

Key words. Reaction-diffusion equations, multi-scale reaction waves, operator splitting, adap-
tive multiresolution

AMS subject classifications. 33K57, 35A18, 65M50, 65M08

1. Introduction. Numerical simulations of multi-scale phenomena are com-
monly used for modeling purposes in many applications such as combustion, chemical
vapor deposition, or air pollution modeling. In general, all these models raise several
difficulties created by the high number of unknowns, the wide range of temporal scales
due to large and detailed chemical kinetic mechanisms, as well as steep spatial gra-
dients associated with very localized fronts of high chemical activity. Furthermore, a
natural stumbling block to perform 3D simulations with all scales resolution is either
the unreasonably small time step due to stability requirements or the unreasonable
memory requirements for implicit methods. In this context, one can consider var-
ious numerical strategies in order to treat the induced stiffness for time dependent
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problems. The most natural idea is to use dedicated numerical methods and to solve
the complete models where diffusion, reaction and eventually convection are coupled
together. One aims at solving strongly coupled nonlinear systems with either a fully
implicit method, or yet semi-implicit or linearized implicit methods instead (see [8]
and references therein). However, the strong stability restrictions for the latter when
dealing with very fast temporal scales, as well as the computing cost and the high
memory requirements of these methods, even if adaptive grids are used, make these
strategies difficult to be handled.

An alternative numerical strategy is then to combine implicit and explicit schemes
to discretize nonlinear evolution problems in time. Further studies settled the appro-
priate numerical background for these methods called IMEX, which in particular
might be conceived to solve stiff nonlinear problems [34, 28]. These methods are
usually very efficient but the feasibility of utilizing dedicated implicit solvers over a
discretized domain becomes soon critical when treating large computational domains.
On the other hand, the time steps globally imposed over partial regions or the entire
domain are strongly limited by either the stability restrictions of the explicit solver
or by the fastest scales treated by the implicit scheme. We know though that these
fastest time scales do not always play a leading role in the global physics of many
multi-scale problems and therefore one might consider the possibility of using reduced
models where these chemical scales have been previously relaxed. These simplified
models provide reasonable predictions and the associated computing costs are signif-
icantly reduced in comparison with comprehensive chemical models. Nevertheless,
these reduced models provide only approximate solutions and are usually accessible
when the system is well-partitioned and the fastest scales can be identified or isolated
[29], a process that in realistic configurations, relies on sensitivity analysis which is
most of the time difficult to conduct and justify.

It is then natural to envision a compromise, since the resolution of the fully
coupled problem is most of the time out of reach and the appropriate definition
of reduced models is usually difficult to establish. In this context, time operator
splitting methods have been used for a long time and there exists a large literature
showing the efficiency of such methods for evolution problems. A splitting procedure
allows to consider dedicated solvers for the reaction part which is decoupled from the
other physical phenomena like convection, diffusion or both, for which there also exist
dedicated numerical methods. Hence, a completely independent optimization of the
resolution of each subsystem might be pursued. In order to guarantee the accuracy
of the solution obtained by a splitting scheme, the splitting time steps used for the
independent resolution of each subproblem are usually taken of the order of the fastest
scales included in the problem. As a matter of fact, several works [35, 30, 8] showed
that the standard numerical analysis of splitting schemes fails in presence of scales
much faster than the splitting time step. Nevertheless, more rigorous studies for these
stiff configurations [14, 12] and in the case where spatial multi-scale phenomena arise
as a consequence of steep spatial gradients [11], allow to characterize the behavior of
splitting schemes with splitting time steps much larger than the fastest scales of the
problem.

As a consequence, we introduce in this work a new time operator splitting ap-
proach for which the dedicated methods chosen for each subsystem are responsible for
dealing with the fast scales associated with each one of them, in a separate manner.
The global solution is then reconstructed by the splitting scheme with splitting time
steps dictated by the global physical coupling, possibly much larger than the fastest
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time scales. In this way, the splitting time step is chosen based only on error esti-
mates of the numerical simulation in order to guarantee the description of the physics
of the phenomenon within a prescribed accuracy, without being related to the stabil-
ity constraints of the numerical resolution of each subsystem and with an important
improvement of efficiency whenever a broad decoupling of the time scale spectrum is
possible.

The operator splitting strategy proposed in this article considers then a high or-
der method like Radau5 [22], based on implicit Runge-Kutta schemes for stiff ODEs,
to solve the reaction term; and on the other hand, another high order method like
ROCK4 [1], based on explicit stabilized Runge-Kutta schemes, to solve the diffusion
problem. In this way, the global accuracy of the time integration scheme is mainly set
by the splitting scheme through the choice of the splitting time step. This numerical
strategy is then complemented by a mesh refinement technique based on Harten’s pio-
neering work on adaptive multiresolution methods [23], being aware of the interest of
adaptive mesh techniques for problems exhibiting locally steep spatial gradients. Since
a multiresolution technique allows to better control the accuracy of the adapted and
compressed spatial representation, both the space and time errors can be regulated for
a given semi-discretized problem. The main goal is then to perform computationally
very efficient as well as accurate in time and space simulations of the complete dynam-
ics of multi-scale phenomena under study with splitting time steps purely dictated by
the physics of the phenomenon and not by any stability constraints associated with
mesh size or source time scales. In particular, in the case of propagating wavefronts,
we show that a constant splitting time step is good enough to capture the dynamics
of the phenomenon even though an adaptive splitting time step technique as the one
developed in [10] can be used to compute the appropriate splitting time step whenever
the determination of the latter becomes difficult to conduct.

The paper is organized as follows. In section 2, we first recall the standard time
operator splitting schemes. Then, we describe the new operator splitting strategy
proposed for multi-scale problems, and its coupling with a suitable grid adaptation
strategy, the space adaptive multiresolution technique [6, 25], which is briefly pre-
sented. The implementation of the numerical strategy is detailed in section 3, as
well as the algorithm scheme and the choice of the appropriate splitting time step.
In section 4, we present 2D and 3D simulations of a three species reaction-diffusion
system modeling the Belousov-Zhabotinsky reaction, and we illustrate the potential
and performance of the method by conducting 3D numerical simulations of very stiff
reaction waves on a 5123 mesh size within a reasonable time on a workstation, a
simulation out of reach of any standard method. We end in section 5 with some
concluding remarks and prospects on future applications including other phenomena,
and numerical developments on new parallel architecture where we can envision very
large scale simulations.

2. Construction of the Numerical Strategy. In this section, we first recall
some standard operator splitting schemes to then introduce a new splitting strategy
for multi-scale waves modeled by stiff reaction-diffusion systems. In the last part, we
detail briefly the adaptive multiresolution method that we have implemented as mesh
refinement technique for this new resolution technique.

2.1. Time Operator Splitting. Let us first set the general mathematical frame-
work of this work. A class of multi-scale phenomena can be modeled by general
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reaction-diffusion systems of type:

dru — Oy (D(u)dyu) = f (u), xcR? t>0,

(2.1) 4
u(0,x) =up(x), x€R?

where f : R™ — R™ and u : R x R? — R™, with the diffusion matrix D(u), which
is a tensor of order d x d x m.

Even though the proposed numerical strategy handles general problem (2.1), in
order to simplify the presentation we shall consider problem (2.1) with linear diagonal
diffusion. In this case the elements of the diffusion matrix are written as D;,;,;,(u) =
D;,d;,:, for some positive indices 1, 42, 23, so that the diffusion operator reduces
to the heat operator with scalar diffusion coefficient D;, for component u;, of u,
i3 =1,...,m. Performing a fine spatial discretization, we obtain the semi-discretized
initial value problem

4U-BU=F(U), t>0,

(2.2)
U(0) = U°,

where B corresponds to the discretization of the Laplacian operator with the coeffi-

cients D;; within. U and F (U) are arranged component-wise all over the discretized

spatial domain. Considering a standard decoupling of the diffusion and reaction parts

of (2.2), we denote X2*(U®) as the numerical solution of the diffusion equation

(23) d;Up —BUp =0, t >0,

with initial data Up(0) = U° after an integration time step At. We also denote by
YA4(UY) the numerical solution of the reaction part,

(2.4) d;Ugr =F (Ugr), t>0,

with initial data Ug(0) = U°.
The two Lie approximation formulae of the solution of system (2.2) are then
defined by

(2.5) ﬁlAt(UO) _ XAtyAt(UO), EzAt(UO) — yAtXAt(UO),
whereas the two Strang approximation formulae [31, 32| are given by
(26) SlAt(UO) — XAt/2yAtXAt/2(UO)7 SQAt(UO) — yAt/QXAtyAt/Q(UO)’

where At is now the splitting time step. It is well known that Lie formulae (2.5) (resp.
Strang formulae (2.6)) are approximations of order 1 (resp. 2) of the exact solution of
(2.2) in the case where X2t and Y2 are the exact solutions X2t and Y'2* of problems
(2.3) and (2.4). Then, appropriate numerical approximations of X2t and YA? are
required in order to compute Lie and Strang formulae with the prescribed order.
Higher order splitting schemes are also possible. Nevertheless, the order conditions
for such composition methods state that either negative time substeps or complex
coefficients are necessary (see [21]). The last ones imply usually important stability
restrictions and more sophisticated numerical implementations. In the particular case
of negative time steps, they are completely undesirable for PDEs that are ill-posed
for negative time progression.
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2.2. Time Integration Strategy. The standard orders achieved with a Lie or
Strang scheme are no longer valid when we consider very stiff reactive or diffusive
terms (see [14]). Furthermore, if the fastest time scales play a leading role in the
global physics of the phenomenon, then the solution obtained by means of a operator
splitting scheme will surely fail to capture the global dynamics of the phenomenon,
unless we consider splitting time steps small enough to solve such scales.

In the opposite case when these fast scales are not directly related to the phys-
ical evolution of the phenomenon, larger splitting time steps might be considered,
but order reductions may then appear due to short-life transients associated to fast
variables. This is usually the case for propagating reaction waves where for instance,
the speed of propagation is much slower than some of the chemical scales. In this
context, it has been proved in [14] that better performances are expected while end-
ing the splitting scheme by the time integration of the reaction part (2.4) or in a
more general case, the part involving the fastest time scales of the phenomenon (see
a numerical study with convection and complex chemistry in [12]). In particular, in
the case of stiff reaction-diffusion systems with linear diagonal diffusion, no order loss
is expected for the £5* and S2* schemes when fast scales are present in the reactive
term. However, one must also take into account possible order reductions coming this
time from space multi-scale phenomena due to steep spatial gradients whenever large
splitting time steps are considered, as analyzed in [11].

These theoretical studies allow to depict more precisely the numerical behavior of
the splitting techniques and thus, help us to select among the various splitting alter-
natives, depending on the nature of the problem. Nevertheless, the choice of suitable
time integration methods for each subsystem is mandatory not only to guarantee such
theoretical estimates but also to take advantage of the particular features of each in-
dependent subproblem in order to solve them with reasonable resources as accurately
as possible. In particular, our splitting technique considers high order dedicated inte-
gration methods for each subproblem in order to properly solve the fastest time scales
associated with each one of them, and in such a way that the main source of error
is led by the operator splitting error. Then, the control of the accuracy of the time
integration is ruled by the splitting scheme by means of the splitting time step needed
to describe the global physical phenomenon within a required level of accuracy.

2.2.1. Time Integration of the Reaction: Radau5. Radaub [22] is a fifth
order implicit Runge-Kutta method for which order conditions proven by Butcher
[5] are satisfied up to the order 5, whereas its stability function is generated by a
collocation procedure with Radau quadrature formulae [17] that guarantees A- and
L-stability properties, so that very stiff systems of ODEs might be solved without any
stability problem.

Nevertheless, nonlinear systems must be solved throughout the time integration
process because of this implicit character. Even if the system resolution tools are
highly optimized (which are based on modified Newton’s methods), these procedures
become very expensive for large systems and important memory requirements are
needed in order to carry out these computations. As a consequence, the size of the
system of equations to be solved is strongly limited by the computing resources.
However, in a splitting scheme context, we easily overcome this difficulty because the
reactive term of (2.2) is a system of ODEs without spatial coupling. Therefore, a
local approach node by node is adopted where the memory requirements are only
set by the number of local unknowns, which usually does not exceed conventional
memory resources. Even more, this approach is posed as an embarrassingly parallel
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problem where no data exchange is needed among nodes, that therefore yields opti-
mal load balancing on shared memory architectures (see for example the numerical
implementations achieved in [16]).

A very important feature of the Radaub solver is that precious computing time
is saved because it considers an adaptive time stepping strategy which guarantees
a requested accuracy of the numerical integration and at the same time, allows to
discriminate stiff zones from regular ones so that small time steps are only considered
for stiff behaviors. In a splitting context, the reaction time integration step Atg will
be adapted only at nodes where the reaction phenomenon takes place, yielding local
reaction time steps much smaller than the splitting time step so that the global time
advancement of the resolution given by the splitting time step At will not be limited
by these fast time scales. For multi-scale reaction waves, this adaptation happens
in a very low percentage of the spatial domain, usually only in the neighborhood of
the wavefront. On the other hand, larger time steps are considered at nodes with a
chemistry at (partial) equilibrium. This local time stepping without data exchange
nor reconstruction of intermediary values would not be possible if we integrated the
entire reaction-diffusion system (2.2) at once.

2.2.2. Time Integration of the Diffusion: ROCK4. One of the most im-
portant advantages of ROCK4 [1] is its explicit character, hence the simplicity of
its implementation. In fact, no sophisticated Linear Algebra tools are needed (no
resolution of linear systems required) and thus, the resolution is based on simple
matrix-vector products. Nevertheless, the computation cost relies directly on the re-
quested quantity of such products, that is the number of internal stages s needed
within one time integration step of the diffusion problem, Atp, inside each splitting
time step At. The memory requirements are also reduced as a consequence of its
explicit scheme, nevertheless we must keep in mind that these requirements increase
proportionally with the number of nodes considered over the spatial domain.

The ROCK solver [1] features also dynamic time step adaptation so that Atp
is chosen in order to guarantee a prescribed accuracy of computations. ROCK4 is
formally a fourth order stabilized explicit Runge-Kutta method and such methods
feature extended stability domain along the negative real axis [33]. Therefore, con-
sidering a general problem such as v/ = g(v), in order to guarantee the stability of
computations for a given time step Atp, the number of stages s needed is directly
related to the spectral radius p(9g/0v), as long as the latter is dominated by real
negative eigenvalues. Hence, for a given Atp needed to guarantee the accuracy of
the integration, the minimum number of stages s needed to guarantee the stability is
computed by the ROCK4 solver through

2 og
(2.7) 0.35-s“> Atpp (3v (v)) ,
which extends quadratically on s the stability domain of the method along the negative
axis. For an explicit Runge-Kutta method, the order 4 implies at least s = 5 internal
stages.

The method is then very appropriate for diffusion problems because of the usual
predominance of negative real eigenvalues for which the method is efficiently stable. A
very suitable example is the linear diagonal diffusion problem (2.3) with only negative
real eigenvalues and constant spectral radius p(B). An important gain of efficiency
is obtained in this case because the discretized diffusion operator has a sparse matrix
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structure that yields more performing matrix-vector products. In our particular ap-
plications, the diffusive phenomenon has a leading role of propagator of perturbations
over the (partial) equilibrium nodes that result on excitation of the reactive schemes
and thus, the propagation of the reaction wave. The resulting self-similar character
implies that the number of stages needed will remain practically constant throughout
the evolution of the phenomenon. The spectral radius must be previously estimated
(for example, using the Gershgoring theorem or even numerically, as proposed by the
ROCKA4 solver by means of a nonlinear power method).

Once again, the implementation of this diffusion solver over the entire reaction-
diffusion system (2.2) will not be appropriate under neither theoretical nor practical
considerations, and highlights the inherited advantages of the time operator splitting.
In particular, solving within a prescribed tolerance the diffusion problem may also
yield Atp much smaller than the splitting time step At, and thus, the global time
advancement of the solution given by At will not be necessarily limited by the diffusive
time scales but by the global features of the coupled problem.

2.3. Mesh Refinement Technique. We are concerned with the propagation of
reacting wavefronts, hence important reactive activity as well as steep spatial gradients
are localized phenomena. This implies that if we consider the resolution of the reactive
problem (2.4), a considerable amount of computing time is spent on nodes that are
practically at (partial) equilibrium. We show for instance in [16] that for a numerical
simulation with complex source mechanisms on a uniform grid, 60 % of the computing
time is spent on nodes with very reduced chemical activity. Moreover, there is no need
to represent these quasi-stationary regions with the same spatial discretization needed
to describe the reaction front, so that the diffusion problem (2.3) might also be solved
over a smaller number of nodes. An adapted mesh obtained by a multiresolution
process which discriminates the various space scales of the phenomenon, turns out to
be a very convenient solution to overcome these difficulties; the basis of this strategy is
presented in the following. For further details on adaptive multiresolution techniques,
we refer to the books of Cohen [6] and Miiller [25].

2.3.1. Basis of Multiresolution Representation. Let us consider nested fi-
nite volume discretizations of general problem (2.1) with only one component, m = 1.
For 7 =0,1,---,J from the coarsest to the finest grid, we build regular disjoint par-
titions (cells) (£2,)yes, of an open subset © C R?, such that each Q., v € Sj, is the
union of a finite number of cells ,, p € S;41, and thus, S; and S;11 are consecutive
embedded grids. We denote U; := (u,),ecs, as the representation of U on the grid
S; where u, represents the cell-average of u : R x R? - R in Qy,

(2.8) Uy = \Q,yrl/ u(t, x) dx.

~

Data at different levels of discretization are related by two inter-level transforma-
tions which are defined as follows: (1), the projection operator Pj_l, which maps U;
to U,_1. It is obtained through exact averages computed at the finer level by

(2.9) wy = |7} > Qs
|al=1y 141,92, 0

where |y| := j if v € §;. As far as grids are nested, this projection operator is
exact and unique [6]. And (2), the prediction operator ijl, which maps U;_; to an
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approximation ij of Uj. There is an infinite number of choices to define PJ? ~1 but
at least two basic constraints are usually imposed [7]:
1. The prediction is local, i.e., %, depends on the values w, on a finite stencil
R,, surrounding €2, where |u| = |y] + 1.
2. The prediction is consistent with the projection in the sense that

(2.10) Uy =192, 7 Z €00ty
[p]=]v]+1,2,CQy

. , -

i.e., Pj_l ) Pj = Id.

In the case where Pj g linear, we have
(2.11) Q=Y Cpytiy,
Y

and if the prediction has some prescribed order r > 0 of accuracy, then it is exact for
polynomials of degree r — 1, i.e., if uw € [],_;, then u, = @, for all v [23, 7].

With these operators, we define for each cell €, the prediction error or detail as
the difference between the exact and predicted values:

(2.12) dy =y — Uy,
or in terms of inter-level operations:

_ ] =1 [l
(2.13) dy _u”_PI;l;I OPI;Ijl—lu“'
The consistency assumption (2.10), the definitions of the projection operator (2.9)
and of the detail (2.12) yield

(2.14) > 1Q,]d,, = 0.

lul=171+1,92,CQ,

We can then construct as shown in [7] a detail vector defined as D; = (d,)ucv;,
where the set V; C S; is obtained by removing for each v € S;_1 one u € S; such
that Q, C €, in order to avoid redundancy from expressions (2.12) and (2.10), and
to get a one-to-one correspondence:

(2.15) U; «— (U;-1,D;),

issued by operators ij_l and ij -1 By iteration of this decomposition, we finally
obtain a multi-scale representation of U in terms of My = (Ug, Dy, Dy, -+, Dy):
(2.16) M:Ujr— Mj.

2.3.2. Compression and Time Evolution on Graded Tree-structured
Data. One of the main interests of carrying on such a multi-scale decomposition is
that this new representation defines a whole set of regularity estimators all over the
spatial domain and thus, a data compression might be achieved as follows.

Given a set of index A C V’/ where V/ := U;']:o V;, we define a truncation
operator Ty, that leaves unchanged the component dy if A € A and replaces it by 0,
otherwise. In practice, we are interested in sets A obtained by thresholding:

(217) AeANif |d)\| ij, j= |)\|7
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with the level-dependent threshold values:
(2.18) g, =280 j=|\, jel0J]

where ¢ is the threshold value for the finest level J. A data compression is then
obtained by discarding the cells whose details are not into A according to (2.17),
whereas the conservativity of the multiresolution scheme remains guaranteed by ex-
pression (2.14) as it can be shown in [25].

Nevertheless, allegedly useless details can not be deliberately deleted because a
certain data structure must be respected in order to perform the different compu-
tations associated with the multi-scale transformation itself, mainly the prediction
operator. The set A must then exhibit a graded tree structure in order to guarantee
the availability of cell values within the local prediction stencil (see [7, 27] for more de-
tails on the definition and construction of such structures). In this paper, we will not
conduct the analysis of such data structures, but we present the following terminology
related to a tree representation that we will adopt throughout this paper:

o If 2, C Q) with |u| = |A\|+1, we say that Q,, is a child of Q, and that Q, is
the parent of €2,,.
e Moreover, we define the leaves L(A) of a tree A as the set of Q) with A € L(A)
such that €, has no children in A.
e Finally, we define Q) as a root when it belongs to the coarsest grid, that is
A € Sy or |A] =0, in which case, we denote A as Ao.
An effective data compression is accomplished because U is not represented on the
finest grid S; as U; anymore, but on A., where A, is the smallest graded tree con-
taining A defined by (2.17). More precisely, the numerical solution U™ at time nAt
can be represented on an adapted grid by the set (u})er, An)-

The time evolution is then performed only on the leaves of a fixed adapted grid.
A refinement operator R is therefore defined in order to generate a set A?*! contain-
ing A, on which the time integration is computed, such that JNX?H is adapted for
describing the solution at both nAt and (n+ 1)At. In our numerical implementation,
operator R refines the adapted grid based on the values of the details: by creating
children for all A € L(AL) such that |dx| > €|y, which adds one more level all over
A" so that the finest cells do not verify the threshold criterion (2.17); and according
to Harten’s heuristics (see [23]), by enlarging uniformly with k cells in each direction
the refined region of A7 in order to predict the propagation of the solution. The u%}
with A € A?t1\A” can be constructed by applying the inverse operation of (2.16):
M1, These criteria are rather conservative, nevertheless they completely avoid un-
refined resolution taking into account the propagating nature of reaction waves at
finite speed. For more general cases, a more sophisticated refinement criteria might
be required, as the one introduced in [7], that allow to add more than one refined level
during one time step in order to properly describe the forthcoming solution. On the
other hand, a dynamic time step adaptation strategy for highly unsteady problems
as developed in [15], shows that a high frequency of remeshing given by the adaptive
time step allows also to rapidly capture the spatial dynamics of the problem within a
prescribed tolerance of the adapted spatial representation.

An important theoretical result is that if we denote by V' := (v})aes,, the solu-
tion fully computed on the finest grid, and denote by U}, the solution reconstructed
on the finest grid that used adaptive multiresolution (keeping in mind that the time
integration was really performed on the leaves L([\?) of a compressed representation
of U™); then, for a fixed time T' = nAt, it can be shown that the error introduced by
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the compressed spatial representation is given by:
(2.19) U} = V| « ne.

This result was first stated by Harten in [23] for hyperbolic problems in a L;-norm
and then, it has been mathematically proven in [7] under more rigorous constraints
for refinement criteria and computation of the fluxes. In the same spirit of these
works, in this study we will consider (2.19) but with a L?-norm, more suited for
parabolic problems, as it was also previously considered in [27]. Even though a fully
mathematical proof is still required for this case, a numerical demonstration will be
provided. Finally, the latest error estimate of the compressed spatial representation
as well as the numerical behavior of the time operator splitting schemes, allow one to
properly choose the simulation parameters in order to predict the expected level of
accuracy of the resolution.

2.4. Summary of the Numerical Strategy. The resolution strategy can be
summarized as follows:

M

(2.20) (u;\L))\EL(]\g) — (ug\Load;\L)AEAg
n n TAQ’ n n

(2.21) (U,\wd,\),\ei\g — (uX,, dX)rear
R

(2'22) (Uﬁwdﬁ))\eAg — (ugbmdg\b),\e/_\?“

n mn M71 n

(2.23) (U,\Oyal,\),\e[\g+1 — (UA)AeL(]\Q'H)
At

(2.24) (u;\l)AeL(AQ“) — (u;\LJrl))\eL([\gH)

The set (uf ) is defined as the set of roots of A?, that is all A € A” such that [A| =0
or A € Sy.

For n = 0, the initial condition should be represented on L(A?) in step (2.20),
which can usually be the finest grid, that is all Q) such that |[A\| = J or A € S;.
Nevertheless, this is not possible for large domains simulations, in which case, the
initial condition is computed on an intermediate grid level j: all ) such that |A\| = j
or A € S, then the solution is refined and recomputed over the next finer level after
a thresholding process. This procedure is recursively applied until the pre-established
finest level .J is reached; the general procedure is explained in details in [25].

The algorithm can schematically be represented as

(2.25) U™t = SA(MTIRT . MU,

with the compressed representations of U"*! and U™ given by (u}*!) rerL(Ar+y and
(u}) AEL(An) respectively, and the Strang operator splitting S given by one of the
formulae (2.6) as time evolution operator. One might add a last thresholding step to
represent the solution on L(A?*1) instead of L(A”*1) in order to obtain slightly higher
data compression. In what follows, the key aspects of the implemented algorithm are
detailed.

3. Algorithm Implementation. A dynamic graded tree structure is used in
this implementation to represent data in the computer memory. This kind of data
structure has been used in other multiresolution applications [27] and other dedicated
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data structures have also been developed [3]. The adapted grid corresponds to a set
of nested dyadic grids generated by refining recursively a given cell, depending on the
local regularity of the solution. The chosen data structure can handle 1D, 2D and
3D Cartesian geometries, whereas the basic element of the structure is the cell itself,
which consists of a set of geometric and physical values, plus pointers to its parent,
their children and the contiguous cells in each dimension, the neighbors. Figure 3.1
shows an example of a graded tree structure in 1D.

K L j=J
(< ) )
j=
| \ ‘
Pl | j=2
Jjo=1
j =0
Q,=0

Fic. 3.1. Example of 1D graded tree structure. Nodes and links to their corresponding children
are indicated (solid lines) as well as the leaves (solid bold lines) and the phantoms (dashed lines).

The roots correspond to the basis of the tree, 0),, whereas the leaves are the
upper elements with no children in the tree. In d dimensions, a parent-cell at a level
j has at most 2% children cells at level j + 1. When there is only one root in the
tree, the maximal number of leaves N on which the solution might be represented
is given by N = 2%/ which is exactly the number of cells on the finest grid. The
maximal number of cells M in the tree is given by M = (2D — 1)/(2¢ — 1).
Additionally, although there is no rigorous mathematical analysis, it was shown in
[7, 25] that a much more efficient alternative to fully evaluate the fluxes at the finest
level considers the flux evaluations directly on the adapted mesh with essentially the
same accuracy. Nevertheless, we consider in this work the intermediary case, also
detailed in [25] and [27], that takes into account virtual cells called phantoms that
are locally added to the tree in order to always compute the numerical fluxes of
diffusion and convection operators at the highest grid level between two neighboring
cells, following the procedure introduced in [27] for finite volume discretizations.

The implemented code represents the tree-structured data as a set of cells linked
by pointers. In a FORTRAN 90/95 environment, a pointer is just an alias to the
target; nevertheless, we take advantage of the fact that each pointer has a different
state, depending on whether it is associated or not with another object. We work
then with cells that are at different grids and that are not necessarily arranged in a
contiguous way. Hence, we must conceive the mechanisms to navigate through the
tree structure. In this implementation, we adopt a recursive strategy in which one
moves from one cell to another passing by the child of the first, and by the consecutive
children, until one gets to the desired cell. At each step, the state of the pointers tells
us whether the target exists or not. In this recursive way, we are able to locate leaves
or any cell and the same kind of procedure is conducted in the opposite direction,
from leaves towards roots when necessary. Pointers to neighbors as well as other flags
or indicators are not strictly necessary but eases considerably the searching process
for certain routines.

3.1. Prediction Operator. To obtain the approximated values 4, by ij -1
according to (2.11), we consider centered linear polynomial interpolations of order
2l, i.e. accuracy order r = 2l + 1, computed with the [ nearest neighbors in each
direction. For instance, in a 1D configuration for [ = 1, the prediction operator is
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explicitly given by:

Ujt1,2k = Uj ke + g(uj,k—l — Uj kt1),
(3.1)

Uji1,2k4+1 = Uy + é(uj,k-i-l — Ujk—1),

where the first index denotes the grid level and the second, the indexation of the cell
into the tree. Higher order formula can be found in [25]. Since a Cartesian mesh is
used, extension to multidimensional polynomial interpolations is easily obtained by a
tensorial product of the 1D operator [2, 27]. More accurate interpolations (higher )
yield better predicted values and thus, lower values of details following (2.12). There-
fore, the thresholding process should also yield higher data compression according to
(2.17). Nevertheless, this is not necessarily the case because larger stencils (higher 1)
and consequently more cells are needed to perform these interpolations so that the op-
timal choice of these parameters depends finally on the application. In the numerical
illustrations we will restrict the different analysis to [ = 1, unless otherwise noted.

3.2. Choice of the Splitting Time Step. The splitting time step is set by the
desired level of accuracy in the resolution of the wave speed, the wave profile, both, or
any other parameter, depending on the problem and considering that each subsystem
is perfectly solved. It is thus only depending on the global physics of the phenomenon
we want to describe and therefore, on the degree of decoupling we can achieve between
the various subsystems within a prescribed error tolerance. Considering the semi-
discretized problem (2.2) with a sufficiently fine spatial discretization, if an accurate
reference wave solution U or the corresponding wavefront speed v, can be computed
either numerically or based on theoretical /analytical estimates, then the approximated
solution Uy of speed vgpyi, computed with a splitting time step At and an operator
splitting technique with exact integration of the subsystems, must verify:

(32) Ep = ||U - UsplitHLz S np, Ev = |U - Usplit‘/v S Mo,

where 77, and n,, are accuracy tolerances for the profile and velocity errors: E, and E,,
respectively. The profile error F, should be evaluated superposing both U and Ugp;;;.
However, a simpler and more practical strategy would just evaluate the L2-error at a
fixed time t*:

(33) E= HU(t*) - Usplit(t*)HLz S 7,

in which case, both profile and velocity errors are simultaneously considered. All these
norms are normalized. Notice that in order to remain coherent with the previous
constraints and also to guarantee an accurate resolution of the reaction and diffusion
problems, the corresponding accuracy tolerances ngrqdaus and nroc k4 of these solvers
must verify:

(3.4) NRadaus, TROCK4 < in{my, 7y, 1}

In this way, we can isolate the various integration errors and guarantee that the overall
time integration error is practically given by the splitting scheme approximation. In
particular, an evaluation of the sole splitting error allows to decouple the time scale
spectrum of the problem whenever this is possible, contrary to classical applications of
time operator splitting methods for which the splitting time step is directly settled by
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the fastest time scale of the phenomenon. In our strategy, we therefore extend the use
of these methods to splitting time steps given by the global coupling scales, potentially
larger than the fastest physical or numerical scales. This is a direct consequence of
previous mathematical studies [14, 11] that demonstrate that even though there will
possibly be a loss of order of these methods for time or space stiff problems and
large splitting time steps, the splitting schemes will still consistently approximate the
coupled resolution with an error piloted by the splitting time step.

We have established so far the criteria to handle time integration errors given by
the splitting procedure. Nevertheless, the proposed strategy combines this splitting
approach with a space multiresolution adaptive technique so that the approximation
error introduced by the latter must be also taken into account. According to (2.19) and
even though a rigorous mathematical demonstration is not yet available for parabolic
problems, we consider as in previous studies [27] the following error bound for a fixed
time T = nAt:

(3.5) |uMs —ul < Chne,

split split||L2

for some positive C', where U%ﬁt is the MR/splitting solution at nAt reconstructed

on the finest grid J, which corresponds to the spatial discretization of the semi-
discretized problem (2.2). A basic constraint to assume the validity of (3.5), as in
the hyperbolic case, is that the propagating locally refined spatial gradients remain
into the corresponding fine regions during each time step evolution At. In order to
guarantee this for a given spatial discretization (Az, Ay, Az) corresponding to the
maximum J level, the splitting time step must be bounded by a maximum splitting
time step Atyax computed by:

(3.6) At < Atpay = min { A } ,

Vg Uy Uy

for the directional components (vy, vy, ;) of the wavefront speed and where k>2+k
stands for the refined region obtained with the refinement criteria detailed in § 2.3.2
for which one finer level is added everywhere (2 cells at J in each direction) and k&
cells on the same level.

In the case of propagating wavefronts, a constant splitting time step based on a
prescribed accuracy of the global time integration process as described in this section
is more than reasonable, whereas the bound (3.6) guarantees a proper coupling of
the space and time numerical methods. If no theoretical hints of the wave profile or
velocity exist, the computation of a reference solution is usually very expensive but
still feasible for one-dimensional or relatively small computational domains, which
might give some insights in the behavior of the numerical methods in order to extrap-
olate these results to larger or multi-dimensional problems according to a standard
numerical procedure. On the other hand, the speed of the wavefront needed to com-
pute (3.6) can be always approximated by one-dimensional measurements taken either
from fully coupled 1D configurations or for instance from feasible multi-dimensional
MR /splitting resolutions for which the accuracy tolerances are tightened.

However, either if a more precise information on the accuracy of the time inte-
gration to choose the splitting time step is required, or if we are faced with highly
unsteady problems, an adaptive splitting scheme introduced in [10] allows to properly
estimate the local error of the splitting time integration without any need to compute
a reference solution. Hence, based on these local error estimates, the splitting time



14  DUARTE, MASSOT, DESCOMBES, TENAUD, DUMONT, LOUVET, LAURENT

steps are dynamically computed within a prescribed accuracy tolerance na;. Never-
theless, this procedure introduces naturally an overhead which might not be justified
in the simplified case of propagating waves so that a hybrid strategy that allows to
consider a constant splitting time step issued from the local error estimates of the
adaptive splitting procedure can be seen as the most convenient solution. In this
work we are focused on the propagation of reaction waves, therefore the previously
mentioned adaptive splitting scheme [10] is partially used only to justify and validate
the chosen constant splitting time step and the proposed numerical strategy for this
kind of problems.

3.3. Algorithm Scheme. The global algorithm can be summarized as:
1. INITIALIZATION:
o Initialization of parameters: e.g. maximum and minimum grid levels,
domain size, number of roots.
o Initialization of the mesh structure:
— creation of the different grids;
— initialization of parameters of each cell from the roots, e.g. position,
coordinates, level threshold value ¢;;
— definition of children and neighbors from the roots.
o Computation of initial solution at an intermediary grid level and recur-
sive refinement and computation up to the maximum level.
2. LOOP IN TIME: ,
o Computation of cell values: projection operator PJﬂl from leaves to-
wards roots.
Computation of details: operator M from roots towards leaves.
Thresholding: operator Ta_ throughout the tree.
Refinement and graduation of the tree: operator R throughout the tree.
Computation of cell values from details: operator M~! from roots to-
wards leaves.
Creation of phantom cells: needed for diffusion time step.
e Time integration: Strang operator splitting S5* applied only on leaves:
— reaction half time step, time integration by Radaub cell by cell;
— diffusion time step, time integration by ROCK4 considering phan-
toms cells at grid level boundaries, computed by prediction operator;
— reaction half time step, time integration by Radaub cell by cell.
3. OUTPUT:
Save adapted grid with the corresponding cell values represented on it.

4. Numerical Simulations. In this last section, we present some numerical
illustrations of the proposed strategy. A problem coming from nonlinear chemical
dynamics is described and treated. The performance of the method is discussed in
the context of 2D and 3D simulations. All simulations were performed on an AMD-
Shanghai processor of 2.7 GHz with memory capacity of 32 GB.

4.1. Mathematical Model of Study. We are concerned with the numerical
approximation of a model of the Belousov-Zhabotinski reaction, a catalyzed oxidation
of an organic species by acid bromated ion (see [18] for more details and illustrations).
We thus consider the model detailed in [20] and coming from the classic work of [19]
which takes into account three species: hypobromous acid HBrOs, bromide ions Br™
and cerium(IV). Denoting by a = [Ce(IV)], b = [HBrOs] and ¢ = [Br~], we obtain a
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very stiff system of three PDEs:

Oia — DgAa = (—ga —ab+ fo),

(4.1) 0b— DyAb = — (qa—ab+b(1— b)),
oic—D.Ac = b—c,

with diffusion coefficients D,, Dy and D., and some real positive parameters f, small
q, and small €, u, such that pu < e.

The dynamical system associated with this system models reactive excitable me-
dia with a large time scale spectrum (see [20] for more details). Moreover, the spatial
configuration with addition of diffusion generates propagating wavefronts with steep
spatial gradients. Hence, this model presents all the difficulties associated with a
stiff multi-scale configuration. The advantages of applying a splitting strategy to this
problem have already been studied and presented in [13]. In what follows, we will
consider 2D and 3D configurations of problem (4.1).

4.2. 2D BZ Equation. We first consider the 2D application of problem (4.1)
with homogeneous Neumann boundary conditions and the following parameters, taken
from [24] and a preliminary study [13]: e = 1072, 4 = 107", f = 1.6 and ¢ = 2x 1073,
with diffusion coefficients D, = 2.5 x 1073, Dy = 2.5 x 1072 and D, = 1.5 x 1073,
The phenomenon is studied over a time domain of [0, 4] and a space region of [0, 1]%.
The initialization of the problem is based on [24] for the two-variable model of (4.1)
with b and ¢, and it is given by

fe

4.2 =,
(4.2) “ qg+b

b=10.8, 1if 0 <6 < arctan(0.3),
(4.3)

b=bss, elsewhere,

0

4.4 = Css o r
(4.4) 0= ot g

where 6 is a polar coordinate angle considering as origin (0.5,0.5) into [0, 1]2.

(4.5) bss = Css = ¢ %

is an approximation of the steady state values of the dynamical system associated
with the two-variable problem obtained by taking (4.2) into the evolution equations
of b and ¢. (4.2) is obtained by taking x4 — 0 into the evolution equation of a.

In the following, we will first consider a 2D computational domain with a uniform
mesh of 2562 for which the coupled and split resolutions of the semi-discretized prob-
lem derived from (4.1) are rather expensive but still feasible. The idea is to compare
these solutions with the ones computed by the proposed MR/splitting procedure in
order to analyze the splitting and multiresolution errors regarding the corresponding
accuracy tolerances detailed in § 3.2 and to evaluate the computational performance
of each approach. In a second step and based on these results we will study larger
computational domains and 3D problems.

We thus consider 8 nested dyadic grids with N = 22%8 = 65536 = 2562 cells
on the finest grid J = 8 and define a reference or quasi-exact solution Uge as the
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solution of the semi-discretized coupled reaction-diffusion problem (4.1) on the finest
mesh J performed by ROCK4 with very fine tolerances, nrocxs = 10714, For this
problem and with the previous parameters, the spectral radius of the Jacobian of
the reaction term into (4.1) is usually dominated by the negative real parts of the
associated eigenvalues even though the imaginary parts are also present. Therefore
only fine tolerances that yield sufficiently small time steps allow to fully guarantee
the stability of the ROCK4 scheme whenever the imaginary part appears, considering
the reduced stability domains of these methods along the imaginary axis. The main
limitation to directly perform such computation with the Radau5 solver comes from
its important memory requirements.

The split solution USme uses the RDR Strang S£* scheme as time integration
method of the semi-discretized problem (4.1) with Radaub for the time integration of
the reaction term and ROCK4 for the diffusive part, Nredaus = NrRocks = 107°. In
order to choose the appropriate splitting time step At, we set an accuracy tolerance
of 7 = 1072 considering for simplicity the normalized L?-errors (3.3) as explained in
§ 3.2. Figure 4.1 shows these errors evaluated at final time t* = 4 for all three variables.
A rounded value of splitting time step of At = 4/1024 ~ 3.91 x 1073 is finally chosen
for which L2-errors are close to 1 for all three variables and times t* € [0,4] into
(3.3). In this work, we have computed several split solutions with different time steps
for the whole time domain in order to analyze the different aspects of the scheme.
Nevertheless, in a practical situation and for the simulation of propagating waves, we
can consider a much less expensive procedure that evaluates the local errors after one
splitting time step starting from an intermediary solution for which the waves are
fully developed.

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016
At

FiG. 4.1. 2D BZ spiral waves. Normalized L?-errors for several splitting time steps At at final
time t* = 4 according to (3.3) and prefized accuracy tolerance of n = 1072. Uniform grid of 256.

A rather large accuracy tolerance n was considered in order to show the decou-
pling of time steps for reaction, diffusion and the time operator splitting needed to
solve the problem within the prescribed tolerance. The imposed tolerances for the re-
action resolution imply time steps varying from 8.88 x 107° to At/2 ~ 1.95 x 1073 for
points located respectively in the neighborhood of the reactive front and the reduced
chemical activity regions. On the other hand, the selected tolerances for ROCK4 yield
time steps Atp relatively constant of about 6.5 —8 x 10, that is 5 — 6 diffusion time
steps within each splitting time step At. For the spatial discretization of 2562, the
spectral radius p(B) estimated by ROCK4 is about 1400, so that no more than the
minimum number of stages s = 5 is required according to (2.7). As a consequence, a
CPU time of 1029 s is needed compared with the coupled resolution with ROCK4 that
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takes 23967s. The latter considers time steps of about 2.4 x 1075 given by the fine
tolerances and 5 internal stages for a larger spectral radius of 95000, that considers
both reaction- and diffusion-associated eigenvalues. Even though this coupled resolu-
tion should be more accurate than a splitting technique, it will be no longer feasible
for larger computational domains and moreover not appropriate for more complex
chemical terms®.

Fic. 4.2. 2D BZ spiral waves. Top: variable b (left) and c (right) at t = 4. Bottom: variable
a (left) and its representation with four levels of mesh discretization with € = 10~2 (right). Finest
grid: 2562.

We consider now the proposed strategy that combines the previous splitting solver
with the multiresolution adaptive technique. Figure 4.2 shows the spiral waves and
the four different levels of spatial discretization on which they have been simulated
with ¢ = 1072 for the stiffest variable a. Whenever we consider grid adaptation
the bound (3.6) on the splitting time step At must be taken into account. We need
then to estimate the speed of propagation v of the wavefront. This can be done by
computing the propagating speed of each variable along each direction as it is shown
in Figure 4.3 for variable a along the y-axis. For the BZ waves, we have estimated
a maximum speed of v, = v, ~ 0.7, which yields a maximum splitting time step

IFor instance, for the coupled problem (4.1) ROCK4 starts showing stability problems for
nrocka < 1075,
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Atpax = 1.6 x 1072 for Az = Ay = 1/256 and k=3, considering one enlarging cell
in each direction k = 1 in the refinement criteria. In this particular case, we can also
compute the speed relative error E, following (3.2) between the quasi-ezact and a
splitting solution with At = 4/1024. These errors remain practically lower than 0.2%
as seen in Figure 4.3, which imply an accuracy tolerance of 1, = 2 x 1072 considering
the speed resolution.
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F1G. 4.3. BZ wave speed for splitting time step At = 4/1024. Top left: time evolution of
variable a along y-azis (see Figure 4.2); and right, estimated wavefront speed v. Bottom: speed
relative errors Ey for all three variables according to (3.2).

The proposed MR/splitting strategy represents and computes solutions only on
adapted grids, the leaves of the tree structure, throughout the time domain. Therefore,
we define the data compression (DC') as one minus the ratio between the number of
cells on the adapted grid (AG) and those on the finest uniform grid (F'G), expressing
the whole as a percentage:

AG

Figure 4.4 shows different data compression rates for several threshold values. Smaller
threshold values € imply more refinement and thus, compressions are less important.
The whole finest grid is necessary for ¢ < 1075, The corresponding CPU times for
each one of these computations are included in Table (4.1) along with the quasi-ezact
and the splitting solution without any grid adaptation.

A more precise analysis of the CPU time consumption summarized in Table (4.2)
shows that, as it was expected, an adapted grid allows to significatively reduce the
time cost of the reaction integration as a consequence of the important reduction
of the number of points without any chemical activity. On the other hand even
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TABLE 4.1
2D BZ. CPU time in seconds for quasi-ezact, splitting and MR /splitting solutions with different
threshold values €. Finest grid: 2562.

[ MR/splitting € = [ 10— T [ 10~2 [ 10-3 [ 10~1 “ splitting [ quasi-exact ]
[ CPUtime(s) [ 536 | 886 [ 1233 [ 2402 [] 1029 [ 23967 ]

though for e = 1072 we consider only 25 % of the 2562 points, an important overhead
is introduced in the time integration of the diffusion because the introduction of
phantoms cells yield denser matrix representations of the discretized diffusion operator
and thus more expensive matrix-vector products. For these stiff problems, the MR
operations represent less than 15 % of the total time, whereas the construction of the
diffusion matrix takes over 6 % since it has to be recomputed at each splitting time
step contrary to a uniform grid representation for which this matrix is constant. From
a practical point of view, we can see that a more efficient strategy will directly consider
the adaptive grid for the flux evaluations as detailed in [25] without the introduction of
any phantoms cells. Nevertheless, in this work we will keep the previous approach for
being more accurate and taking into account that better performances are expected
for larger computational domains for which grid adaptation is mandatory for the
feasibility of simulations. An overhead is introduced in the CPU times in Table (4.2)
coming from the profiling of the codes.

TABLE 4.2
2D BZ. CPU time in seconds for the reaction and diffusion time integrations for a splitting
and a MR /splitting resolution with e = 10~2. Finest grid: 2562.

splitting MR/splitting € = 102
CPU time (s) | % CPU time (s) | %
Reaction 963 65.4 486 44.0
Diffusion 481 32.7 348 31.5
[ Total | 1472 [ 100.0 | 1104 | 100.0 |
We consider now the numerical accuracy of the MR/splitting strategy U%ﬁt,
discussed in § 3.2, with respect to the reference solution, Uje, for the semi-discretized

problem (4.1) on a uniform mesh J given by 2562 points. The accuracy of the splitting
scheme U;]plit applied to (4.1) discretized on the same uniform mesh J, is given by
an accuracy tolerance 7 according to (3.3) through the proper choice of the splitting
time step At (see Figure 4.1) regardless the possible loss of order for the Strang
S£t scheme [14, 11]. On the other hand, a multiresolution decomposition yields a
compressed spatial representation whose accuracy to approximate the corresponding
uniform mesh representation is related to the threshold value € through (3.5). At
some fixed time t* the overall numerical accuracy of the MR/splitting resolution is
then set by the previous splitting and multiresolution errors:

(4'7) HUge - U%l]fth < ||U;I]€ - Ufs]plitHLZ + HUQ]plit - UﬁﬁﬁiHm
Figure (4.4) shows the corresponding normalized L? errors at t* = 4 for several

threshold values € and n = 10~2 for a splitting time step of At = 4/1024. Multireso-
lution errors are evaluated at the finest grid J after reconstruction from the adapted
mesh solution and depend proportionally on the imposed threshold value € according
to (3.5). For this time multi-scale phenomenon, the accuracy of the MR/splitting
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strategy should be fixed by the time integration process in order to guarantee an
appropriate resolution of the time scale spectrum of the stiff problem, whereas the
multiresolution procedure allows to compress the spatial representation by retaining
the desired level of refinement only wherever it is necessary, taking into account the
space multi-scale features of the physical problem. In this case, these error estimates
show that for ¢ < 1072, the multiresolution errors become negligible compared with
the operator splitting ones so that the overall accuracy is indeed given by 7.
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Fic. 4.4. 2D BZ spiral waves. Left: time evolution of the data compression DC' given by (4.6)
in percentage. Right: mormalized L? errors at t* = 4 given by the splitting technique on a uniform
grid according to (3.3), and by the MR procedure according to (3.5), for several threshold values €
and splitting time step of At = 4/1024. Finest grid: 2562.
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FIG. 4.5. 2D BZ spiral waves. Time evolution of splitting time steps (left) and normalized L?
errors at t* = 4 (right) given by the splitting technique on a uniform grid of 2562 according to (3.3)
for different accuracy tolerances naz for the time adaptive strategy [10] and with At = 4/1024.

Figure (4.5) shows the adaptive splitting time steps corresponding to different
accuracy tolerances na; for the local error of the splitting time integration, according
to the time adaptive procedure introduced in [10]. In all cases, the splitting time step
is adapted from a chosen initial value of At = 10~7 to a roughly constant value that
depends on the prescribed accuracy due to the self-similar character of the wave. The
global error is indeed controlled by the local error accuracy tolerance na; as it is shown
by the normalized L? errors at t* = 4 according to (3.3). The same time integrations
errors for the various tolerances na; are found for different adapted meshes as long
as ¢ < 1072, We see thus that for this kind of propagating phenomena a constant
splitting time step computed based on an accuracy criterion as detailed in § 3.2,
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is appropriate to describe accurately the multi-scale phenomenon. Furthermore, a
splitting time step of At = 4/1024 yields practically the same results as the adaptive
splitting strategy with na; = 1073, so that the overhead of estimating the local errors
of the adaptive scheme can be saved, even though this overhead implies no more than
25 % of additional CPU time considering the embedded procedure developed in [10].

We have analyzed so far the numerical behavior of the proposed numerical strategy
in terms of the splitting time integration method, the computational costs and the
numerical errors for a computational domain of 2562 points, that allows to represents
accurately enough the multi-scale phenomenon and furthermore, it allows to conduct
several computations with reasonable computational resources. Let us now consider a
more challenging configuration with larger computational domain in order to complete
the present study. We therefore consider the semi-discretized problem (4.1) discretized
this time over 10 nested dyadic grids with N = 22%10 = 1048576 = 10242 cells on the
finest grid J = 10.

In order to take into account the memory requirements of each resolution strategy,
we estimate the array size of the working space needed by Radaub and ROCK4:

1. Radaub: Ly =4 x Wy x Wy + 12 x Wy + 20 (from [22]);

2. ROCK4: Ly = 8 x Wy (from [1]);
where W7 and W5 are the number of unknowns solved by Radaub and ROCK4. In the
case of a uniform mesh, the total number of unknowns is W = 3 x 10242 ~ 3.15 x 106
and thus, the global size L required for each solver is:

1. Quasi-exact with Radaub: Wi, = W ~ 3.15 x 10 and L = L; ~ 4 x 10'3.

2. Splitting: Wy =3, Wy = W ~ 3.15 x 10 and L = L; + Ly ~ 2.5 x 107.

3. MR/splitting with e = 1072: Wy = 3, Wy = 0.09 x W =~ 2.9 x 10° and

L =L+ Ly~ 2.3 x 10%; with an average data compression of 91%.

Considering a standard platform on which each double precision value is represented
by 64 bits, we shall require 2.3 Pb, 1.5 Gb and 140.4 Mb respectively, for each solver.
For standard computational resources, an implicit resolution with Radaub is com-
pletely out of reach. These expensive memory requirements are strongly reduced with
a splitting strategy but further reductions are achieved by adding a multiresolution
adaptive procedure.

Figure 4.6 (top) shows the spatial representation of variable a on the finest level
corresponding to a 10242 spatial discretization of problem (4.1) at an intermediary
time ¢ = 2 and after one revolution at final time ¢ = 4. The corresponding data
compressions DC' are respectively of 92.3% and 89.9 %, while the steepest spatial
gradients of the front are always solved within the finest region taking into account
that the splitting time step At = 4/1024 remains bounded by Aty = 4.2 x 1073 for
Az = Ay = 1/1024 according to (3.6). For this case, six levels of grid discretization
were used? from 5 to the finest grid 10.

Bottom of Figure 4.6 shows the corresponding reaction time steps averaged within
At /2 for each point. We have the same distribution as in the previous 2562 case with
reaction time steps going from At/2 to time steps almost 22 times smaller depending of
the local chemical activity. On the other hand, the spectral radius p(B) estimated by
ROCK1 is larger because of the finer spatial discretization of the Laplacian operator
and it is of the order of 23000, so if we consider a diffusion time step Atp equal to
the splitting time step, s = 16 stages will be needed according to (2.7)3. However,

2Same performance is obtained by considering 16 roots in each direction and J = 6 levels of
discretization.
31t is important to notice that ROCK4 needs to save only 8 arrays of the size of the number of
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Fic. 4.6. 2D BZ spiral waves. Variable a on the finest grid (top) and local reaction time steps
h1 (bottom) att =2 (left) and t = 4 (right) with At = 4/1024 and ¢ = 10~2. Finest grid: 10242,

for a given tolerance of nrocxs = 107>, an initial time step given by Atp = At is
rejected to finally reach a relatively constant value of 2.5 — 3.5 x 10~* for which 5
stages instead of 16 are enough to guarantee the stability of the method. Finally,
11 — 15 diffusion time steps Atp are computed inside each splitting time step At.

Figure 4.7 (top left) shows the adaptive splitting time steps obtained by the
local error estimate procedure introduced in [10] with an accuracy tolerance of na: =
10~3. This is shown to be almost equivalent to the constant splitting time step
At = 4/1024 as in the previous 2562 spatial discretization case, where this splitting
error is measured for a given semi-discretized problem. In general and for this kind
of propagating phenomena, the adaptive scheme can be used to initially compute the
corresponding constant splitting time step for a given accuracy.

In all these illustrations, the finest grid of computation is previously settled and
it is basically limited by the computational resources so that the multiresolution error
is indicating the numerical approximation of the compressed spatial representation
with respect to the semi-discretized problem regardless its spatial discretization as

unknowns regardless the number of stages. One of these arrays contains the approximate solution
used to estimate the local error in order to adapt the time step of integration within the prescribed
tolerance.
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Fic. 4.7. 2D BZ spiral waves. Top left: time evolution of splitting time steps with nay =
1072 and finest grids of 2562 and 10242, with At = 4/1024. Top right: normalized L? errors
at t* = 4 given by splitting technique on a uniform grid according to (3.3), and MR procedure
according to (3.5) for several threshold values €, splitting time step At = 4/1024 and a finest grid of
10242. Bottom: time evolution of data compression DC' for prediction operators given by polynomial
interpolations of different orders 21 and a finest grid of 10242,

it is shown in Figure 4.7 (top right). The quasi-ezact solution was computed with
ROCK4 and nrockxa = 10719 and took over 65072 s compared with 13943 s and 9529 s
respectively for the splitting solution and the MR /splitting solution with ¢ = 1072.

Figure 4.7 (bottom) shows the dependence of the data compression on the defini-
tion of the prediction operator (2.11) according to § 3.1. For higher order polynomial
interpolations that yield more accurate and thus more compressed multiresolution rep-
resentations according to (2.12), larger stencils are also needed so that the resulting
data compression results of both opposite actions. In a general case, this is a problem
dependent feature that can be a useful parameter to improve the performance of a
multiresolution technique. A more detailed study of this dependence is out of the
scope of the present work.

4.3. 3D BZ Equation. We consider now problem (4.1) in a 3D configuration
with the same parameters considered in the 2D case for a time domain of [0, 2] and in
a space region [0, 1]2. Initialization is made in the same way but with the coordinate
angle 6 given by

(4.8) 0 — arctan <(w —0.5)sin(rz) + (y — 0.5) cos(m)) |

(x — 0.5) cos(mz) — (y — 0.5) sin(wz)
z equal to zero corresponds to the previous 2D case.

First, we take into account 8 nested dyadic grids with N = 23%® = 16777216 =
2562 cells on the finest grid J = 8. Then, with a threshold value of ¢ = 1072 and
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a splitting time step At = 4/1024, the proposed numerical strategy features data
compressions of 92.61 % for the initial condition, 85.64 % at ¢ = 1 when the scroll
waves are fully developed and 81.42% at final time ¢ = 2. Figure 4.8 shows the
scroll waves for variable a at two different times and the adapted grid at ¢ = 2. The
finest regions correspond to the neighborhood of the wavefront. The adaptive splitting
time technique yields also a roughly constant splitting time step after a short initial
transient whereas the choice At = 4/1024 corresponds approximatively to na; = 1073,
The CPU computation time was of about 41.94 hours with one processor.

Fic. 4.8. 8D BZ scroll wave. Top: evolution of variable a at t = 1 (left) and t = 2 (right).
Bottom: Adapted grid (left) and finest grid (right) att = 2 for e = 1072, Finest grid: 2563.

In order to explore the feasibility and potential advantages of the method, let
us consider 9 nested dyadic grids with N = 23%9 = 134217728 = 5123 cells on the
finest grid J = 9. The initialization must take place on a intermediary grid, j = 8
in this example. For this configuration, a two times larger splitting time step of
At = 4/512 ~ 7.8 x 1073, and a threshold value of € = 10~! were chosen in order
to have splitting and multiresolution errors potentially of the same order. Smaller
threshold values yield larger simulation domains which are not longer feasible with
the considered computing resource and the current state of development of the code.
Figure 4.9 shows the adapted grid at t = 2 and the corresponding finest regions. Com-
pared with the 2563 case, finer regions are added at the steepest spatial gradients of
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the front. On the other hand, in order to globally guarantee (3.5), more refinement
is needed at the lower levels according to (2.18) for a given threshold e, where the
multiresolution representation error (3.5) is always measured with respect to the cor-
responding uniform semi-discretized problem at the finest level. The latter is mainly
limited by the computational resources and the desired level of accuracy of the spatial
resolution. Data compressions are now of 95.79 % for the initial condition, 91.56 % at
t =1 and 91.20 % for final time ¢ = 2, with a CPU computation time of 159.4 hours.

FIG. 4.9. 8D BZ scroll wave. Adapted grid (left) and finest grid (right) at t = 2 for e = 1071,
Finest grid: 5123.

Performing the same comparison concerning memory requirements, the total num-
ber of unknowns for this case is W = 3 x 512 x 512 x 512 ~ 4.03 x 10® and the global
size of L required by each solver is:

1. Quasi-exact with Radau: W, = W ~ 4.03 x 108 and L = L, ~ 6.5 x 10'7.
2. Splitting: Wy =3, Wy = W ~4.03 x 10% and L = Ly + Ly =~ 3.2 x 10°.
3. MR/Splitting with ¢ = 107%: Wy = 3, Wy = 0.13 x W =~ 5.3 x 107 and
L =1L+ Ly~ 4.2 x 108; with a data compression of 87%.
Therefore, we shall require at least 36.1 Eb, 190.7 Gb and 25.0 Gb of memory capacity,
respectively for each solver.

5. Concluding Remarks and Outlook. Based on recent mathematical studies
[14, 11] that allow to better characterize the behavior of splitting techniques for time-
space stiff PDEs and in particular for splitting time steps much larger than the fastest
scales present in the problem, this work introduces a new time operator splitting
approach that exploits these results with an important gain of efficiency. Contrary to
classical splitting strategies that consider splitting time steps set by the fastest time
scales, in our strategy the splitting time step is chosen on the sole basis of the physics of
the global phenomenon and its decoupling capabilities, but not related to any stability
requirement of the numerical methods used to integrate each subsystem, even if strong
stiffness is present. Dedicated high order time integration methods are then chosen for
the reaction and diffusion problems to properly solve the entire spectrum of temporal
scales associated with each independent problem. In this way, an effective decoupling
of the time scale spectrum is achieved whenever this is allowed by the physics of
the problem, so that different physical or numerical time scales associated with each
problem can be isolated and treated independently by each numerical method.
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We have shown that in the context of self-similar propagating waves a constant
splitting time step is enough to capture the dynamics of the phenomenon. This was
confirmed by an adaptive splitting strategy introduced in [10] that yields the same
conclusion. Considering the adequate choice of higher order numerical methods with
adaptive time stepping based on accuracy criteria such as Radaub and ROCK4, the
main error of the time integration is piloted by the splitting scheme and it is thus set-
tled by the splitting time step even for stiff cases [14, 11]. The latter is then computed
based on error estimates of some physical feature such as the profile of the wavefront
or its propagation speed. In a standard numerical strategy, this kind of preliminary
study can be easily performed in 1D or smaller multidimensional configurations to
then extrapolate to larger and more expensive computational domains taking into
account that these splitting errors do not consider the spatial discretization error.
However, from a practical point of view an adaptive splitting strategy can be used to
initialize the splitting time step within the prescribed accuracy.

In order to improve the performance of the time integration strategy an adaptive
mesh refinement technique based on spatial multiresolution was also implemented.
One of the main advantage of such method is that for a given semi-discretized prob-
lem, the error introduced by the corresponding compressed spatial representation can
be controlled. Even though a rigorous mathematical proof of multiresolution errors
for parabolic problems is not yet available, the numerical results confirm the error
estimates. In this way, for a problem represented with a spatial discretization limited
mainly by the computational resources, the proposed MR/splitting strategy allows to
track the corresponding numerical error of the simulation introduced by the numer-
ical methods of resolution. As a consequence, the resulting highly compressed data
representations as well as the accurate and feasible resolution of these stiff phenomena
prove that large computational domains previously out of reach can be successfully
simulated with conventional computing resources.

For the moment, we have focused our attention on reaction-diffusion systems in
order to settle the foundations for simulation of more complex phenomena with fully
convection-reaction-diffusion systems and more detailed models such as combustion
with complex chemistry [9, 26]. Therefore, an important amount of work is still in
progress concerning programming features such as data structures, optimized routines
and parallelization strategies for the time integration technique as well as for the mul-
tiresolution environment, even though the global CPU time is largely dominated by
the time resolution for these stiff problems. For instance, some dedicated and efficient
implementations have been recently developed for multiresolution applications [3, 4].
Finally, when dealing with more complex systems such as complex or more detailed
chemistry or stroke modeling in the brain, the source term involves many species (typ-
ically 50) and many reactions (typically several hundreds) or complex mechanisms.
In such a case the integration of the source term leads to a heavy computational cost,
even if it is embarrassingly parallel in the framework of operator splitting and if data
compression issued from the multiresolution allows to improve its resolution as shown
in [16]. Therefore, this field also requires some further studies in order to obtain high
efficiency in terms of load balancing on parallel architectures. These issues constitute
particular topics of our current research.
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